cling/lib/Interpreter/Interpreter.cpp

800 lines
27 KiB
C++
Raw Normal View History

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// version: $Id$
// author: Lukasz Janyst <ljanyst@cern.ch>
//------------------------------------------------------------------------------
#include "cling/Interpreter/Interpreter.h"
#include "cling/Interpreter/LookupHelper.h"
#include "cling/Utils/AST.h"
#include "CompilationOptions.h"
#include "DynamicLookup.h"
#include "ExecutionContext.h"
#include "IncrementalParser.h"
#include "cling/Interpreter/CIFactory.h"
#include "cling/Interpreter/InterpreterCallbacks.h"
#include "cling/Interpreter/Value.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/DeclarationName.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/TemplateDeduction.h"
#include "llvm/Linker.h"
#include "llvm/LLVMContext.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include <iostream>
#include <sstream>
#include <vector>
using namespace clang;
namespace {
static bool tryLinker(const std::string& filename,
const cling::InvocationOptions& Opts,
llvm::Module* module) {
assert(module && "Module must exist for linking!");
llvm::Linker L("cling", module, llvm::Linker::QuietWarnings
| llvm::Linker::QuietErrors);
for (std::vector<llvm::sys::Path>::const_iterator I
= Opts.LibSearchPath.begin(), E = Opts.LibSearchPath.end(); I != E;
++I) {
L.addPath(*I);
}
L.addSystemPaths();
bool Native = true;
if (L.LinkInLibrary(filename, Native)) {
// that didn't work, try bitcode:
llvm::sys::Path FilePath(filename);
std::string Magic;
if (!FilePath.getMagicNumber(Magic, 64)) {
// filename doesn't exist...
L.releaseModule();
return false;
}
if (llvm::sys::IdentifyFileType(Magic.c_str(), 64)
== llvm::sys::Bitcode_FileType) {
// We are promised a bitcode file, complain if it fails
L.setFlags(0);
if (L.LinkInFile(llvm::sys::Path(filename), Native)) {
L.releaseModule();
return false;
}
} else {
// Nothing the linker can handle
L.releaseModule();
return false;
}
} else if (Native) {
// native shared library, load it!
llvm::sys::Path SoFile = L.FindLib(filename);
assert(!SoFile.isEmpty() && "The shared lib exists but can't find it!");
std::string errMsg;
bool hasError = llvm::sys::DynamicLibrary
::LoadLibraryPermanently(SoFile.str().c_str(), &errMsg);
if (hasError) {
llvm::errs() << "Could not load shared library!\n"
<< "\n"
<< errMsg.c_str();
L.releaseModule();
return false;
}
}
L.releaseModule();
return true;
}
static bool canWrapForCall(const std::string& input_line) {
// Whether input_line can be wrapped into a function.
// "1" can, "#include <vector>" can't.
if (input_line.length() > 1 && input_line[0] == '#') return false;
if (input_line.compare(0, strlen("extern "), "extern ") == 0) return false;
if (input_line.compare(0, strlen("using "), "using ") == 0) return false;
return true;
}
} // unnamed namespace
namespace cling {
// "Declared" to the JIT in RuntimeUniverse.h
namespace runtime {
namespace internal {
int local_cxa_atexit(void (*func) (void*), void* arg,
void* dso, Interpreter* interp) {
return interp->CXAAtExit(func, arg, dso);
}
struct __trigger__cxa_atexit {
~__trigger__cxa_atexit();
};
__trigger__cxa_atexit::~__trigger__cxa_atexit() {}
}
}
// This function isn't referenced outside its translation unit, but it
// can't use the "static" keyword because its address is used for
// GetMainExecutable (since some platforms don't support taking the
// address of main, and some platforms can't implement GetMainExecutable
// without being given the address of a function in the main executable).
llvm::sys::Path GetExecutablePath(const char *Argv0) {
// This just needs to be some symbol in the binary; C++ doesn't
// allow taking the address of ::main however.
void *MainAddr = (void*) (intptr_t) GetExecutablePath;
return llvm::sys::Path::GetMainExecutable(Argv0, MainAddr);
}
void Interpreter::unload() {
m_IncrParser->unloadTransaction(0);
}
Interpreter::Interpreter(int argc, const char* const *argv,
const char* llvmdir /*= 0*/) :
m_UniqueCounter(0), m_PrintAST(false), m_DynamicLookupEnabled(false) {
m_LLVMContext.reset(new llvm::LLVMContext);
std::vector<unsigned> LeftoverArgsIdx;
m_Opts = InvocationOptions::CreateFromArgs(argc, argv, LeftoverArgsIdx);
std::vector<const char*> LeftoverArgs;
for (size_t I = 0, N = LeftoverArgsIdx.size(); I < N; ++I) {
LeftoverArgs.push_back(argv[LeftoverArgsIdx[I]]);
}
m_IncrParser.reset(new IncrementalParser(this, LeftoverArgs.size(),
&LeftoverArgs[0],
llvmdir));
m_LookupHelper.reset(new LookupHelper(m_IncrParser->getParser()));
m_ExecutionContext.reset(new ExecutionContext());
// Add path to interpreter's include files
// Try to find the headers in the src folder first
#ifdef CLING_SRCDIR_INCL
llvm::sys::Path SrcP(CLING_SRCDIR_INCL);
if (SrcP.canRead())
AddIncludePath(SrcP.str());
#endif
llvm::sys::Path P = GetExecutablePath(argv[0]);
if (!P.isEmpty()) {
P.eraseComponent(); // Remove /cling from foo/bin/clang
P.eraseComponent(); // Remove /bin from foo/bin
// Get foo/include
P.appendComponent("include");
if (P.canRead())
AddIncludePath(P.str());
else {
#ifdef CLING_INSTDIR_INCL
llvm::sys::Path InstP(CLING_INSTDIR_INCL);
if (InstP.canRead())
AddIncludePath(InstP.str());
#endif
}
}
m_ExecutionContext->addSymbol("local_cxa_atexit",
(void*)(intptr_t)&cling::runtime::internal::local_cxa_atexit);
if (getCI()->getLangOpts().CPlusPlus) {
// Set up common declarations which are going to be available
// only at runtime
// Make sure that the universe won't be included to compile time by using
// -D __CLING__ as CompilerInstance's arguments
#ifdef _WIN32
// We have to use the #defined __CLING__ on windows first.
//FIXME: Find proper fix.
declare("#ifdef __CLING__ \n#endif");
#endif
declare("#include \"cling/Interpreter/RuntimeUniverse.h\"");
declare("#include \"cling/Interpreter/ValuePrinter.h\"");
// Set up the gCling variable
std::stringstream initializer;
initializer << "gCling=(cling::Interpreter*)" << (uintptr_t)this << ";";
evaluate(initializer.str());
}
else {
declare("#include \"cling/Interpreter/CValuePrinter.h\"");
}
handleFrontendOptions();
}
Interpreter::~Interpreter() {
for (size_t I = 0, N = m_AtExitFuncs.size(); I < N; ++I) {
const CXAAtExitElement& AEE = m_AtExitFuncs[N - I - 1];
(*AEE.m_Func)(AEE.m_Arg);
}
}
const char* Interpreter::getVersion() const {
return "$Id$";
}
void Interpreter::handleFrontendOptions() {
if (m_Opts.ShowVersion) {
llvm::outs() << getVersion() << '\n';
}
if (m_Opts.Help) {
m_Opts.PrintHelp();
}
}
void Interpreter::AddIncludePath(llvm::StringRef incpath)
{
// Add the given path to the list of directories in which the interpreter
// looks for include files. Only one path item can be specified at a
// time, i.e. "path1:path2" is not supported.
CompilerInstance* CI = getCI();
HeaderSearchOptions& headerOpts = CI->getHeaderSearchOpts();
const bool IsUserSupplied = false;
const bool IsFramework = false;
const bool IsSysRootRelative = true;
headerOpts.AddPath(incpath, frontend::Angled, IsUserSupplied, IsFramework,
IsSysRootRelative);
Preprocessor& PP = CI->getPreprocessor();
ApplyHeaderSearchOptions(PP.getHeaderSearchInfo(), headerOpts,
PP.getLangOpts(),
PP.getTargetInfo().getTriple());
}
// Copied from clang/lib/Frontend/CompilerInvocation.cpp
void Interpreter::DumpIncludePath() {
const HeaderSearchOptions Opts(getCI()->getHeaderSearchOpts());
std::vector<std::string> Res;
if (Opts.Sysroot != "/") {
Res.push_back("-isysroot");
Res.push_back(Opts.Sysroot);
}
/// User specified include entries.
for (unsigned i = 0, e = Opts.UserEntries.size(); i != e; ++i) {
const HeaderSearchOptions::Entry &E = Opts.UserEntries[i];
if (E.IsFramework && (E.Group != frontend::Angled || !E.IsUserSupplied))
llvm::report_fatal_error("Invalid option set!");
if (E.IsUserSupplied) {
switch (E.Group) {
case frontend::After:
Res.push_back("-idirafter");
break;
case frontend::Quoted:
Res.push_back("-iquote");
break;
case frontend::System:
Res.push_back("-isystem");
break;
case frontend::IndexHeaderMap:
Res.push_back("-index-header-map");
Res.push_back(E.IsFramework? "-F" : "-I");
break;
case frontend::CSystem:
Res.push_back("-c-isystem");
break;
case frontend::CXXSystem:
Res.push_back("-cxx-isystem");
break;
case frontend::ObjCSystem:
Res.push_back("-objc-isystem");
break;
case frontend::ObjCXXSystem:
Res.push_back("-objcxx-isystem");
break;
case frontend::Angled:
Res.push_back(E.IsFramework ? "-F" : "-I");
break;
}
} else {
if (E.Group != frontend::Angled && E.Group != frontend::System)
llvm::report_fatal_error("Invalid option set!");
Res.push_back(E.Group == frontend::Angled ? "-iwithprefixbefore" :
"-iwithprefix");
}
Res.push_back(E.Path);
}
if (!Opts.ResourceDir.empty()) {
Res.push_back("-resource-dir");
Res.push_back(Opts.ResourceDir);
}
if (!Opts.ModuleCachePath.empty()) {
Res.push_back("-fmodule-cache-path");
Res.push_back(Opts.ModuleCachePath);
}
if (!Opts.UseStandardSystemIncludes)
Res.push_back("-nostdinc");
if (!Opts.UseStandardCXXIncludes)
Res.push_back("-nostdinc++");
if (Opts.UseLibcxx)
Res.push_back("-stdlib=libc++");
if (Opts.Verbose)
Res.push_back("-v");
// print'em all
for (unsigned i = 0; i < Res.size(); ++i) {
llvm::outs() << Res[i] <<"\n";
}
}
CompilerInstance* Interpreter::getCI() const {
return m_IncrParser->getCI();
}
llvm::ExecutionEngine* Interpreter::getExecutionEngine() const {
return m_ExecutionContext->getExecutionEngine();
}
llvm::Module* Interpreter::getModule() const {
return m_IncrParser->getCodeGenerator()->GetModule();
}
///\brief Maybe transform the input line to implement cint command line
/// semantics (declarations are global) and compile to produce a module.
///
Interpreter::CompilationResult
Interpreter::process(const std::string& input, Value* V /* = 0 */,
const Decl** D /* = 0 */) {
CompilationOptions CO;
CO.DeclarationExtraction = 1;
CO.ValuePrinting = CompilationOptions::VPAuto;
CO.DynamicScoping = isDynamicLookupEnabled();
CO.Debug = isPrintingAST();
if (!canWrapForCall(input))
return declare(input, D);
if (EvaluateInternal(input, CO, V) == Interpreter::kFailure) {
if (D)
*D = 0;
return Interpreter::kFailure;
}
if (D)
*D = m_IncrParser->getLastTransaction()->getFirstDecl().getSingleDecl();
return Interpreter::kSuccess;
}
Interpreter::CompilationResult
Interpreter::parse(const std::string& input) {
CompilationOptions CO;
CO.CodeGeneration = 0;
CO.DeclarationExtraction = 0;
CO.ValuePrinting = 0;
CO.DynamicScoping = isDynamicLookupEnabled();
CO.Debug = isPrintingAST();
return DeclareInternal(input, CO);
}
Interpreter::CompilationResult
Interpreter::declare(const std::string& input, const Decl** D /* = 0 */) {
CompilationOptions CO;
CO.DeclarationExtraction = 0;
CO.ValuePrinting = 0;
CO.DynamicScoping = isDynamicLookupEnabled();
CO.Debug = isPrintingAST();
return DeclareInternal(input, CO, D);
}
Interpreter::CompilationResult
Interpreter::evaluate(const std::string& input, Value* V /* = 0 */) {
// Here we might want to enforce further restrictions like: Only one
// ExprStmt can be evaluated and etc. Such enforcement cannot happen in the
// worker, because it is used from various places, where there is no such
// rule
CompilationOptions CO;
CO.DeclarationExtraction = 0;
CO.ValuePrinting = 0;
return EvaluateInternal(input, CO, V);
}
Interpreter::CompilationResult
Interpreter::echo(const std::string& input, Value* V /* = 0 */) {
CompilationOptions CO;
CO.DeclarationExtraction = 0;
CO.ValuePrinting = CompilationOptions::VPEnabled;
return EvaluateInternal(input, CO, V);
}
void Interpreter::WrapInput(std::string& input, std::string& fname) {
fname = createUniqueWrapper();
input.insert(0, "void " + fname + "() {\n ");
input.append("\n;\n}");
}
llvm::StringRef Interpreter::createUniqueWrapper() {
const size_t size = sizeof("__cling_Un1Qu3") + sizeof(m_UniqueCounter);
llvm::SmallString<size> out("__cling_Un1Qu3");
llvm::raw_svector_ostream(out) << m_UniqueCounter++;
return (getCI()->getASTContext().Idents.getOwn(out)).getName();
}
bool Interpreter::RunFunction(llvm::StringRef fname, llvm::GenericValue* res) {
if (getCI()->getDiagnostics().hasErrorOccurred())
return false;
if (!m_IncrParser->hasCodeGenerator()) {
return true;
}
std::string mangledNameIfNeeded;
Sema& S = getCI()->getSema();
FunctionDecl* FD
= cast_or_null<FunctionDecl>(utils::Lookup::Named(&S, fname.str().c_str()));
if (FD) {
getMangledName(FD, mangledNameIfNeeded);
m_ExecutionContext->executeFunction(mangledNameIfNeeded.c_str(), res);
return true;
}
return false;
}
void Interpreter::createUniqueName(std::string& out) {
out = "Un1Qu3";
llvm::raw_string_ostream(out) << m_UniqueCounter++;
}
Interpreter::CompilationResult
Interpreter::DeclareInternal(const std::string& input,
const CompilationOptions& CO,
const clang::Decl** D /* = 0 */) {
if (m_IncrParser->Compile(input, CO) != IncrementalParser::kFailed) {
if (D)
*D = m_IncrParser->getLastTransaction()->getFirstDecl().getSingleDecl();
return Interpreter::kSuccess;
}
return Interpreter::kFailure;
}
Interpreter::CompilationResult
Interpreter::EvaluateInternal(const std::string& input,
const CompilationOptions& CO,
Value* V /* = 0 */) {
Sema& TheSema = getCI()->getSema();
DiagnosticsEngine& Diag = getCI()->getDiagnostics();
// Disable warnings which doesn't make sense when using the prompt
// This gets reset with the clang::Diagnostics().Reset()
Diag.setDiagnosticMapping(clang::diag::warn_unused_expr,
clang::diag::MAP_IGNORE, SourceLocation());
Diag.setDiagnosticMapping(clang::diag::warn_unused_call,
clang::diag::MAP_IGNORE, SourceLocation());
// Wrap the expression
std::string WrapperName;
std::string Wrapper = input;
WrapInput(Wrapper, WrapperName);
QualType RetTy = getCI()->getASTContext().VoidTy;
if (V) {
const Transaction* CurT = m_IncrParser->Parse(Wrapper);
assert(CurT->size() && "No decls created by Parse!");
// Find the wrapper function declaration.
//
// Note: The parse may have created a whole set of decls if a template
// instantiation happened. Our wrapper function should be the
// last decl in the set.
//
FunctionDecl* TopLevelFD
= dyn_cast<FunctionDecl>(CurT->getLastDecl().getSingleDecl());
assert(TopLevelFD && "No Decls Parsed?");
DeclContext* CurContext = TheSema.CurContext;
TheSema.CurContext = TopLevelFD;
ASTContext& Context(getCI()->getASTContext());
// We have to be able to mark the expression for printout. There are three
// scenarios:
// 0: Expression printing disabled - don't do anything just disable the
// consumer
// is our marker, even if there wasn't missing ';'.
// 1: Expression printing enabled - make sure we don't have NullStmt,
// which is used as a marker to suppress the print out.
// 2: Expression printing auto - do nothing - rely on the omitted ';' to
// not produce the suppress marker.
if (CompoundStmt* CS = dyn_cast<CompoundStmt>(TopLevelFD->getBody())) {
// Collect all Stmts, contained in the CompoundStmt
llvm::SmallVector<Stmt *, 4> Stmts;
for (CompoundStmt::body_iterator iStmt = CS->body_begin(),
eStmt = CS->body_end(); iStmt != eStmt; ++iStmt)
Stmts.push_back(*iStmt);
size_t indexOfLastExpr = Stmts.size();
while(indexOfLastExpr--) {
// find the trailing expression statement (skip e.g. null statements)
if (Expr* E = dyn_cast_or_null<Expr>(Stmts[indexOfLastExpr])) {
RetTy = E->getType();
if (!RetTy->isVoidType()) {
// Change the void function's return type
FunctionProtoType::ExtProtoInfo EPI;
QualType FuncTy = Context.getFunctionType(RetTy,/* ArgArray = */0,
/* NumArgs = */0, EPI);
TopLevelFD->setType(FuncTy);
// Strip the parenthesis if any
if (ParenExpr* PE = dyn_cast<ParenExpr>(E))
E = PE->getSubExpr();
// Change it with return stmt
Stmts[indexOfLastExpr]
= TheSema.ActOnReturnStmt(SourceLocation(), E).take();
}
// even if void: we found an expression
break;
}
}
// case 1:
if (CO.ValuePrinting == CompilationOptions::VPEnabled)
if (indexOfLastExpr < Stmts.size() - 1 &&
isa<NullStmt>(Stmts[indexOfLastExpr + 1]))
Stmts.erase(Stmts.begin() + indexOfLastExpr);
// Stmts.insert(Stmts.begin() + indexOfLastExpr + 1,
// TheSema.ActOnNullStmt(SourceLocation()).take());
// Update the CompoundStmt body
CS->setStmts(TheSema.getASTContext(), Stmts.data(), Stmts.size());
}
TheSema.CurContext = CurContext;
m_IncrParser->commitCurrentTransaction();
}
else
m_IncrParser->Compile(Wrapper, CO);
// get the result
if (!V) {
if (RunFunction(WrapperName)) {
return Interpreter::kSuccess;
}
} else if (RunFunction(WrapperName, &V->value)) {
V->type = RetTy;
return Interpreter::kSuccess;
} else {
*V = Value();
}
return Interpreter::kFailure;
}
bool Interpreter::loadFile(const std::string& filename,
bool allowSharedLib /*=true*/) {
if (allowSharedLib) {
llvm::Module* module = m_IncrParser->getCodeGenerator()->GetModule();
if (module) {
if (tryLinker(filename, getOptions(), module))
return true;
if (filename.compare(0, 3, "lib") == 0) {
// starts with "lib", try without (the llvm::Linker forces
// a "lib" in front, which makes it liblib...
if (tryLinker(filename.substr(3, std::string::npos),
getOptions(), module))
return true;
}
}
}
std::string code;
code += "#include \"" + filename + "\"";
return declare(code) == Interpreter::kSuccess;
}
class ParserExt : public Parser {
public:
static TypeResult ParseTypeNameFwd(Parser* P, SourceRange *Range = 0,
Declarator::TheContext Context
= Declarator::TypeNameContext,
AccessSpecifier AS = AS_none,
Decl **OwnedType = 0) {
return ((ParserExt*)P)->ParseTypeName(Range, Context, AS, OwnedType);
}
static const Token& NextTokenFwd(Parser* P) {
return ((ParserExt*)P)->NextToken();
}
static bool SkipUntilFwd(Parser* P, tok::TokenKind T, bool StopAtSemi = true,
bool DontConsume = false,
bool StopAtCodeCompletion = false) {
return ((ParserExt*)P)->SkipUntil(T, StopAtSemi, DontConsume,
StopAtCodeCompletion);
}
static bool TryAnnotateCXXScopeTokenFwd(Parser* P,
bool EnteringContext = false) {
return ((ParserExt*)P)->TryAnnotateCXXScopeToken(EnteringContext);
}
static bool TryAnnotateTypeOrScopeTokenFwd(Parser* P,
bool EnteringContext = false,
bool NeedType = false) {
return ((ParserExt*)P)->TryAnnotateTypeOrScopeToken(EnteringContext);
}
static ParsedType getTypeAnnotationFwd(Token &Tok) {
return ParserExt::getTypeAnnotation(Tok);
}
static SourceLocation ConsumeTokenFwd(Parser* P) {
return ((ParserExt*)P)->ConsumeToken();
}
static bool ParseUnqualifiedIdFwd(Parser* P,
CXXScopeSpec &SS, bool EnteringContext,
bool AllowDestructorName,
bool AllowConstructorName,
ParsedType ObjectType,
SourceLocation& TemplateKWLoc,
UnqualifiedId &Result) {
return ((ParserExt*)P)->ParseUnqualifiedId(SS, EnteringContext,
AllowDestructorName,
AllowConstructorName,
ObjectType,
TemplateKWLoc,
Result);
}
static ExprResult ParseAssignmentExpressionFwd(Parser* P,
TypeCastState isTypeCast
= NotTypeCast) {
return ((ParserExt*)P)->ParseAssignmentExpression(isTypeCast);
}
static void EnterScopeFwd(Parser* P, unsigned ScopeFlags) {
((ParserExt*)P)->EnterScope(ScopeFlags);
}
static void ExitScopeFwd(Parser* P) {
((ParserExt*)P)->ExitScope();
}
};
void Interpreter::installLazyFunctionCreator(
void* (*fp)(const std::string&)) {
m_ExecutionContext->installLazyFunctionCreator(fp);
}
Value Interpreter::Evaluate(const char* expr, DeclContext* DC,
bool ValuePrinterReq) {
Sema& TheSema = getCI()->getSema();
if (!DC)
DC = TheSema.getASTContext().getTranslationUnitDecl();
// Set up the declaration context
DeclContext* CurContext;
CurContext = TheSema.CurContext;
TheSema.CurContext = DC;
Value Result;
if (TheSema.ExternalSource) {
DynamicIDHandler* DIDH =
static_cast<DynamicIDHandler*>(TheSema.ExternalSource);
DIDH->Callbacks->setEnabled();
(ValuePrinterReq) ? echo(expr, &Result) : evaluate(expr, &Result);
DIDH->Callbacks->setEnabled(false);
}
else
(ValuePrinterReq) ? echo(expr, &Result) : evaluate(expr, &Result);
TheSema.CurContext = CurContext;
return Result;
}
void Interpreter::setCallbacks(InterpreterCallbacks* C) {
Sema& S = getCI()->getSema();
assert(S.ExternalSource && "No ExternalSource set!");
static_cast<DynamicIDHandler*>(S.ExternalSource)->Callbacks = C;
}
void Interpreter::enableDynamicLookup(bool value /*=true*/) {
m_DynamicLookupEnabled = value;
Sema& S = getCI()->getSema();
if (isDynamicLookupEnabled()) {
assert(!S.ExternalSource && "Already set Sema ExternalSource");
// Load the dynamic lookup specifics.
declare("#include \"cling/Interpreter/DynamicLookupRuntimeUniverse.h\"");
S.ExternalSource = new DynamicIDHandler(&S);
}
else {
delete S.ExternalSource;
S.ExternalSource = 0;
}
}
void Interpreter::runStaticInitializersOnce() const {
// Forward to ExecutionContext; should not be called by
// anyone except for IncrementalParser.
llvm::Module* module = m_IncrParser->getCodeGenerator()->GetModule();
m_ExecutionContext->runStaticInitializersOnce(module);
}
int Interpreter::CXAAtExit(void (*func) (void*), void* arg, void* dso) {
// Register a CXAAtExit function
Decl* LastTLD
= m_IncrParser->getLastTransaction()->getLastDecl().getSingleDecl();
m_AtExitFuncs.push_back(CXAAtExitElement(func, arg, dso, LastTLD));
return 0; // happiness
}
void Interpreter::getMangledName(const clang::NamedDecl* D,
std::string& mangledName) const {
///Get the mangled name of a NamedDecl.
///
///D - mangle this decl's name
///mangledName - put the mangled name in here
llvm::OwningPtr<MangleContext>
Mangle(getCI()->getASTContext().createMangleContext());
if (Mangle->shouldMangleDeclName(D)) {
llvm::raw_string_ostream RawStr(mangledName);
Mangle->mangleName(D, RawStr);
RawStr.flush();
} else {
mangledName = D->getNameAsString();
}
}
bool Interpreter::addSymbol(const char* symbolName, void* symbolAddress) {
// Forward to ExecutionContext;
if (!symbolName || !symbolAddress )
return false;
return m_ExecutionContext->addSymbol(symbolName, symbolAddress);
}
void* Interpreter::getAddressOfGlobal(const clang::NamedDecl* D,
bool* fromJIT /*=0*/) const {
// Return a symbol's address, and whether it was jitted.
std::string mangledName;
getMangledName(D, mangledName);
return m_ExecutionContext->getAddressOfGlobal(mangledName.c_str(), fromJIT);
}
} // namespace cling