cling/lib/Interpreter/DeclUnloader.cpp

1101 lines
41 KiB
C++
Raw Normal View History

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// author: Vassil Vassilev <vvasilev@cern.ch>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
#include "DeclUnloader.h"
#include "cling/Utils/AST.h"
#ifdef _WIN32
#include "cling/Utils/Diagnostics.h"
#endif
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Sema.h"
#include "llvm/IR/Constants.h"
namespace {
using namespace clang;
constexpr bool isDefinition(void*) { return false; }
bool isDefinition(TagDecl* R) {
return R->isCompleteDefinition() && isa<CXXRecordDecl>(R);
}
// Copied and adapted from: ASTReaderDecl.cpp
template <typename DeclT> void removeRedeclFromChain(DeclT* R) {
// RedeclLink is a protected member.
struct RedeclDerived : public Redeclarable<DeclT> {
// FIXME: Report this false positive diagnostic to clang.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-local-typedef"
#endif // __clang__
typedef typename Redeclarable<DeclT>::DeclLink DeclLink_t;
static DeclLink_t& getLink(DeclT* LR) {
Redeclarable<DeclT>* D = LR;
return ((RedeclDerived*)D)->RedeclLink;
}
static void setLatest(DeclT* Latest) {
// Convert A -> Latest -> B into A -> Latest
getLink(Latest->getFirstDecl()).setLatest(Latest);
}
static void skipPrev(DeclT* Next) {
// Convert A -> B -> Next into A -> Next
DeclT* Skip = Next->getPreviousDecl();
getLink(Next).setPrevious(Skip->getPreviousDecl());
}
static void setFirst(DeclT* First) {
// Convert A -> First -> B into First -> B
DeclT* Latest = First->getMostRecentDecl();
getLink(First)
= DeclLink_t(DeclLink_t::LatestLink, First->getASTContext());
getLink(First).setLatest(Latest);
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
};
assert(R != R->getFirstDecl() && "Cannot remove only redecl from chain");
const bool isdef = isDefinition(R);
// In the following cases, A marks the first, Z the most recent and
// R the decl to be removed from the chain.
DeclT* Prev = R->getPreviousDecl();
if (R == R->getMostRecentDecl()) {
// A -> .. -> R
RedeclDerived::setLatest(Prev);
} else {
// Find the next redecl, starting at the end
DeclT* Next = R->getMostRecentDecl();
while (Next && Next->getPreviousDecl() != R)
Next = Next->getPreviousDecl();
if (!Next) {
// R is not (yet?) wired up.
return;
}
if (R->getPreviousDecl()) {
// A -> .. -> R -> .. -> Z
RedeclDerived::skipPrev(Next);
} else {
assert(R->getFirstDecl() == R && "Logic error");
// R -> .. -> Z
RedeclDerived::setFirst(Next);
}
}
// If the decl was the definition, the other decl might have their
// DefinitionData pointing to it.
// This is really need only if DeclT is a TagDecl or derived.
if (isdef)
cling::DeclUnloader::resetDefinitionData(Prev);
}
///\brief Adds the previous declaration into the lookup map on DC.
/// @param[in] D - The decl that is being removed.
/// @param[in] DC - The DeclContext to add the previous declaration of D.
///\returns the previous declaration.
///
Decl* handleRedelaration(Decl* D, DeclContext* DC) {
NamedDecl* ND = dyn_cast<NamedDecl>(D);
if (!ND)
return nullptr;
DeclarationName Name = ND->getDeclName();
if (Name.isEmpty())
return nullptr;
NamedDecl* MostRecent = ND->getMostRecentDecl();
NamedDecl* MostRecentNotThis = MostRecent;
if (MostRecentNotThis == ND) {
MostRecentNotThis = dyn_cast_or_null<NamedDecl>(ND->getPreviousDecl());
if (!MostRecentNotThis || MostRecentNotThis == ND)
return MostRecentNotThis;
}
if (StoredDeclsMap* Map = DC->getPrimaryContext()->getLookupPtr()) {
StoredDeclsMap::iterator Pos = Map->find(Name);
if (Pos != Map->end() && !Pos->second.isNull()) {
DeclContext::lookup_result decls = Pos->second.getLookupResult();
// FIXME: A decl meant to be added in the lookup already exists
// in the lookup table. My assumption is that the DeclUnloader
// adds it here. This needs to be investigated mode. For now
// std::find gets promoted from assert to condition :)
// DeclContext::lookup_result::iterator is not an InputIterator
// (const member, thus no op=(const iterator&)), thus we cannot use
// std::find. MSVC actually cares!
auto hasDecl = [](const DeclContext::lookup_result& Result,
const NamedDecl* Needle) -> bool {
for (auto IDecl: Result) {
if (IDecl == Needle)
return true;
}
return false;
};
if (!hasDecl(decls, MostRecentNotThis) && hasDecl(decls, ND)) {
// The decl was registered in the lookup, update it.
Pos->second.addOrReplaceDecl(MostRecentNotThis);
}
}
}
return MostRecentNotThis;
}
// Copied and adapted from GlobalDCE.cpp
class GlobalValueEraser {
private:
typedef llvm::SmallPtrSet<llvm::GlobalValue*, 32> Globals;
Globals VisitedGlobals;
llvm::SmallPtrSet<llvm::Constant *, 8> SeenConstants;
clang::CodeGenerator* m_CodeGen;
public:
GlobalValueEraser(clang::CodeGenerator* CG)
: m_CodeGen(CG) { }
///\brief Erases the given global value and all unused leftovers
///
///\param[in] GV - The removal starting point.
///
///\returns true if something was erased.
///
bool EraseGlobalValue(llvm::GlobalValue* GV) {
using namespace llvm;
bool Changed = false;
Changed |= RemoveUnusedGlobalValue(*GV);
// Collect all uses of globals by GV
CollectAllUsesOfGlobals(GV);
FindUsedValues(*GV->getParent());
// The first pass is to drop initializers of global vars which are dead.
for (Globals::iterator I = VisitedGlobals.begin(),
E = VisitedGlobals.end(); I != E; ++I)
if (GlobalVariable* GVar = dyn_cast<GlobalVariable>(*I)) {
GVar->setInitializer(nullptr);
}
else if (GlobalAlias* GA = dyn_cast<GlobalAlias>(*I)) {
GA->setAliasee(nullptr);
}
else {
Function* F = cast<Function>(*I);
if (!F->isDeclaration())
F->deleteBody();
}
if (!VisitedGlobals.empty()) {
// Now that all interferences have been dropped, delete the actual
// objects themselves.
for (Globals::iterator I = VisitedGlobals.begin(),
E = VisitedGlobals.end(); I != E; ++I) {
RemoveUnusedGlobalValue(**I);
if ((*I)->getNumUses())
continue;
// Required by ::DwarfEHPrepare::InsertUnwindResumeCalls (in the JIT)
if ((*I)->getName().equals("_Unwind_Resume"))
continue;
m_CodeGen->forgetGlobal(*I);
(*I)->eraseFromParent();
}
Changed = true;
}
// Make sure that all memory is released
VisitedGlobals.clear();
SeenConstants.clear();
return Changed;
}
private:
/// Find values that are marked as llvm.used.
void FindUsedValues(const llvm::Module& m) {
for (const llvm::GlobalVariable& GV : m.globals()) {
if (!GV.getName().starts_with("llvm.used"))
continue;
const llvm::ConstantArray* Inits
= cast<llvm::ConstantArray>(GV.getInitializer());
for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i) {
llvm::Value *Operand
= Inits->getOperand(i)->stripPointerCasts();
VisitedGlobals.erase(cast<llvm::GlobalValue>(Operand));
}
}
}
/// CollectAllUsesOfGlobals - collects recursively all referenced globals by
/// GV.
void CollectAllUsesOfGlobals(llvm::GlobalValue *G) {
using namespace llvm;
// If the global is already in the set, no need to reprocess it.
if (!VisitedGlobals.insert(G).second)
return;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G)) {
// If this is a global variable, we must make sure to add any global
// values referenced by the initializer to the collection set.
if (GV->hasInitializer())
MarkConstant(GV->getInitializer());
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(G)) {
// The target of a global alias as referenced.
2016-09-29 03:17:23 +03:00
// GA->getAliasee() is sometimes returning NULL on Windows
if (llvm::Constant* C = GA->getAliasee())
MarkConstant(C);
} else {
// Otherwise this must be a function object. We have to scan the body
// of the function looking for constants and global values which are
// used as operands. Any operands of these types must be processed to
// ensure that any globals used will be marked as collected.
Function *F = cast<Function>(G);
if (F->hasPrefixData())
MarkConstant(F->getPrefixData());
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
for (User::op_iterator U = I->op_begin(), E = I->op_end();U!=E; ++U)
if (GlobalValue *GV = dyn_cast<GlobalValue>(*U))
CollectAllUsesOfGlobals(GV);
else if (Constant *C = dyn_cast<Constant>(*U))
MarkConstant(C);
}
}
void MarkConstant(llvm::Constant *C) {
using namespace llvm;
if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
return CollectAllUsesOfGlobals(GV);
// Loop over all of the operands of the constant, adding any globals they
// use to the list of needed globals.
for (User::op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) {
Constant *Op = dyn_cast<Constant>(*I);
// We already processed this constant there's no need to do it again.
if (Op && SeenConstants.insert(Op).second)
MarkConstant(Op);
}
}
// RemoveUnusedGlobalValue - Loop over all of the uses of the specified
// GlobalValue, looking for the constant pointer ref that may be pointing to
// it. If found, check to see if the constant pointer ref is safe to
// destroy, and if so, nuke it. This will reduce the reference count on the
// global value, which might make it deader.
//
bool RemoveUnusedGlobalValue(llvm::GlobalValue &GV) {
using namespace llvm;
if (GV.use_empty())
return false;
GV.removeDeadConstantUsers();
return GV.use_empty();
}
};
// Remove a decl and possibly it's parent entry in lookup tables.
static void eraseDeclFromMap(StoredDeclsMap* Map, NamedDecl* ND) {
assert(Map && ND && "eraseDeclFromMap recieved NULL value(s)");
// Make sure we the decl doesn't exist in the lookup tables.
StoredDeclsMap::iterator Pos = Map->find(ND->getDeclName());
if (Pos != Map->end()) {
StoredDeclsList& List = Pos->second;
// In some cases clang puts an entry in the list without a decl pointer.
// Clean it up.
if (List.isNull()) {
Map->erase(Pos);
return;
}
List.remove(ND);
if (List.isNull())
Map->erase(Pos);
}
}
template <class EntryType>
void removeSpecializationImpl(llvm::FoldingSetVector<EntryType>& Specs,
const EntryType* Entry) {
// Remove only Entry from Specs, keep all others.
llvm::FoldingSetVector<EntryType> Keep;
for (auto& Spec : Specs) {
if (&Spec != Entry) {
// Avoid assertion on add.
Spec.SetNextInBucket(nullptr);
Keep.InsertNode(&Spec);
}
}
std::swap(Specs, Keep);
}
// Template instantiation of templated function first creates a canonical
// declaration and after the actual template specialization. For example:
// template<typename T> T TemplatedF(T t);
// template<> int TemplatedF(int i) { return i + 1; } creates:
// 1. Canonical decl: int TemplatedF(int i);
// 2. int TemplatedF(int i){ return i + 1; }
//
// The template specialization is attached to the list of specialization of
// the templated function.
// When TemplatedF is looked up it finds the templated function and the
// lookup is extended by the templated function with its specializations.
// In the end we don't need to remove the canonical decl because, it
// doesn't end up in the lookup table.
//
class FunctionTemplateDeclExt : public FunctionTemplateDecl {
public:
static void removeSpecialization(FunctionTemplateDecl* self,
const FunctionDecl* spec) {
assert(self && spec && "Cannot be null!");
assert(spec == spec->getCanonicalDecl() &&
"Not the canonical specialization!?");
auto* This = static_cast<FunctionTemplateDeclExt*>(self);
auto& specs = This->getCommonPtr()->Specializations;
removeSpecializationImpl(specs, spec->getTemplateSpecializationInfo());
#ifndef NDEBUG
const TemplateArgumentList* args = spec->getTemplateSpecializationArgs();
void* InsertPos = nullptr;
assert(!self->findSpecialization(args->asArray(), InsertPos) &&
"Finds the removed decl again!");
#endif
}
};
// A template specialization is attached to the list of specialization of
// the templated class.
//
class ClassTemplateDeclExt : public ClassTemplateDecl {
public:
static void removeSpecialization(ClassTemplateDecl* self,
ClassTemplateSpecializationDecl* spec) {
assert(!isa<ClassTemplatePartialSpecializationDecl>(spec) &&
"Use removePartialSpecialization");
assert(self && spec && "Cannot be null!");
assert(spec == spec->getCanonicalDecl() &&
"Not the canonical specialization!?");
auto* This = static_cast<ClassTemplateDeclExt*>(self);
auto& specs = This->getCommonPtr()->Specializations;
removeSpecializationImpl(specs, spec);
}
static void
removePartialSpecialization(ClassTemplateDecl* self,
ClassTemplatePartialSpecializationDecl* spec) {
assert(self && spec && "Cannot be null!");
assert(spec == spec->getCanonicalDecl() &&
"Not the canonical specialization!?");
auto* This = static_cast<ClassTemplateDeclExt*>(self);
auto& specs = This->getPartialSpecializations();
removeSpecializationImpl(specs, spec);
}
};
// A template specialization is attached to the list of specialization of
// the templated variable.
//
class VarTemplateDeclExt : public VarTemplateDecl {
public:
static void removeSpecialization(VarTemplateDecl* self,
VarTemplateSpecializationDecl* spec) {
assert(!isa<VarTemplatePartialSpecializationDecl>(spec) &&
"Use removePartialSpecialization");
assert(self && spec && "Cannot be null!");
assert(spec == spec->getCanonicalDecl() &&
"Not the canonical specialization!?");
auto* This = static_cast<VarTemplateDeclExt*>(self);
auto& specs = This->getCommonPtr()->Specializations;
removeSpecializationImpl(specs, spec);
}
static void
removePartialSpecialization(VarTemplateDecl* self,
VarTemplatePartialSpecializationDecl* spec) {
assert(self && spec && "Cannot be null!");
assert(spec == spec->getCanonicalDecl() &&
"Not the canonical specialization!?");
auto* This = static_cast<VarTemplateDeclExt*>(self);
auto& specs = This->getPartialSpecializations();
removeSpecializationImpl(specs, spec);
}
};
} // end anonymous namespace
namespace cling {
using namespace clang;
void DeclUnloader::resetDefinitionData(TagDecl* decl) {
auto canon = dyn_cast<CXXRecordDecl>(decl->getCanonicalDecl());
assert(canon && "Only CXXRecordDecl have DefinitionData");
for (auto iter = canon->getMostRecentDecl(); iter;
iter = iter->getPreviousDecl()) {
auto declcxx = dyn_cast<CXXRecordDecl>(iter);
assert(declcxx && "Only CXXRecordDecl have DefinitionData");
declcxx->DefinitionData = nullptr;
}
}
///\brief Removes given declaration from the chain of redeclarations.
/// Rebuilds the chain and sets properly first and last redeclaration.
/// @param[in] R - The redeclarable, its chain to be rebuilt.
/// @param[in] DC - Remove the redecl's lookup entry from this DeclContext.
///
///\returns the most recent redeclaration in the new chain.
///
template <typename T>
bool DeclUnloader::VisitRedeclarable(clang::Redeclarable<T>* R,
DeclContext* DC) {
if (R->getFirstDecl() == R) {
// This is the only element in the chain.
return true;
}
// Make sure we update the lookup maps, because the removed decl might
// be registered in the lookup and still findable.
T* MostRecentNotThis = (T*)handleRedelaration((T*)R, DC);
// Set a new latest redecl.
removeRedeclFromChain((T*)R);
#ifndef NDEBUG
// Validate redecl chain by iterating through it.
std::set<clang::Redeclarable<T>*> CheckUnique;
(void)CheckUnique;
for (auto RD : MostRecentNotThis->redecls()) {
assert(CheckUnique.insert(RD).second && "Dupe redecl chain element");
(void)RD;
}
#else
(void)
MostRecentNotThis; // templated function issues a lot -Wunused-variable
#endif
return true;
}
DeclUnloader::~DeclUnloader() {
SourceManager& SM = m_Sema->getSourceManager();
for (FileIDs::iterator I = m_FilesToUncache.begin(),
E = m_FilesToUncache.end(); I != E; ++I) {
// We need to reset the cache
SM.invalidateCache(*I);
}
}
void DeclUnloader::CollectFilesToUncache(SourceLocation Loc) {
if (!m_CurTransaction)
return;
const SourceManager& SM = m_Sema->getSourceManager();
FileID FID = SM.getFileID(SM.getSpellingLoc(Loc));
// FID == m_CurTransaction->getBufferFID() done last in TransactionUnloader
if (!FID.isInvalid() && FID > m_CurTransaction->getBufferFID())
m_FilesToUncache.insert(FID);
}
bool DeclUnloader::VisitDecl(Decl* D) {
assert(D && "The Decl is null");
CollectFilesToUncache(D->getBeginLoc());
DeclContext* DC = D->getLexicalDeclContext();
if (DC->containsDecl(D)) {
if (auto* ND = dyn_cast<NamedDecl>(D)) {
auto* LookupDC = DC;
while (LookupDC->getDeclKind() == Decl::LinkageSpec ||
LookupDC->getDeclKind() == Decl::Export)
LookupDC = LookupDC->getParent();
if (!LookupDC->noload_lookup(ND->getDeclName()).empty())
DC->removeDecl(D);
} else {
DC->removeDecl(D);
}
}
// With the bump allocator this is a no-op.
m_Sema->getASTContext().Deallocate(D);
return true;
}
bool DeclUnloader::VisitNamedDecl(NamedDecl* ND) {
bool Successful = VisitDecl(ND);
DeclContext* DC = ND->getDeclContext();
while (DC->isTransparentContext() || DC->isInlineNamespace())
DC = DC->getLookupParent();
// if the decl was anonymous we are done.
if (!ND->getIdentifier())
return Successful;
// If the decl was removed make sure that we fix the lookup
if (Successful) {
if (Scope* S = m_Sema->getScopeForContext(DC))
S->RemoveDecl(ND);
if (utils::Analyze::isOnScopeChains(ND, *m_Sema))
m_Sema->IdResolver.RemoveDecl(ND);
}
// Cleanup the lookup tables.
// DeclContexts like EnumDecls don't have lookup maps.
// FIXME: Remove once we upstream this patch: D119675
if (StoredDeclsMap* Map = DC->getPrimaryContext()->getLookupPtr())
eraseDeclFromMap(Map, ND);
return Successful;
}
bool DeclUnloader::VisitDeclaratorDecl(DeclaratorDecl* DD) {
// VisitDeclaratorDecl: ValueDecl
auto found = std::find(m_Sema->UnusedFileScopedDecls.begin(/*ExtSource*/nullptr,
/*Local*/true),
m_Sema->UnusedFileScopedDecls.end(), DD);
if (found != m_Sema->UnusedFileScopedDecls.end())
m_Sema->UnusedFileScopedDecls.erase(found,
m_Sema->UnusedFileScopedDecls.end());
return VisitValueDecl(DD);
}
bool DeclUnloader::VisitUsingShadowDecl(UsingShadowDecl* USD) {
// UsingShadowDecl: NamedDecl, Redeclarable
bool Successful = true;
// FIXME: This is needed when we have newest clang:
//Successful = VisitRedeclarable(USD, USD->getDeclContext());
Successful &= VisitNamedDecl(USD);
// Unregister from the using decl that it shadows.
USD->getIntroducer()->removeShadowDecl(USD);
return Successful;
}
bool DeclUnloader::VisitTypedefNameDecl(TypedefNameDecl* TND) {
// TypedefNameDecl: TypeDecl, Redeclarable
bool Successful = VisitRedeclarable(TND, TND->getDeclContext());
Successful &= VisitTypeDecl(TND);
return Successful;
}
bool DeclUnloader::VisitVarDecl(VarDecl* VD) {
// llvm::Module cannot contain:
// * variables and parameters with dependent context;
// * mangled names for parameters;
if (!isa<ParmVarDecl>(VD) && !VD->getDeclContext()->isDependentContext()) {
// Cleanup the module if the transaction was committed and code was
// generated. This has to go first, because it may need the AST
// information which we will remove soon. (Eg. mangleDeclName iterates the
// redecls)
GlobalDecl GD(VD);
MaybeRemoveDeclFromModule(GD);
}
// VarDecl : DeclaratiorDecl, Redeclarable
bool Successful = VisitRedeclarable(VD, VD->getDeclContext());
Successful &= VisitDeclaratorDecl(VD);
return Successful;
}
bool DeclUnloader::VisitFunctionDecl(FunctionDecl* FD, bool RemoveSpec) {
// The Structors need to be handled differently.
if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) {
// Cleanup the module if the transaction was committed and code was
// generated. This has to go first, because it may need the AST info
// which we will remove soon. (Eg. mangleDeclName iterates the redecls)
GlobalDecl GD(FD);
MaybeRemoveDeclFromModule(GD);
// Handle static locals. void func() { static int var; } is represented in
// the llvm::Module is a global named @func.var
for (auto D : FunctionDecl::castToDeclContext(FD)->noload_decls()) {
if (auto VD = dyn_cast<VarDecl>(D))
if (VD->isStaticLocal()) {
GlobalDecl GD(VD);
MaybeRemoveDeclFromModule(GD);
}
}
}
// VisitRedeclarable() will mess around with this!
bool wasCanonical = FD->isCanonicalDecl();
// FunctionDecl : DeclaratiorDecl, DeclContext, Redeclarable
// We start with the decl context first, because parameters are part of the
// DeclContext and when trying to remove them we need the full redecl chain
// still in place.
bool Successful = VisitDeclContext(FD);
// The body of member functions of a templated class only gets instantiated
// when the function is used, i.e.
// `-ClassTemplateDecl
// |-TemplateTypeParmDecl referenced typename depth 0 index 0 T
// |-CXXRecordDecl struct Foo definition
// | |-DefinitionData
// | `-CXXMethodDecl f 'T (T)'
// | |-ParmVarDecl 0x55e5787cac70 referenced x 'T'
// | `-CompoundStmt
// | `-ReturnStmt
// | `-DeclRefExpr 'T' lvalue ParmVar 0x55e5787cac70 'x' 'T'
// `-ClassTemplateSpecializationDecl struct Foo definition
// |-DefinitionData
// |-TemplateArgument type 'int'
// | `-BuiltinType 'int'
// |-CXXMethodDecl f 'int (int)' <<<< Instantiation pending
// | `-ParmVarDecl x 'int':'int'
// |-CXXConstructorDecl implicit used constexpr Foo 'void () noexcept'
// inline default trivial
//
// Such functions should not be deleted from the AST, but returned to the
// 'pending instantiation' state.
if (auto MSI = FD->getMemberSpecializationInfo()) {
MSI->setPointOfInstantiation(SourceLocation());
MSI->setTemplateSpecializationKind(
TemplateSpecializationKind::TSK_ImplicitInstantiation);
FD->setBody(nullptr);
FD->setInstantiationIsPending(true);
return Successful;
}
Successful &= VisitRedeclarable(FD, FD->getDeclContext());
Successful &= VisitDeclaratorDecl(FD);
if (RemoveSpec && FD->isFunctionTemplateSpecialization() && wasCanonical) {
// Only the canonical declarations are registered in the list of the
// specializations.
FunctionTemplateDecl* FTD
= FD->getTemplateSpecializationInfo()->getTemplate();
// The canonical declaration of every specialization is registered with
// the FunctionTemplateDecl.
// Note this might unload too much in the case:
// template<typename T> T f(){ return T();}
// template<> int f();
// template<> int f() { return 0;}
// when the template specialization was forward declared the canonical
// becomes the first forward declaration. If the canonical forward
// declaration was declared outside the set of the decls to unload we have
// to keep it registered as a template specialization.
//
// In order to diagnose mismatches of the specializations, clang 'injects'
// a implicit forward declaration making it very hard distinguish between
// the explicit and the implicit forward declaration. So far the only way
// to distinguish is by source location comparison.
// FIXME: When the misbehavior of clang is fixed we must avoid relying on
// source locations
FunctionTemplateDeclExt::removeSpecialization(FTD, FD);
}
return Successful;
}
bool DeclUnloader::VisitFunctionDecl(FunctionDecl* FD) {
return VisitFunctionDecl(FD, /*RemoveSpec=*/true);
}
bool DeclUnloader::VisitCXXConstructorDecl(CXXConstructorDecl* CXXCtor) {
// Cleanup the module if the transaction was committed and code was
// generated. This has to go first, because it may need the AST information
// which we will remove soon. (Eg. mangleDeclName iterates the redecls)
// Brute-force all possibly generated ctors.
// Ctor_Complete Complete object ctor.
// Ctor_Base Base object ctor.
// Ctor_Comdat The COMDAT used for ctors.
GlobalDecl GD(CXXCtor, Ctor_Complete);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXCtor, Ctor_Base);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXCtor, Ctor_Comdat);
MaybeRemoveDeclFromModule(GD);
bool Successful = VisitCXXMethodDecl(CXXCtor);
return Successful;
}
bool DeclUnloader::VisitCXXDestructorDecl(CXXDestructorDecl* CXXDtor) {
// Cleanup the module if the transaction was committed and code was
// generated. This has to go first, because it may need the AST information
// which we will remove soon. (Eg. mangleDeclName iterates the redecls)
// Brute-force all possibly generated dtors.
// Dtor_Deleting Deleting dtor.
// Dtor_Complete Complete object dtor.
// Dtor_Base Base object dtor.
// Dtor_Comdat The COMDAT used for dtors.
GlobalDecl GD(CXXDtor, Dtor_Deleting);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXDtor, Dtor_Complete);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXDtor, Dtor_Base);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXDtor, Dtor_Comdat);
MaybeRemoveDeclFromModule(GD);
bool Successful = VisitCXXMethodDecl(CXXDtor);
return Successful;
}
bool DeclUnloader::VisitDeclContext(DeclContext* DC) {
bool Successful = true;
llvm::SmallVector<Decl*, 64> tagDecls, otherDecls;
// The order in which declarations are removed makes a difference, e.g.
// `MaybeRemoveDeclFromModule()` may require access to type information to
// make up the mangled name.
// Thus, we segregate declarations to be removed in `TagDecl`s (i.e., struct
// / union / class / enum) and other declarations. Removal of `TagDecl`s
// is deferred until all the other declarations have been processed.
// Declarations in each group are iterated in reverse order.
// Note that removing from single-linked list invalidates the iterators.
for (DeclContext::decl_iterator I = DC->noload_decls_begin();
I != DC->noload_decls_end(); ++I) {
if (isa<TagDecl>(*I))
tagDecls.push_back(*I);
else
otherDecls.push_back(*I);
}
for (auto I = otherDecls.rbegin(), E = otherDecls.rend(); I != E; ++I) {
Successful = Visit(*I) && Successful;
assert(Successful);
}
for (auto I = tagDecls.rbegin(), E = tagDecls.rend(); I != E; ++I) {
Successful = Visit(*I) && Successful;
assert(Successful);
}
return Successful;
}
bool DeclUnloader::VisitNamespaceDecl(NamespaceDecl* NSD) {
// The first declaration of an unnamed namespace, creates an implicit
// UsingDirectiveDecl that makes the names available in the parent DC (see
// `Sema::ActOnStartNamespaceDef()`).
// If we are reverting such first declaration, make sure we reset the
// anonymous namespace for the parent DeclContext so that the
// implicit UsingDirectiveDecl is created again when parsing the next
// anonymous namespace.
if (NSD->isAnonymousNamespace() && NSD->isFirstDecl()) {
auto Parent = NSD->getParent();
if (auto TU = dyn_cast<TranslationUnitDecl>(Parent)) {
TU->setAnonymousNamespace(nullptr);
} else if (auto NS = dyn_cast<NamespaceDecl>(Parent)) {
NS->setAnonymousNamespace(nullptr);
}
}
// NamespaceDecl: NamedDecl, DeclContext, Redeclarable
bool Successful = VisitDeclContext(NSD);
Successful &= VisitRedeclarable(NSD, NSD->getDeclContext());
Successful &= VisitNamedDecl(NSD);
return Successful;
}
bool DeclUnloader::VisitLinkageSpecDecl(LinkageSpecDecl* LSD) {
// LinkageSpecDecl: DeclContext
// Re-add any previous declarations so they are reachable throughout the
// translation unit. Also remove any global variables from:
// m_Sema->Context.getExternCContextDecl()
if (LSD->isExternCContext()) {
// Sadly ASTContext::getExternCContextDecl will create if it doesn't exist
// Hopefully LSD->isExternCContext() means that it already does exist
ExternCContextDecl* ECD = m_Sema->Context.getExternCContextDecl();
StoredDeclsMap* Map = ECD ? ECD->getLookupPtr() : nullptr;
for (Decl* D : LSD->noload_decls()) {
if (NamedDecl* ND = dyn_cast<NamedDecl>(D)) {
// extern "C" linkage goes in the translation unit
DeclContext* DC = m_Sema->getASTContext().getTranslationUnitDecl();
handleRedelaration(ND, DC);
if (Map)
eraseDeclFromMap(Map, ND);
}
}
}
bool Successful = VisitDeclContext(LSD);
Successful &= VisitDecl(LSD);
return Successful;
}
bool DeclUnloader::VisitTagDecl(TagDecl* TD) {
// TagDecl: TypeDecl, DeclContext, Redeclarable
bool Successful = VisitDeclContext(TD);
Successful &= VisitRedeclarable(TD, TD->getDeclContext());
Successful &= VisitTypeDecl(TD);
return Successful;
}
bool DeclUnloader::VisitRecordDecl(RecordDecl* RD) {
if (RD->isInjectedClassName())
return true;
/// The injected class name in C++ is the name of the class that
/// appears inside the class itself. For example:
///
/// \code
/// struct C {
/// // C is implicitly declared here as a synonym for the class name.
/// };
///
/// C::C c; // same as "C c;"
/// \endcode
// It is another question why it is on the redecl chain.
// The test show it can be either:
// ... <- InjectedC <- C <- ..., i.e previous decl or
// ... <- C <- InjectedC <- ...
RecordDecl* InjectedRD = RD->getPreviousDecl();
if (!(InjectedRD && InjectedRD->isInjectedClassName())) {
InjectedRD = RD->getMostRecentDecl();
while (InjectedRD) {
if (InjectedRD->isInjectedClassName()
&& InjectedRD->getPreviousDecl() == RD)
break;
InjectedRD = InjectedRD->getPreviousDecl();
}
}
bool Successful = true;
if (InjectedRD) {
assert(InjectedRD->isInjectedClassName() && "Not injected classname?");
Successful &= VisitRedeclarable(InjectedRD, InjectedRD->getDeclContext());
}
Successful &= VisitTagDecl(RD);
return Successful;
}
2016-12-01 20:30:25 +03:00
void DeclUnloader::MaybeRemoveDeclFromModule(GlobalDecl& GD) const {
if (!m_CurTransaction || !m_CodeGen) // syntax-only mode exit
return;
using namespace llvm;
if (const auto VD = dyn_cast_or_null<clang::ValueDecl>(GD.getDecl())) {
const QualType QT = VD->getType();
if (!QT.isNull() && QT->isDependentType()) {
// The module cannot contain symbols for dependent decls.
return;
}
}
// if it was successfully removed from the AST we have to check whether
// code was generated and remove it.
// From llvm's mailing list, explanation of the RAUW'd assert:
//
// The problem isn't with your call to
// replaceAllUsesWith per se, the problem is that somebody (I would guess
// the JIT?) is holding it in a ValueMap.
//
// We used to have a problem that some parts of the code would keep a
// mapping like so:
// std::map<Value *, ...>
// while somebody else would modify the Value* without them noticing,
// leading to a dangling pointer in the map. To fix that, we invented the
// ValueMap which puts a Use that doesn't show up in the use_iterator on
// the Value it holds. When the Value is erased or RAUW'd, the ValueMap is
// notified and in this case decides that's not okay and terminates the
// program.
//
// Probably what's happened here is that the calling function has had its
// code generated by the JIT, but not the callee. Thus the JIT emitted a
// call to a generated stub, and will do the codegen of the callee once
// that stub is reached. Of course, once the JIT is in this state, it holds
// on to the Function with a ValueMap in order to prevent things from
// getting out of sync.
//
if (m_CurTransaction->getState() == Transaction::kCommitted) {
std::string mangledName;
{
#if _WIN32
// clang cannot mangle everything in the ms-abi.
#ifndef NDEBUG
utils::DiagnosticsStore Errors(m_Sema->getDiagnostics(), false, false);
assert(Errors.empty() ||
(Errors.size() == 1 &&
Errors[0].getMessage().starts_with("cannot mangle this")));
#else
utils::DiagnosticsOverride IgnoreMangleErrors(m_Sema->getDiagnostics());
#endif
#endif
utils::Analyze::maybeMangleDeclName(GD, mangledName);
}
2016-12-01 20:30:25 +03:00
// Handle static locals. void func() { static int var; } is represented
// in the llvm::Module is a global named @func.var
if (const VarDecl* VD = dyn_cast<VarDecl>(GD.getDecl())) {
if (VD->isStaticLocal()) {
std::string functionMangledName;
GlobalDecl FDGD(cast<FunctionDecl>(VD->getDeclContext()));
utils::Analyze::maybeMangleDeclName(FDGD, functionMangledName);
mangledName = functionMangledName + "." + mangledName;
}
2016-12-01 20:30:25 +03:00
}
if (auto M = m_CurTransaction->getModule()) {
GlobalValue* GV = M->getNamedValue(mangledName);
if (GV) { // May be deferred decl and thus 0
GlobalValueEraser GVEraser(m_CodeGen);
GVEraser.EraseGlobalValue(GV);
}
}
// DeferredDecls exist even without Module.
m_CodeGen->forgetDecl(mangledName);
}
}
bool DeclUnloader::VisitMacro(Transaction::MacroDirectiveInfo MacroD) {
assert(MacroD.m_MD && "The MacroDirective is null");
assert(MacroD.m_II && "The IdentifierInfo is null");
CollectFilesToUncache(MacroD.m_MD->getLocation());
Preprocessor& PP = m_Sema->getPreprocessor();
#ifndef NDEBUG
bool ExistsInPP = false;
// Make sure the macro is in the Preprocessor. Not sure if not redundant
// because removeMacro looks for the macro anyway in the DenseMap Macros[]
for (Preprocessor::macro_iterator
I = PP.macro_begin(/*IncludeExternalMacros*/false),
E = PP.macro_end(/*IncludeExternalMacros*/false); E !=I; ++I) {
if ((*I).first == MacroD.m_II) {
// FIXME:check whether we have the concrete directive on the macro chain
// && (*I).second == MacroD.m_MD
ExistsInPP = true;
break;
}
}
assert(ExistsInPP && "Not in the Preprocessor?!");
#endif
const MacroDirective* MD = MacroD.m_MD;
// Undef the definition
const MacroInfo* MI = MD->getMacroInfo();
// If the macro is not defined, this is a noop undef, just return.
if (!MI)
return false;
// Remove the pair from the macros
PP.removeMacro(MacroD.m_II, const_cast<MacroDirective*>(MacroD.m_MD));
return true;
}
bool DeclUnloader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl* R){
// RedeclarableTemplateDecl: TemplateDecl, Redeclarable
bool Successful = VisitRedeclarable(R, R->getDeclContext());
Successful &= VisitTemplateDecl(R);
return Successful;
}
bool DeclUnloader::VisitFunctionTemplateDecl(FunctionTemplateDecl* FTD) {
bool Successful = true;
// Remove specializations, but do not invalidate the iterator!
for (FunctionTemplateDecl::spec_iterator I = FTD->loaded_spec_begin(),
E = FTD->loaded_spec_end(); I != E; ++I)
Successful &= VisitFunctionDecl(*I, /*RemoveSpec=*/false);
Successful &= VisitRedeclarableTemplateDecl(FTD);
Successful &= VisitFunctionDecl(FTD->getTemplatedDecl());
return Successful;
}
bool DeclUnloader::VisitClassTemplateDecl(ClassTemplateDecl* CTD) {
// ClassTemplateDecl: TemplateDecl, Redeclarable
bool Successful = true;
// Remove specializations, but do not invalidate the iterator!
for (ClassTemplateDecl::spec_iterator I = CTD->loaded_spec_begin(),
E = CTD->loaded_spec_end(); I != E; ++I)
Successful &=
VisitClassTemplateSpecializationDecl(*I, /*RemoveSpec=*/false);
Successful &= VisitRedeclarableTemplateDecl(CTD);
Successful &= Visit(CTD->getTemplatedDecl());
return Successful;
}
bool DeclUnloader::VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl* CTSD, bool RemoveSpec) {
// ClassTemplateSpecializationDecl: CXXRecordDecl, FoldingSet
bool Successful = VisitCXXRecordDecl(CTSD);
if (RemoveSpec) {
ClassTemplateSpecializationDecl* CanonCTSD =
static_cast<ClassTemplateSpecializationDecl*>(
CTSD->getCanonicalDecl());
if (auto D = dyn_cast<ClassTemplatePartialSpecializationDecl>(CanonCTSD))
ClassTemplateDeclExt::removePartialSpecialization(
D->getSpecializedTemplate(), D);
else
ClassTemplateDeclExt::removeSpecialization(
CTSD->getSpecializedTemplate(), CanonCTSD);
}
return Successful;
}
bool DeclUnloader::VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl* CTSD) {
return VisitClassTemplateSpecializationDecl(CTSD, /*RemoveSpec=*/true);
}
bool DeclUnloader::VisitVarTemplateDecl(VarTemplateDecl* VTD) {
// VarTemplateDecl: TemplateDecl, Redeclarable
bool Successful = true;
// Remove specializations, but do not invalidate the iterator!
for (VarTemplateDecl::spec_iterator I = VTD->loaded_spec_begin(),
E = VTD->loaded_spec_end();
I != E; ++I)
Successful &=
VisitVarTemplateSpecializationDecl(*I, /*RemoveSpec=*/false);
Successful &= VisitRedeclarableTemplateDecl(VTD);
Successful &= Visit(VTD->getTemplatedDecl());
return Successful;
}
bool DeclUnloader::VisitVarTemplateSpecializationDecl(
VarTemplateSpecializationDecl* VTSD, bool RemoveSpec) {
// VarTemplateSpecializationDecl: VarDecl, FoldingSet
bool Successful = VisitVarDecl(VTSD);
if (RemoveSpec) {
VarTemplateSpecializationDecl* CanonVTSD =
static_cast<VarTemplateSpecializationDecl*>(VTSD->getCanonicalDecl());
if (auto D = dyn_cast<VarTemplatePartialSpecializationDecl>(CanonVTSD))
VarTemplateDeclExt::removePartialSpecialization(
D->getSpecializedTemplate(), D);
else
VarTemplateDeclExt::removeSpecialization(VTSD->getSpecializedTemplate(),
CanonVTSD);
}
return Successful;
}
bool DeclUnloader::VisitVarTemplateSpecializationDecl(
VarTemplateSpecializationDecl* VTSD) {
return VisitVarTemplateSpecializationDecl(VTSD, /*RemoveSpec=*/true);
}
} // end namespace cling