cling/lib/Interpreter/ValueExtractionSynthesizer.cpp

518 lines
21 KiB
C++

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// author: Vassil Vassilev <vasil.georgiev.vasilev@cern.ch>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
#include "ValueExtractionSynthesizer.h"
#include "cling/Interpreter/Interpreter.h"
#include "cling/Interpreter/Transaction.h"
#include "cling/Interpreter/Value.h"
#include "cling/Utils/AST.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
using namespace clang;
namespace cling {
ValueExtractionSynthesizer::ValueExtractionSynthesizer(clang::Sema* S,
bool isChildInterpreter)
: WrapperTransformer(S), m_Context(&S->getASTContext()), m_gClingVD(0),
m_UnresolvedNoAlloc(0), m_UnresolvedWithAlloc(0),
m_UnresolvedCopyArray(0), m_isChildInterpreter(isChildInterpreter) { }
// pin the vtable here.
ValueExtractionSynthesizer::~ValueExtractionSynthesizer() { }
namespace {
class ReturnStmtCollector : public StmtVisitor<ReturnStmtCollector> {
private:
llvm::SmallVectorImpl<Stmt**>& m_Stmts;
public:
ReturnStmtCollector(llvm::SmallVectorImpl<Stmt**>& S)
: m_Stmts(S) {}
void VisitStmt(Stmt* S) {
for(Stmt::child_iterator I = S->child_begin(), E = S->child_end();
I != E; ++I) {
if (!*I)
continue;
if (isa<LambdaExpr>(*I))
continue;
Visit(*I);
if (isa<ReturnStmt>(*I))
m_Stmts.push_back(&*I);
}
}
};
}
ASTTransformer::Result ValueExtractionSynthesizer::Transform(clang::Decl* D) {
const CompilationOptions& CO = getCompilationOpts();
// If we do not evaluate the result, or printing out the result return.
if (!(CO.ResultEvaluation || CO.ValuePrinting))
return Result(D, true);
FunctionDecl* FD = cast<FunctionDecl>(D);
assert(utils::Analyze::IsWrapper(FD) && "Expected wrapper");
int foundAtPos = -1;
Expr* lastExpr = utils::Analyze::GetOrCreateLastExpr(FD, &foundAtPos,
/*omitDS*/false,
m_Sema);
if (foundAtPos < 0)
return Result(D, true);
typedef llvm::SmallVector<Stmt**, 4> StmtIters;
StmtIters returnStmts;
ReturnStmtCollector collector(returnStmts);
CompoundStmt* CS = cast<CompoundStmt>(FD->getBody());
collector.VisitStmt(CS);
if (isa<Expr>(*(CS->body_begin() + foundAtPos)))
returnStmts.push_back(CS->body_begin() + foundAtPos);
// We want to support cases such as:
// gCling->evaluate("if() return 'A' else return 12", V), that puts in V,
// either A or 12.
// In this case the void wrapper is compiled with the stmts returning
// values. Sema would cast them to void, but the code will still be
// executed. For example:
// int g(); void f () { return g(); } will still call g().
//
for (StmtIters::iterator I = returnStmts.begin(), E = returnStmts.end();
I != E; ++I) {
ReturnStmt* RS = dyn_cast<ReturnStmt>(**I);
if (RS) {
// When we are handling a return stmt, the last expression must be the
// return stmt value. Ignore the calculation of the lastStmt because it
// might be wrong, in cases where the return is not in the end of the
// function.
lastExpr = RS->getRetValue();
if (lastExpr) {
assert (lastExpr->getType()->isVoidType() && "Must be void type.");
// Any return statement will have been "healed" by Sema
// to correspond to the original void return type of the
// wrapper, using a ImplicitCastExpr 'void' <ToVoid>.
// Remove that.
if (ImplicitCastExpr* VoidCast
= dyn_cast<ImplicitCastExpr>(lastExpr)) {
lastExpr = VoidCast->getSubExpr();
}
}
// if no value assume void
else {
// We can't PushDeclContext, because we don't have scope.
Sema::ContextRAII pushedDC(*m_Sema, FD);
RS->setRetValue(SynthesizeSVRInit(0));
}
}
else
lastExpr = cast<Expr>(**I);
if (lastExpr) {
QualType lastExprTy = lastExpr->getType();
// May happen on auto types which resolve to dependent.
if (lastExprTy->isDependentType())
continue;
// Set up lastExpr properly.
// Change the void function's return type
// We can't PushDeclContext, because we don't have scope.
Sema::ContextRAII pushedDC(*m_Sema, FD);
if (lastExprTy->isFunctionType()) {
// A return type of function needs to be converted to
// pointer to function.
lastExprTy = m_Context->getPointerType(lastExprTy);
lastExpr = m_Sema->ImpCastExprToType(lastExpr, lastExprTy,
CK_FunctionToPointerDecay,
VK_RValue).get();
}
//
// Here we don't want to depend on the JIT runFunction, because of its
// limitations, when it comes to return value handling. There it is
// not clear who provides the storage and who cleans it up in a
// platform independent way.
//
// Depending on the type we need to synthesize a call to cling:
// 0) void : set the value's type to void;
// 1) enum, integral, float, double, referece, pointer types :
// call to cling::internal::setValueNoAlloc(...);
// 2) object type (alloc on the stack) :
// cling::internal::setValueWithAlloc
// 2.1) constant arrays:
// call to cling::runtime::internal::copyArray(...)
//
// We need to synthesize later:
// Wrapper has signature: void w(cling::Value SVR)
// case 1):
// setValueNoAlloc(gCling, &SVR, lastExprTy, lastExpr())
// case 2):
// new (setValueWithAlloc(gCling, &SVR, lastExprTy)) (lastExpr)
// case 2.1):
// copyArray(src, placement, size)
Expr* SVRInit = SynthesizeSVRInit(lastExpr);
// if we had return stmt update to execute the SVR init, even if the
// wrapper returns void.
if (RS) {
if (ImplicitCastExpr* VoidCast
= dyn_cast<ImplicitCastExpr>(RS->getRetValue()))
VoidCast->setSubExpr(SVRInit);
}
else if (SVRInit)
**I = SVRInit;
}
}
return Result(D, true);
}
// Helper function for the SynthesizeSVRInit
namespace {
static bool availableCopyConstructor(QualType QT, clang::Sema* S) {
// Check the the existance of the copy constructor the tha placement new will use.
if (CXXRecordDecl* RD = QT->getAsCXXRecordDecl()) {
// If it has a trivial copy constructor it is accessible and it is callable.
if(RD->hasTrivialCopyConstructor()) return true;
// Lookup the copy canstructor and check its accessiblity.
if (CXXConstructorDecl* CD = S->LookupCopyingConstructor(RD, QT.getCVRQualifiers())) {
if (!CD->isDeleted() && CD ->getAccess() == clang::AccessSpecifier::AS_public) {
return true;
}
}
return false;
}
return true;
}
}
Expr* ValueExtractionSynthesizer::SynthesizeSVRInit(Expr* E) {
if (!m_gClingVD)
FindAndCacheRuntimeDecls();
// Build a reference to gCling
ExprResult gClingDRE
= m_Sema->BuildDeclRefExpr(m_gClingVD, m_Context->VoidPtrTy,
VK_RValue, SourceLocation());
// We have the wrapper as Sema's CurContext
FunctionDecl* FD = cast<FunctionDecl>(m_Sema->CurContext);
ExprWithCleanups* Cleanups = 0;
// In case of ExprWithCleanups we need to extend its 'scope' to the call.
if (E && isa<ExprWithCleanups>(E)) {
Cleanups = cast<ExprWithCleanups>(E);
E = Cleanups->getSubExpr();
}
// Build a reference to Value* in the wrapper, should be
// the only argument of the wrapper.
SourceLocation locStart = (E) ? E->getLocStart() : FD->getLocStart();
SourceLocation locEnd = (E) ? E->getLocEnd() : FD->getLocEnd();
ExprResult wrapperSVRDRE
= m_Sema->BuildDeclRefExpr(FD->getParamDecl(0), m_Context->VoidPtrTy,
VK_RValue, locStart);
QualType ETy = (E) ? E->getType() : m_Context->VoidTy;
QualType desugaredTy = ETy.getDesugaredType(*m_Context);
// The expr result is transported as reference, pointer, array, float etc
// based on the desugared type. We should still expose the typedef'ed
// (sugared) type to the cling::Value.
if (desugaredTy->isRecordType() && E->getValueKind() == VK_LValue) {
// returning a lvalue (not a temporary): the value should contain
// a reference to the lvalue instead of copying it.
desugaredTy = m_Context->getLValueReferenceType(desugaredTy);
ETy = m_Context->getLValueReferenceType(ETy);
}
Expr* ETyVP
= utils::Synthesize::CStyleCastPtrExpr(m_Sema, m_Context->VoidPtrTy,
(uintptr_t)ETy.getAsOpaquePtr());
// Pass whether to Value::dump() or not:
Expr* EVPOn
= new (*m_Context) CharacterLiteral(getCompilationOpts().ValuePrinting,
CharacterLiteral::Ascii,
m_Context->CharTy,
SourceLocation());
llvm::SmallVector<Expr*, 6> CallArgs;
CallArgs.push_back(gClingDRE.get());
CallArgs.push_back(wrapperSVRDRE.get());
CallArgs.push_back(ETyVP);
CallArgs.push_back(EVPOn);
ExprResult Call;
SourceLocation noLoc = locStart;
if (desugaredTy->isVoidType()) {
// In cases where the cling::Value gets reused we need to reset the
// previous settings to void.
// We need to synthesize setValueNoAlloc(...), E, because we still need
// to run E.
// FIXME: Suboptimal: this discards the already created AST nodes.
QualType vpQT = m_Context->VoidPtrTy;
QualType vQT = m_Context->VoidTy;
Expr* vpQTVP
= utils::Synthesize::CStyleCastPtrExpr(m_Sema, vpQT,
(uintptr_t)vQT.getAsOpaquePtr());
CallArgs[2] = vpQTVP;
Call = m_Sema->ActOnCallExpr(/*Scope*/0, m_UnresolvedNoAlloc,
locStart, CallArgs, locEnd);
if (E)
Call = m_Sema->CreateBuiltinBinOp(locStart, BO_Comma, Call.get(), E);
}
else if (desugaredTy->isRecordType() || desugaredTy->isConstantArrayType()
|| desugaredTy->isMemberPointerType()) {
// 2) object types :
// check existence of copy constructor before call
if (!desugaredTy->isMemberPointerType()
&& !availableCopyConstructor(desugaredTy, m_Sema))
return E;
// call new (setValueWithAlloc(gCling, &SVR, ETy)) (E)
Call = m_Sema->ActOnCallExpr(/*Scope*/0, m_UnresolvedWithAlloc,
locStart, CallArgs, locEnd);
Expr* placement = Call.get();
if (const ConstantArrayType* constArray
= dyn_cast<ConstantArrayType>(desugaredTy.getTypePtr())) {
CallArgs.clear();
CallArgs.push_back(E);
CallArgs.push_back(placement);
size_t arrSize
= m_Context->getConstantArrayElementCount(constArray);
Expr* arrSizeExpr
= utils::Synthesize::IntegerLiteralExpr(*m_Context, arrSize);
CallArgs.push_back(arrSizeExpr);
// 2.1) arrays:
// call copyArray(T* src, void* placement, size_t size)
Call = m_Sema->ActOnCallExpr(/*Scope*/0, m_UnresolvedCopyArray,
locStart, CallArgs, locEnd);
}
else {
if (!E->getSourceRange().isValid()) {
// We cannot do CXXNewExpr::CallInit (see Sema::BuildCXXNew) but
// that's what we want. Fail...
return E;
}
TypeSourceInfo* ETSI
= m_Context->getTrivialTypeSourceInfo(ETy, noLoc);
Call = m_Sema->BuildCXXNew(E->getSourceRange(),
/*useGlobal ::*/true,
/*placementLParen*/ noLoc,
MultiExprArg(placement),
/*placementRParen*/ noLoc,
/*TypeIdParens*/ SourceRange(),
/*allocType*/ ETSI->getType(),
/*allocTypeInfo*/ETSI,
/*arraySize*/0,
/*directInitRange*/E->getSourceRange(),
/*initializer*/E
);
// Handle possible cleanups:
Call = m_Sema->ActOnFinishFullExpr(Call.get());
}
}
else {
// Mark the current number of arguemnts
const size_t nArgs = CallArgs.size();
if (desugaredTy->isIntegralOrEnumerationType()) {
// 1) enum, integral, float, double, referece, pointer types :
// call to cling::internal::setValueNoAlloc(...);
// force-cast it into uint64 in order to pick up the correct overload.
QualType UInt64Ty = m_Context->UnsignedLongLongTy;
TypeSourceInfo* TSI
= m_Context->getTrivialTypeSourceInfo(UInt64Ty, noLoc);
Expr* castedE
= m_Sema->BuildCStyleCastExpr(noLoc, TSI, noLoc, E).get();
CallArgs.push_back(castedE);
}
else if (desugaredTy->isReferenceType()) {
// we need to get the address of the references
Expr* AddrOfE = m_Sema->CreateBuiltinUnaryOp(noLoc, UO_AddrOf, E).get();
CallArgs.push_back(AddrOfE);
}
else if (desugaredTy->isAnyPointerType()) {
// function pointers need explicit void* cast.
QualType VoidPtrTy = m_Context->VoidPtrTy;
TypeSourceInfo* TSI
= m_Context->getTrivialTypeSourceInfo(VoidPtrTy, noLoc);
Expr* castedE
= m_Sema->BuildCStyleCastExpr(noLoc, TSI, noLoc, E).get();
CallArgs.push_back(castedE);
}
else if (desugaredTy->isNullPtrType()) {
// nullptr should decay to void* just fine.
CallArgs.push_back(E);
}
else if (desugaredTy->isFloatingType()) {
// floats and double will fall naturally in the correct
// case, because of the overload resolution.
CallArgs.push_back(E);
}
// Test CallArgs.size to make sure an additional argument (the value)
// has been pushed on, if not than we didn't know how to handle the type
if (CallArgs.size() > nArgs) {
Call = m_Sema->ActOnCallExpr(/*Scope*/0, m_UnresolvedNoAlloc,
locStart, CallArgs, locEnd);
}
else {
m_Sema->Diag(locStart, diag::err_unsupported_unknown_any_decl) <<
utils::TypeName::GetFullyQualifiedName(desugaredTy, *m_Context) <<
SourceRange(locStart, locEnd);
}
}
assert(!Call.isInvalid() && "Invalid Call");
// Extend the scope of the temporary cleaner if applicable.
if (Cleanups) {
Cleanups->setSubExpr(Call.get());
Cleanups->setValueKind(Call.get()->getValueKind());
Cleanups->setType(Call.get()->getType());
return Cleanups;
}
return Call.get();
}
void ValueExtractionSynthesizer::FindAndCacheRuntimeDecls() {
assert(!m_gClingVD && "Called multiple times!?");
DeclContext* NSD = m_Context->getTranslationUnitDecl();
if (m_Sema->getLangOpts().CPlusPlus) {
NSD = utils::Lookup::Namespace(m_Sema, "cling");
NSD = utils::Lookup::Namespace(m_Sema, "runtime", NSD);
m_gClingVD = cast<VarDecl>(utils::Lookup::Named(m_Sema, "gCling", NSD));
NSD = utils::Lookup::Namespace(m_Sema, "internal",NSD);
}
LookupResult R(*m_Sema, &m_Context->Idents.get("setValueNoAlloc"),
SourceLocation(), Sema::LookupOrdinaryName,
Sema::ForRedeclaration);
m_Sema->LookupQualifiedName(R, NSD);
assert(!R.empty()
&& "Cannot find cling::runtime::internal::setValueNoAlloc");
CXXScopeSpec CSS;
m_UnresolvedNoAlloc
= m_Sema->BuildDeclarationNameExpr(CSS, R, /*ADL*/ false).get();
R.clear();
R.setLookupName(&m_Context->Idents.get("setValueWithAlloc"));
m_Sema->LookupQualifiedName(R, NSD);
assert(!R.empty()
&& "Cannot find cling::runtime::internal::setValueWithAlloc");
m_UnresolvedWithAlloc
= m_Sema->BuildDeclarationNameExpr(CSS, R, /*ADL*/ false).get();
R.clear();
R.setLookupName(&m_Context->Idents.get("copyArray"));
m_Sema->LookupQualifiedName(R, NSD);
// FIXME: In the case of the multiple interpreters (parent-child),
// the child interpreter doesn't include the runtime universe.
// The child interpreter will try to import this function from its
// parent interpreter, but it will fail, because this is a template function.
// Once the import of template functions becomes supported by clang,
// this check can be de-activated.
if (!m_isChildInterpreter)
assert(!R.empty() && "Cannot find cling::runtime::internal::copyArray");
m_UnresolvedCopyArray
= m_Sema->BuildDeclarationNameExpr(CSS, R, /*ADL*/ false).get();
}
} // end namespace cling
// Provide implementation of the functions that ValueExtractionSynthesizer calls
namespace {
static void dumpIfNoStorage(void* vpV, char vpOn) {
const cling::Value& V = *(cling::Value*)vpV;
// If the value copies over the temporary we must delay the printing until
// the temporary gets copied over. For the rest of the temporaries we *must*
// dump here because their lifetime will be gone otherwise. Eg.
//
// std::string f(); f().c_str() // have to dump during the same stmt.
//
assert(!V.needsManagedAllocation() && "Must contain non managed temporary");
assert(vpOn != (char)cling::CompilationOptions::VPAuto
&& "VPAuto must have been expanded earlier.");
if (vpOn == (char)cling::CompilationOptions::VPEnabled)
V.dump();
}
///\brief Allocate the Value and return the Value
/// for an expression evaluated at the prompt.
///
///\param [in] interp - The cling::Interpreter to allocate the SToredValueRef.
///\param [in] vpQT - The opaque ptr for the clang::QualType of value stored.
///\param [out] vpStoredValRef - The Value that is allocated.
static cling::Value&
allocateStoredRefValueAndGetGV(void* vpI, void* vpSVR, void* vpQT) {
cling::Interpreter* i = (cling::Interpreter*)vpI;
clang::QualType QT = clang::QualType::getFromOpaquePtr(vpQT);
cling::Value& SVR = *(cling::Value*)vpSVR;
// Here the copy keeps the refcounted value alive.
SVR = cling::Value(QT, *i);
return SVR;
}
}
namespace cling {
namespace runtime {
namespace internal {
void setValueNoAlloc(void* vpI, void* vpSVR, void* vpQT, char vpOn) {
// In cases of void we 'just' need to change the type of the value.
allocateStoredRefValueAndGetGV(vpI, vpSVR, vpQT);
}
void setValueNoAlloc(void* vpI, void* vpSVR, void* vpQT, char vpOn,
float value) {
allocateStoredRefValueAndGetGV(vpI, vpSVR, vpQT).getAs<float>() = value;
dumpIfNoStorage(vpSVR, vpOn);
}
void setValueNoAlloc(void* vpI, void* vpSVR, void* vpQT, char vpOn,
double value) {
allocateStoredRefValueAndGetGV(vpI, vpSVR, vpQT).getAs<double>() = value;
dumpIfNoStorage(vpSVR, vpOn);
}
void setValueNoAlloc(void* vpI, void* vpSVR, void* vpQT, char vpOn,
long double value) {
allocateStoredRefValueAndGetGV(vpI, vpSVR, vpQT).getAs<long double>()
= value;
dumpIfNoStorage(vpSVR, vpOn);
}
void setValueNoAlloc(void* vpI, void* vpSVR, void* vpQT, char vpOn,
unsigned long long value) {
allocateStoredRefValueAndGetGV(vpI, vpSVR, vpQT)
.getAs<unsigned long long>() = value;
dumpIfNoStorage(vpSVR, vpOn);
}
void setValueNoAlloc(void* vpI, void* vpSVR, void* vpQT, char vpOn,
const void* value){
allocateStoredRefValueAndGetGV(vpI, vpSVR, vpQT).getAs<void*>()
= const_cast<void*>(value);
dumpIfNoStorage(vpSVR, vpOn);
}
void* setValueWithAlloc(void* vpI, void* vpSVR, void* vpQT, char vpOn) {
return allocateStoredRefValueAndGetGV(vpI, vpSVR, vpQT).getAs<void*>();
}
} // end namespace internal
} // end namespace runtime
} // end namespace cling