cling/lib/Interpreter/Value.cpp

480 lines
18 KiB
C++

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// author: Axel Naumann <axel@cern.ch>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
#include "cling/Interpreter/Value.h"
#include "cling/Interpreter/Interpreter.h"
#include "cling/Interpreter/Transaction.h"
#include "cling/Utils/AST.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CanonicalType.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Type.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Sema.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_os_ostream.h"
#include "llvm/Support/raw_ostream.h"
#include <iostream>
#include <sstream>
// For address validation
#ifdef LLVM_ON_WIN32
#include <Windows.h>
#else
#include <unistd.h>
#endif
namespace {
static bool isAddressValid(void* P) {
if (!P || P == (void*)-1)
return false;
#ifdef LLVM_ON_WIN32
MEMORY_BASIC_INFORMATION MBI;
if (!VirtualQuery(P, &MBI, sizeof(MBI)))
return false;
if (MBI.State != MEM_COMMIT)
return false;
return true;
#else
// There is a POSIX way of finding whether an address can be accessed for
// reading: write() will return EFAULT if not.
int FD[2];
if (pipe(FD))
return false; // error in pipe()? Be conservative...
int NBytes = write(FD[1], P, 1/*byte*/);
close(FD[0]);
close(FD[1]);
if (NBytes != 1) {
assert(errno == EFAULT && "unexpected pipe write error");
return false;
}
return true;
#endif
}
///\brief The allocation starts with this layout; it is followed by the
/// value's object at m_Payload. This class does not inherit from
/// llvm::RefCountedBase because deallocation cannot use this type but must
/// free the character array.
class AllocatedValue {
public:
typedef void (*DtorFunc_t)(void*);
private:
///\brief The reference count - once 0, this object will be deallocated.
mutable unsigned m_RefCnt;
///\brief The destructor function.
DtorFunc_t m_DtorFunc;
///\brief The size of the allocation (for arrays)
unsigned long m_AllocSize;
///\brief The number of elements in the array
unsigned long m_NElements;
///\brief The start of the allocation.
char m_Payload[1];
static DtorFunc_t PtrToFunc(void* ptr) {
union {
void* m_Ptr;
DtorFunc_t m_Func;
};
m_Ptr = ptr;
return m_Func;
}
public:
///\brief Initialize the storage management part of the allocated object.
/// The allocator is referencing it, thus initialize m_RefCnt with 1.
///\param [in] dtorFunc - the function to be called before deallocation.
AllocatedValue(void* dtorFunc, size_t allocSize, size_t nElements):
m_RefCnt(1), m_DtorFunc(PtrToFunc(dtorFunc)), m_AllocSize(allocSize),
m_NElements(nElements)
{}
char* getPayload() { return m_Payload; }
static unsigned getPayloadOffset() {
static const AllocatedValue Dummy(0,0,0);
return Dummy.m_Payload - (const char*)&Dummy;
}
static AllocatedValue* getFromPayload(void* payload) {
return
reinterpret_cast<AllocatedValue*>((char*)payload - getPayloadOffset());
}
void Retain() { ++m_RefCnt; }
///\brief This object must be allocated as a char array. Deallocate it as
/// such.
void Release() {
assert (m_RefCnt > 0 && "Reference count is already zero.");
if (--m_RefCnt == 0) {
if (m_DtorFunc) {
char* payload = getPayload();
for (size_t el = 0; el < m_NElements; ++el)
(*m_DtorFunc)(payload + el * m_AllocSize / m_NElements);
}
delete [] (char*)this;
}
}
};
}
namespace cling {
Value::Value(const Value& other):
m_Storage(other.m_Storage), m_StorageType(other.m_StorageType),
m_Type(other.m_Type), m_Interpreter(other.m_Interpreter) {
if (other.needsManagedAllocation())
AllocatedValue::getFromPayload(m_Storage.m_Ptr)->Retain();
}
Value::Value(Value&& other):
m_Storage(other.m_Storage), m_StorageType(other.m_StorageType),
m_Type(other.m_Type), m_Interpreter(other.m_Interpreter) {
// Invalidate other so it will not release.
other.m_StorageType = kUnsupportedType;
}
Value::Value(clang::QualType clangTy, Interpreter& Interp):
m_StorageType(determineStorageType(clangTy)),
m_Type(clangTy.getAsOpaquePtr()),
m_Interpreter(&Interp) {
if (needsManagedAllocation())
ManagedAllocate();
}
Value& Value::operator =(const Value& other) {
// Release old value.
if (needsManagedAllocation())
AllocatedValue::getFromPayload(m_Storage.m_Ptr)->Release();
// Retain new one.
m_Type = other.m_Type;
m_Storage = other.m_Storage;
m_StorageType = other.m_StorageType;
m_Interpreter = other.m_Interpreter;
if (needsManagedAllocation())
AllocatedValue::getFromPayload(m_Storage.m_Ptr)->Retain();
return *this;
}
Value& Value::operator =(Value&& other) {
// Release old value.
if (needsManagedAllocation())
AllocatedValue::getFromPayload(m_Storage.m_Ptr)->Release();
// Move new one.
m_Type = other.m_Type;
m_Storage = other.m_Storage;
m_StorageType = other.m_StorageType;
m_Interpreter = other.m_Interpreter;
// Invalidate other so it will not release.
other.m_StorageType = kUnsupportedType;
return *this;
}
Value::~Value() {
if (needsManagedAllocation())
AllocatedValue::getFromPayload(m_Storage.m_Ptr)->Release();
}
clang::QualType Value::getType() const {
return clang::QualType::getFromOpaquePtr(m_Type);
}
clang::ASTContext& Value::getASTContext() const {
return m_Interpreter->getCI()->getASTContext();
}
bool Value::isValid() const { return !getType().isNull(); }
bool Value::isVoid() const {
const clang::ASTContext& Ctx = getASTContext();
return isValid() && Ctx.hasSameType(getType(), Ctx.VoidTy);
}
unsigned long Value::GetNumberOfElements() const {
if (const clang::ConstantArrayType* ArrTy
= llvm::dyn_cast<clang::ConstantArrayType>(getType())) {
llvm::APInt arrSize(sizeof(unsigned long)*8, 1);
do {
arrSize *= ArrTy->getSize();
ArrTy = llvm::dyn_cast<clang::ConstantArrayType>(ArrTy->getElementType()
.getTypePtr());
} while (ArrTy);
return (unsigned long)arrSize.getZExtValue();
}
return 1;
}
Value::EStorageType Value::determineStorageType(clang::QualType QT) {
const clang::Type* desugCanon = QT.getCanonicalType().getTypePtr();
if (desugCanon->isSignedIntegerOrEnumerationType())
return kSignedIntegerOrEnumerationType;
else if (desugCanon->isUnsignedIntegerOrEnumerationType())
return kUnsignedIntegerOrEnumerationType;
else if (desugCanon->isRealFloatingType()) {
const clang::BuiltinType* BT = desugCanon->getAs<clang::BuiltinType>();
if (BT->getKind() == clang::BuiltinType::Double)
return kDoubleType;
else if (BT->getKind() == clang::BuiltinType::Float)
return kFloatType;
else if (BT->getKind() == clang::BuiltinType::LongDouble)
return kLongDoubleType;
} else if (desugCanon->isPointerType() || desugCanon->isObjectType()
|| desugCanon->isReferenceType()) {
if (desugCanon->isRecordType() || desugCanon->isConstantArrayType()
|| desugCanon->isMemberPointerType())
return kManagedAllocation;
return kPointerType;
}
return kUnsupportedType;
}
void Value::ManagedAllocate() {
assert(needsManagedAllocation() && "Does not need managed allocation");
void* dtorFunc = 0;
clang::QualType DtorType = getType();
// For arrays we destruct the elements.
if (const clang::ConstantArrayType* ArrTy
= llvm::dyn_cast<clang::ConstantArrayType>(DtorType.getTypePtr())) {
DtorType = ArrTy->getElementType();
}
if (const clang::RecordType* RTy = DtorType->getAs<clang::RecordType>())
dtorFunc = GetDtorWrapperPtr(RTy->getDecl());
const clang::ASTContext& ctx = getASTContext();
unsigned payloadSize = ctx.getTypeSizeInChars(getType()).getQuantity();
char* alloc = new char[AllocatedValue::getPayloadOffset() + payloadSize];
AllocatedValue* allocVal = new (alloc) AllocatedValue(dtorFunc, payloadSize,
GetNumberOfElements());
m_Storage.m_Ptr = allocVal->getPayload();
}
void Value::AssertOnUnsupportedTypeCast() const {
assert("unsupported type in Value, cannot cast simplistically!" && 0);
}
/// \brief Get the function address of the wrapper of the destructor.
void* Value::GetDtorWrapperPtr(const clang::RecordDecl* RD) const {
std::string funcname;
{
llvm::raw_string_ostream namestr(funcname);
namestr << "__cling_StoredValue_Destruct_" << RD;
}
// Check whether the function exists before calling
// utils::TypeName::GetFullyQualifiedName which is expensive
// (memory-wise). See ROOT-6909.
std::string code;
if (!m_Interpreter->getAddressOfGlobal(funcname)) {
code = "extern \"C\" void ";
clang::QualType RDQT(RD->getTypeForDecl(), 0);
std::string typeName
= utils::TypeName::GetFullyQualifiedName(RDQT, RD->getASTContext());
std::string dtorName = RD->getNameAsString();
code += funcname + "(void* obj){((" + typeName + "*)obj)->~"
+ dtorName + "();}";
}
// else we have an empty code string - but the function alreday exists
// so we'll be fine and take the existing one (ifUniq = true).
return m_Interpreter->compileFunction(funcname, code, true /*ifUniq*/,
false /*withAccessControl*/);
}
static bool hasViableCandidateToCall(clang::LookupResult& R,
const cling::Value& V) {
if (R.empty())
return false;
using namespace clang;
ASTContext& C = V.getASTContext();
Sema& SemaR = R.getSema();
OverloadCandidateSet overloads(SourceLocation(),
OverloadCandidateSet::CSK_Normal);
QualType Ty = V.getType().getNonReferenceType();
if (!Ty->isPointerType())
Ty = C.getPointerType(Ty);
NamespaceDecl* ClingNSD = utils::Lookup::Namespace(&SemaR, "cling");
RecordDecl* ClingValueDecl
= dyn_cast<RecordDecl>(utils::Lookup::Named(&SemaR, "Value",
ClingNSD));
assert(ClingValueDecl && "Declaration must be found!");
QualType ClingValueTy = C.getTypeDeclType(ClingValueDecl);
// The OverloadCandidateSet requires a QualType to be passed in through an
// Expr* as part of Args. We know that we won't be using any node generated.
// We need only an answer whether there is an overload taking these argument
// types. We cannot afford to create useless Expr* on the AST for this
// utility function which may be called thousands of times. Instead, we
// create them on the stack and pretend they are on the heap. We get our
// answer and forget about doing anything wrong.
llvm::SmallVector<Expr, 4> exprsOnStack;
SourceLocation noLoc;
exprsOnStack.push_back(CXXNullPtrLiteralExpr(Ty, noLoc));
exprsOnStack.push_back(CXXNullPtrLiteralExpr(Ty, noLoc));
exprsOnStack.push_back(CXXNullPtrLiteralExpr(ClingValueTy, noLoc));
llvm::SmallVector<Expr*, 4> exprsFakedOnHeap;
exprsFakedOnHeap.push_back(&exprsOnStack[0]);
exprsFakedOnHeap.push_back(&exprsOnStack[1]);
exprsFakedOnHeap.push_back(&exprsOnStack[2]);
llvm::ArrayRef<Expr*> Args = llvm::makeArrayRef(exprsFakedOnHeap.data(),
exprsFakedOnHeap.size());
// Could trigger deserialization of decls.
cling::Interpreter::PushTransactionRAII RAII(V.getInterpreter());
SemaR.AddFunctionCandidates(R.asUnresolvedSet(), Args, overloads);
OverloadCandidateSet::iterator Best;
OverloadingResult OR = overloads.BestViableFunction(SemaR,
SourceLocation(), Best);
return OR == OR_Success;
}
namespace valuePrinterInternal {
void printValue_Default(llvm::raw_ostream& o, const Value& V);
void printType_Default(llvm::raw_ostream& o, const Value& V);
} // end namespace valuePrinterInternal
void Value::print(llvm::raw_ostream& Out) const {
// Try to find user defined printing functions:
// cling::printType(const void* const p, TY* const u, const Value& V) and
// cling::printValue(const void* const p, TY* const u, const Value& V)
using namespace clang;
Sema& SemaR = m_Interpreter->getSema();
ASTContext& C = SemaR.getASTContext();
NamespaceDecl* ClingNSD = utils::Lookup::Namespace(&SemaR, "cling");
SourceLocation noLoc;
LookupResult R(SemaR, &C.Idents.get("printType"), noLoc,
Sema::LookupOrdinaryName, Sema::ForRedeclaration);
assert(ClingNSD && "There must be a valid namespace.");
{
// Could trigger deserialization of decls.
cling::Interpreter::PushTransactionRAII RAII(m_Interpreter);
SemaR.LookupQualifiedName(R, ClingNSD);
// We commit here because the possibly deserialized decls from the lookup
// will be needed by evaluate.
}
QualType ValueTy = this->getType().getNonReferenceType();
bool ValidAddress = true;
if (!ValueTy->isPointerType())
ValueTy = C.getPointerType(ValueTy);
else
ValidAddress = isAddressValid(this->getPtr());
ValueTy = utils::TypeName::GetFullyQualifiedType(ValueTy, getASTContext());
PrintingPolicy Policy(m_Interpreter->getCI()->getLangOpts());
std::string ValueTyStr = ValueTy.getAsString(Policy);
std::string typeStr;
std::string valueStr;
if (ValidAddress && hasViableCandidateToCall(R, *this)) {
// There is such a routine call, it:
std::stringstream printTypeSS;
printTypeSS << "cling::printType(";
printTypeSS << '(' << ValueTyStr << ')' << this->getPtr() << ',';
printTypeSS << '(' << ValueTyStr << ')' << this->getPtr() << ',';
printTypeSS <<"(*(cling::Value*)" << this << "));";
Value printTypeV;
m_Interpreter->evaluate(printTypeSS.str(), printTypeV);
assert(printTypeV.isValid() && "Must return valid value.");
typeStr = *(std::string*)printTypeV.getPtr();
// CXXScopeSpec CSS;
// Expr* UnresolvedLookup
// = m_Sema->BuildDeclarationNameExpr(CSS, R, /*ADL*/ false).take();
// // Build Arg1: const void* const p
// QualType ConstVoidPtrTy = C.VoidPtrTy.withConst();
// Expr* Arg1
// = utils::Synthesize::CStyleCastPtrExpr(SemaR, ConstVoidPtrTy,
// (uint64_t)this->getPtr());
// // Build Arg2: TY* const u
// Expr* Arg2
// = utils::Synthesize::CStyleCastPtrExpr(SemaR, ValueTy,
// (uint64_t)this->getPtr());
// // Build Arg3: const Value&
// RecordDecl* ClingValueDecl
// = dyn_cast<RecordDecl>(utils::Lookup::Named(SemaR, "Value",ClingNSD));
// assert(ClingValueDecl && "Declaration must be found!");
// QualType ClingValueTy = m_Context->getTypeDeclType(ClingValueDecl);
// Expr* Arg3
// = utils::Synthesize::CStyleCastPtrExpr(m_Sema, ClingValueTy,
// (uint64_t)this);
// llvm::SmallVector<Expr*, 4> CallArgs;
// CallArgs.push_back(Arg1);
// CallArgs.push_back(Arg2);
// CallArgs.push_back(Arg3);
// Expr* Call = m_Sema->ActOnCallExpr(/*Scope*/0, UnresolvedLookup, noLoc,
// CallArgs, noLoc).take();
}
else {
llvm::raw_string_ostream o(typeStr);
cling::valuePrinterInternal::printType_Default(o, *this);
}
R.clear();
R.setLookupName(&C.Idents.get("printValue"));
{
// Could trigger deserialization of decls.
cling::Interpreter::PushTransactionRAII RAII(m_Interpreter);
SemaR.LookupQualifiedName(R, ClingNSD);
// We commit here because the possibly deserialized decls from the lookup
// will be needed by evaluate.
}
if (ValidAddress && hasViableCandidateToCall(R, *this)) {
// There is such a routine call it:
std::stringstream printValueSS;
printValueSS << "cling::printValue(";
printValueSS << '(' << ValueTyStr << ')' << this->getPtr() << ',';
printValueSS << '(' << ValueTyStr << ')' << this->getPtr() << ',';
printValueSS <<"(*(cling::Value*)" << this << "));";
Value printValueV;
m_Interpreter->evaluate(printValueSS.str(), printValueV);
assert(printValueV.isValid() && "Must return valid value.");
valueStr = *(std::string*)printValueV.getPtr();
}
else {
llvm::raw_string_ostream o(valueStr);
cling::valuePrinterInternal::printValue_Default(o, *this);
}
// print the type and the value:
Out << typeStr + valueStr << "\n";
}
void Value::dump() const {
// We need stream that doesn't close its file descriptor, thus we are not
// using llvm::outs. Keeping file descriptor open we will be able to use
// the results in pipes (Savannah #99234).
// Alternatively we could use llvm::errs()
std::unique_ptr<llvm::raw_ostream> Out;
Out.reset(new llvm::raw_os_ostream(std::cout));
print(*Out.get());
}
} // end namespace cling