cling/lib/Interpreter/BackendPasses.cpp
Devajith f9b7ba1430 Add plugin support (#15169)
Add plugin support and pass LLVM arguments after plugins have been loaded.
2024-04-12 15:59:08 +02:00

467 lines
16 KiB
C++

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// author: Vassil Vassilev <vvasilev@cern.ch>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
#include "BackendPasses.h"
#include "IncrementalJIT.h"
#include "cling/Utils/Platform.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/Inliner.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
//#include "clang/Basic/LangOptions.h"
//#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include <optional>
using namespace cling;
using namespace clang;
using namespace llvm;
namespace {
class KeepLocalGVPass : public PassInfoMixin<KeepLocalGVPass> {
bool runOnGlobal(GlobalValue& GV) {
if (GV.isDeclaration())
return false; // no change.
// GV is a definition.
// It doesn't make sense to keep unnamed constants, we wouldn't know how
// to reference them anyway.
if (!GV.hasName())
return false;
if (GV.getName().starts_with(".str"))
return false;
llvm::GlobalValue::LinkageTypes LT = GV.getLinkage();
if (!GV.isDiscardableIfUnused(LT))
return false;
if (LT == llvm::GlobalValue::InternalLinkage) {
// We want to keep this GlobalValue around, but have to tell the JIT
// linker that it should not error on duplicate symbols.
// FIXME: Ideally the frontend would never emit duplicate symbols and
// we could just use the old version of saying:
// GV.setLinkage(llvm::GlobalValue::ExternalLinkage);
GV.setLinkage(llvm::GlobalValue::WeakAnyLinkage);
return true; // a change!
}
return false;
}
public:
PreservedAnalyses run(llvm::Module& M, ModuleAnalysisManager& AM) {
bool changed = false;
for (auto &&F: M)
changed |= runOnGlobal(F);
for (auto &&G: M.globals())
changed |= runOnGlobal(G);
return changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
};
}
namespace {
class PreventLocalOptPass : public PassInfoMixin<PreventLocalOptPass> {
bool runOnGlobal(GlobalValue& GV) {
if (!GV.isDeclaration())
return false; // no change.
// GV is a declaration with no definition. Make sure to prevent any
// optimization that tries to take advantage of the actual definition
// being "local" because we have no influence on the memory layout of
// data sections and how "close" they are to the code.
bool changed = false;
if (GV.hasLocalLinkage()) {
GV.setLinkage(llvm::GlobalValue::ExternalLinkage);
changed = true;
}
if (!GV.hasDefaultVisibility()) {
GV.setVisibility(llvm::GlobalValue::DefaultVisibility);
changed = true;
}
// Set DSO locality last because setLinkage() and setVisibility() check
// isImplicitDSOLocal().
if (GV.isDSOLocal()) {
GV.setDSOLocal(false);
changed = true;
}
return changed;
}
public:
PreservedAnalyses run(llvm::Module& M, ModuleAnalysisManager& AM) {
bool changed = false;
for (auto &&F: M)
changed |= runOnGlobal(F);
for (auto &&G: M.globals())
changed |= runOnGlobal(G);
return changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
};
}
namespace {
class WeakTypeinfoVTablePass : public PassInfoMixin<WeakTypeinfoVTablePass> {
bool runOnGlobalVariable(GlobalVariable& GV) {
// Only need to consider symbols with external linkage because only
// these could be reported as duplicate.
if (GV.getLinkage() != llvm::GlobalValue::ExternalLinkage)
return false;
if (GV.getName().starts_with("_ZT")) {
// Currently, if Cling sees the "key function" of a virtual class, it
// emits typeinfo and vtable variables in every transaction llvm::Module
// that reference them. Turn them into weak linkage to avoid duplicate
// symbol errors from the JIT linker.
// FIXME: This is a hack, we should teach the frontend to emit these
// only once, or mark all duplicates as available_externally (if that
// improves performance due to optimizations).
GV.setLinkage(llvm::GlobalValue::WeakAnyLinkage);
return true; // a change!
}
return false;
}
public:
PreservedAnalyses run(llvm::Module& M, ModuleAnalysisManager& AM) {
bool changed = false;
for (auto &&GV : M.globals())
changed |= runOnGlobalVariable(GV);
return changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
};
}
namespace {
// Add a suffix to the CUDA module ctor/dtor, CUDA specific functions and
// variables to generate a unique name. This is necessary for lazy
// compilation. Without suffix, cling cannot distinguish ctor/dtor, register
// function and and ptx code string of subsequent modules.
class UniqueCUDAStructorName : public PassInfoMixin<UniqueCUDAStructorName> {
// append a suffix to a symbol to make it unique
// the suffix is "_cling_module_<module number>"
llvm::SmallString<128> add_module_suffix(const StringRef SymbolName,
const StringRef ModuleName) {
llvm::SmallString<128> NewFunctionName;
NewFunctionName.append(SymbolName);
NewFunctionName.append("_");
NewFunctionName.append(ModuleName);
for (size_t i = 0; i < NewFunctionName.size(); ++i) {
// Replace everything that is not [a-zA-Z0-9._] with a _. This set
// happens to be the set of C preprocessing numbers.
if (!isPreprocessingNumberBody(NewFunctionName[i]))
NewFunctionName[i] = '_';
}
return NewFunctionName;
}
// make CUDA specific variables unique
bool runOnGlobal(GlobalValue& GV, const StringRef ModuleName) {
if (GV.isDeclaration())
return false; // no change.
if (!GV.hasName())
return false;
if (GV.getName().equals("__cuda_fatbin_wrapper") ||
GV.getName().equals("__cuda_gpubin_handle")) {
GV.setName(add_module_suffix(GV.getName(), ModuleName));
return true;
}
return false;
}
// make CUDA specific functions unique
bool runOnFunction(Function& F, const StringRef ModuleName) {
if (F.hasName() && (F.getName().equals("__cuda_module_ctor") ||
F.getName().equals("__cuda_module_dtor") ||
F.getName().equals("__cuda_register_globals"))) {
F.setName(add_module_suffix(F.getName(), ModuleName));
return true;
}
return false;
}
public:
PreservedAnalyses run(llvm::Module& M, ModuleAnalysisManager& AM) {
bool changed = false;
const StringRef ModuleName = M.getName();
for (auto&& F : M)
changed |= runOnFunction(F, ModuleName);
for (auto&& G : M.globals())
changed |= runOnGlobal(G, ModuleName);
return changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
};
} // namespace
namespace {
// Replace definitions of weak symbols for which symbols already exist by
// declarations. This reduces the amount of emitted symbols.
class ReuseExistingWeakSymbols
: public PassInfoMixin<ReuseExistingWeakSymbols> {
cling::IncrementalJIT &m_JIT;
bool shouldRemoveGlobalDefinition(GlobalValue& GV) {
// Existing *weak* symbols can be re-used thanks to ODR.
llvm::GlobalValue::LinkageTypes LT = GV.getLinkage();
if (!GV.isDiscardableIfUnused(LT) || !GV.isWeakForLinker(LT))
return false;
// Find the symbol as existing, previously compiled symbol in the JIT...
if (m_JIT.doesSymbolAlreadyExist(GV.getName()))
return true;
// ...or in shared libraries (without auto-loading).
std::string Name = GV.getName().str();
#if !defined(_WIN32)
return llvm::sys::DynamicLibrary::SearchForAddressOfSymbol(Name);
#else
return platform::DLSym(Name);
#endif
}
bool runOnVar(GlobalVariable& GV) {
#if !defined(_WIN32)
// Heuristically, Windows cannot handle cross-library variables; they
// must be library-local.
if (GV.isDeclaration())
return false; // no change.
if (shouldRemoveGlobalDefinition(GV)) {
GV.setInitializer(nullptr); // make this a declaration
return true; // a change!
}
#endif
return false; // no change.
}
bool runOnFunc(Function& Func) {
if (Func.isDeclaration())
return false; // no change.
#ifndef _WIN32
// MSVC's stdlib gets symbol issues; i.e. apparently: JIT all or none.
if (Func.getInstructionCount() < 50) {
// This is a small function. Keep its definition to retain it for
// inlining: the cost for JITting it is small, and the likelihood
// that the call will be inlined is high.
return false;
}
#endif
if (shouldRemoveGlobalDefinition(Func)) {
Func.deleteBody(); // make this a declaration
return true; // a change!
}
return false; // no change.
}
public:
ReuseExistingWeakSymbols(IncrementalJIT& JIT) : m_JIT(JIT) {}
PreservedAnalyses run(llvm::Module& M, ModuleAnalysisManager& AM) {
bool changed = false;
// FIXME: use SymbolLookupSet, rather than looking up symbol by symbol.
for (auto &&F: M)
changed |= runOnFunc(F);
for (auto &&G: M.globals())
changed |= runOnVar(G);
return changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
};
}
// From clang/lib/CodeGen/BackendUtil.cpp
static OptimizationLevel mapToLevel(const CodeGenOptions& Opts) {
switch (Opts.OptimizationLevel) {
default: llvm_unreachable("Invalid optimization level!");
case 0: return OptimizationLevel::O0;
case 1: return OptimizationLevel::O1;
case 2:
switch (Opts.OptimizeSize) {
default: llvm_unreachable("Invalid optimization level for size!");
case 0: return OptimizationLevel::O2;
case 1: return OptimizationLevel::Os;
case 2: return OptimizationLevel::Oz;
}
case 3: return OptimizationLevel::O3;
}
}
BackendPasses::BackendPasses(const clang::CodeGenOptions &CGOpts,
IncrementalJIT &JIT, llvm::TargetMachine& TM):
m_TM(TM),
m_JIT(JIT),
m_CGOpts(CGOpts)
{}
BackendPasses::~BackendPasses() {
//delete m_PMBuilder->Inliner;
}
void BackendPasses::CreatePasses(int OptLevel, llvm::ModulePassManager& MPM,
llvm::LoopAnalysisManager& LAM,
llvm::FunctionAnalysisManager& FAM,
llvm::CGSCCAnalysisManager& CGAM,
llvm::ModuleAnalysisManager& MAM,
PassInstrumentationCallbacks& PIC,
StandardInstrumentations& SI) {
MPM.addPass(KeepLocalGVPass());
MPM.addPass(PreventLocalOptPass());
MPM.addPass(WeakTypeinfoVTablePass());
MPM.addPass(ReuseExistingWeakSymbols(m_JIT));
// Run verifier after local passes to make sure that IR remains untouched.
if (m_CGOpts.VerifyModule)
MPM.addPass(VerifierPass());
// Handle disabling of LLVM optimization, where we want to preserve the
// internal module before any optimization.
if (m_CGOpts.DisableLLVMPasses) {
// Always keep at least ForceInline - NoInlining is deadly for libc++.
// Inlining = CGOpts.NoInlining;
MPM.addPass(AlwaysInlinerPass());
} else if (OptLevel <= 1) {
// At O0 and O1 we only run the always inliner which is more efficient. At
// higher optimization levels we run the normal inliner.
MPM.addPass(AlwaysInlinerPass());
// Register a callback for disabling all other inliner passes.
PIC.registerShouldRunOptionalPassCallback([](StringRef P, Any) {
if (P.equals("ModuleInlinerWrapperPass") ||
P.equals("InlineAdvisorAnalysisPrinterPass") ||
P.equals("PartialInlinerPass") || P.equals("buildInlinerPipeline") ||
P.equals("ModuleInlinerPass") || P.equals("InlinerPass") ||
P.equals("InlineAdvisorAnalysis") ||
P.equals("PartiallyInlineLibCallsPass") ||
P.equals("RelLookupTableConverterPass") ||
P.equals("InlineCostAnnotationPrinterPass") ||
P.equals("InlineSizeEstimatorAnalysisPrinterPass") ||
P.equals("InlineSizeEstimatorAnalysis"))
return false;
return true;
});
} else {
// Register a callback for disabling RelLookupTableConverterPass.
PIC.registerShouldRunOptionalPassCallback([](StringRef P, Any) {
return !P.equals("RelLookupTableConverterPass");
});
}
SI.registerCallbacks(PIC, &FAM);
PipelineTuningOptions PTO;
std::optional<PGOOptions> PGOOpt;
PassBuilder PB(&m_TM, PTO, PGOOpt, &PIC);
// Attempt to load pass plugins and register their callbacks with PB.
for (auto& PluginFN : m_CGOpts.PassPlugins) {
auto PassPlugin = PassPlugin::Load(PluginFN);
if (PassPlugin) {
PassPlugin->registerPassBuilderCallbacks(PB);
}
}
if (!m_CGOpts.DisableLLVMPasses) {
// Use the default pass pipeline. We also have to map our optimization
// levels into one of the distinct levels used to configure the pipeline.
OptimizationLevel Level = mapToLevel(m_CGOpts);
if (m_CGOpts.OptimizationLevel == 0) {
// TODO: Remove this after https://reviews.llvm.org/D146200
MPM.addPass(PB.buildO0DefaultPipeline(Level));
} else {
MPM.addPass(PB.buildPerModuleDefaultPipeline(Level));
}
}
// The function __cuda_module_ctor and __cuda_module_dtor will just generated,
// if a CUDA fatbinary file exist. Without file path there is no need for the
// function pass.
if(!m_CGOpts.CudaGpuBinaryFileName.empty())
MPM.addPass(UniqueCUDAStructorName());
// Register all the basic analyses with the managers.
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
}
void BackendPasses::runOnModule(Module& M, int OptLevel) {
if (OptLevel < 0)
OptLevel = 0;
if (OptLevel > 3)
OptLevel = 3;
ModulePassManager MPM;
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
PassInstrumentationCallbacks PIC;
StandardInstrumentations SI(M.getContext(), m_CGOpts.DebugPassManager);
CreatePasses(OptLevel, MPM, LAM, FAM, CGAM, MAM, PIC, SI);
static constexpr std::array<llvm::CodeGenOpt::Level, 4> CGOptLevel {{
llvm::CodeGenOpt::None,
llvm::CodeGenOpt::Less,
llvm::CodeGenOpt::Default,
llvm::CodeGenOpt::Aggressive
}};
// TM's OptLevel is used to build orc::SimpleCompiler passes for every Module.
m_TM.setOptLevel(CGOptLevel[OptLevel]);
// Now that we have all of the passes ready, run them.
MPM.run(M, MAM);
}