cling/test/CUDADeviceCode/CUDAKernelTemplateComplex.C
Simeon Ehrig be5ea3a651 Fixed CUDA mode for Clang/LLVM 9 upgrade
- fix bug, which was caused by executing a transaction in the device
interpreter
- fixed warning from the device compiler
- update test cases
2021-02-25 20:44:19 +01:00

188 lines
5.1 KiB
C

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// author: Simeon Ehrig <s.ehrig@hzdr.de>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
// The Test checks if templated CUDA kernel in some special cases works.
// RUN: cat %s | %cling -x cuda --cuda-path=%cudapath %cudasmlevel -Xclang -verify 2>&1 | FileCheck %s
// REQUIRES: cuda-runtime
// Check if templated CUDA kernel works, without explicit template type declaration.
.rawInput 1
template <typename T>
__global__ void gKernel1(T * value){
*value = (T)42.0;
}
.rawInput 0
int * deviceOutput1;
int hostOutput1 = 1;
cudaMalloc( (void **) &deviceOutput1, sizeof(int))
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
gKernel1<<<1,1>>>(deviceOutput1);
cudaGetLastError()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaDeviceSynchronize()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaMemcpy(&hostOutput1, deviceOutput1, sizeof(int), cudaMemcpyDeviceToHost)
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
hostOutput1
// CHECK: (int) 42
// Check if specialization of templated CUDA kernel works.
.rawInput 1
template <typename T>
__global__ void gKernel2(T * value){
*value = (T)1.0;
}
template <>
__global__ void gKernel2<float>(float * value){
*value = 2.0;
}
.rawInput 0
int * deviceOutput2;
int hostOutput2 = 10;
cudaMalloc( (void **) &deviceOutput2, sizeof(int))
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
float * deviceOutput3;
float hostOutput3= 10.0;
cudaMalloc( (void **) &deviceOutput3, sizeof(float))
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
gKernel2<<<1,1>>>(deviceOutput2);
cudaGetLastError()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaDeviceSynchronize()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
gKernel2<<<1,1>>>(deviceOutput3);
cudaGetLastError()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaDeviceSynchronize()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaMemcpy(&hostOutput2, deviceOutput2, sizeof(int), cudaMemcpyDeviceToHost)
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaMemcpy(&hostOutput3, deviceOutput3, sizeof(float), cudaMemcpyDeviceToHost)
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
hostOutput2
// CHECK: (int) 1
hostOutput3
// CHECK: (float) 2.00000f
// Check if function as parameter works on a templated CUDA kernel.
.rawInput 1
template <typename T>
__global__ void gKernel3(T * out, int value){
*out = value;
}
__global__ void gKernel4(int * out){
*out = 5;
}
int func1(int * input){
int result = 1;
gKernel4<<<1,1>>>(input);
cudaMemcpy(&result, input, sizeof(int), cudaMemcpyDeviceToHost);
return result;
}
.rawInput 0
int * deviceOutput4;
int hostOutput4 = 10;
cudaMalloc( (void **) &deviceOutput4, sizeof(int))
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
int * deviceOutput5;
cudaMalloc( (void **) &deviceOutput5, sizeof(int))
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
gKernel3<<<1,1>>>(deviceOutput4, func1(deviceOutput5));
cudaGetLastError()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaDeviceSynchronize()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaMemcpy(&hostOutput4, deviceOutput4, sizeof(int), cudaMemcpyDeviceToHost)
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
hostOutput4
// CHECK: (int) 5
// Check if specialization of struct __device__ functors works.
template<typename T>
struct Struct1
{
__device__ T operator()(T* dummy) const
{
return (T)1;
}
};
template<>
struct Struct1<double>
{
__device__ double operator()(double * dummy) const
{
return 2.0;
}
};
.rawInput 1
template<typename T, typename Functor>
__global__ void gKernel5(T * x, Functor const functor){
*x = functor(x);
}
.rawInput 0
int * deviceOutput6;
int hostOutput6 = 10;
cudaMalloc( (void **) &deviceOutput6, sizeof(int))
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
double * deviceOutput7;
double hostOutput7 = 10.0;
cudaMalloc( (void **) &deviceOutput7, sizeof(double))
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
gKernel5<<<1,1>>>(deviceOutput6, Struct1<int>{});
cudaGetLastError()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaDeviceSynchronize()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
gKernel5<<<1,1>>>(deviceOutput7, Struct1<double>{});
cudaGetLastError()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaDeviceSynchronize()
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaMemcpy(&hostOutput6, deviceOutput6, sizeof(int), cudaMemcpyDeviceToHost)
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
cudaMemcpy(&hostOutput7, deviceOutput7, sizeof(double), cudaMemcpyDeviceToHost)
// CHECK: (cudaError_t) (cudaSuccess) : (unsigned int) 0
hostOutput6
// CHECK: (int) 1
hostOutput7
// CHECK: (double) 2.0000000
// expected-no-diagnostics
.q