cling/lib/Interpreter/LookupHelper.cpp
Axel Naumann 4681e8014f Do not diagnose instantiation failures during function lookup.
Fixes an issue for ATLAS, where Property<string>::Property<string&> cannot be instantiated by ROOT.
ROOT is trying to do that because the function is templated, with all template parameters having defaults.
(This "let us instantiate if all template params have defaults" is needed e.g. to see pair::pair() which is sfinae protected.)
2017-09-05 10:59:25 +02:00

1979 lines
76 KiB
C++

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// author: Vassil Vassilev <vvasilev@cern.ch>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
#include "cling/Interpreter/LookupHelper.h"
#include "cling/Utils/Output.h"
#include "DeclUnloader.h"
#include "cling/Interpreter/Interpreter.h"
#include "cling/Utils/AST.h"
#include "cling/Utils/ParserStateRAII.h"
#include "clang/AST/ASTContext.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
using namespace clang;
namespace cling {
///\brief Class to help with the custom allocation of clang::Expr
///
struct ExprAlloc {
char fBuffer[sizeof(clang::OpaqueValueExpr)];
};
// pin *tor here so that we can have clang::Parser defined and be able to call
// the dtor on the OwningPtr
LookupHelper::LookupHelper(clang::Parser* P, Interpreter* interp)
: m_Parser(P), m_Interpreter(interp) {
}
LookupHelper::~LookupHelper() {}
static
DeclContext* getCompleteContext(const Decl* scopeDecl,
ASTContext& Context, Sema &S);
static void prepareForParsing(Parser& P,
const Interpreter* Interp,
llvm::StringRef code,
llvm::StringRef bufferName,
LookupHelper::DiagSetting diagOnOff) {
//Parser& P = *m_Parser;
Sema& S = P.getActions();
Preprocessor& PP = P.getPreprocessor();
//
// Tell the diagnostic engine to ignore all diagnostics.
//
P.getActions().getDiagnostics().setSuppressAllDiagnostics(
diagOnOff == LookupHelper::NoDiagnostics);
PP.getDiagnostics().setSuppressAllDiagnostics(
diagOnOff == LookupHelper::NoDiagnostics);
//
// Tell Sema we are not in the process of doing an instantiation.
//
P.getActions().InNonInstantiationSFINAEContext = true;
//
// Tell the parser to not attempt spelling correction.
//
const_cast<LangOptions&>(PP.getLangOpts()).SpellChecking = 0;
//
// Turn on ignoring of the main file eof token.
//
// Note: We need this because token readahead in the following
// routine calls ends up parsing it multiple times.
//
if (!PP.isIncrementalProcessingEnabled()) {
PP.enableIncrementalProcessing();
}
assert(!code.empty()&&"prepareForParsing should only be called when needd");
//
// Create a fake file to parse the type name.
//
std::unique_ptr<llvm::MemoryBuffer>
SB = llvm::MemoryBuffer::getMemBufferCopy(code.str() + "\n",
bufferName.str());
SourceLocation NewLoc = Interp->getNextAvailableLoc();
FileID FID = S.getSourceManager().createFileID(std::move(SB),
SrcMgr::C_User,
/*LoadedID*/0,
/*LoadedOffset*/0, NewLoc);
//
// Switch to the new file the way #include does.
//
// Note: To switch back to the main file we must consume an eof token.
//
PP.EnterSourceFile(FID, /*DirLookup*/0, NewLoc);
PP.Lex(const_cast<Token&>(P.getCurToken()));
}
static const TagDecl* RequireCompleteDeclContext(Sema& S,
Preprocessor& PP,
const TagDecl *tobeCompleted,
LookupHelper::DiagSetting diagOnOff)
{
// getContextAndSpec create the CXXScopeSpec and requires the scope
// to be complete, so this is exactly what we need.
bool OldSuppressAllDiagnostics(PP.getDiagnostics()
.getSuppressAllDiagnostics());
PP.getDiagnostics().setSuppressAllDiagnostics(
diagOnOff == LookupHelper::NoDiagnostics);
ASTContext& Context = S.getASTContext();
DeclContext* complete = getCompleteContext(tobeCompleted,Context,S);
PP.getDiagnostics().setSuppressAllDiagnostics(OldSuppressAllDiagnostics);
if (!complete)
return 0;
if (const TagDecl *result = dyn_cast<TagDecl>(complete))
return result->getDefinition();
return 0;
}
///\brief Look for a tag decl based on its name
///
///\param declName name of the class, enum, uniorn or namespace being
/// looked for
///\param resultDecl pointer that will be updated with the answer
///\param P Parse to use for the search
///\param diagOnOff whether the error diagnostics are printed or not.
///\return returns true if the answer is authoritative or false if a more
/// detailed search is needed (usually this is for class template
/// instances).
///
static bool quickFindDecl(llvm::StringRef declName,
const Decl *& resultDecl,
Parser &P,
LookupHelper::DiagSetting diagOnOff) {
Sema &S = P.getActions();
Preprocessor &PP = P.getPreprocessor();
resultDecl = nullptr;
const clang::DeclContext *sofar = nullptr;
const clang::Decl *next = nullptr;
for (size_t c = 0, last = 0; c < declName.size(); ++c) {
const char current = declName[c];
if (current == '<' || current == '>' ||
current == ' ' || current == '&' ||
current == '*' || current == '[' ||
current == ']') {
// For now we do not know how to deal with
// template instances.
return false;
}
if (current == ':') {
if (c + 2 >= declName.size() || declName[c + 1] != ':') {
// Looks like an invalid name, we won't find anything.
return true;
}
next = utils::Lookup::Named(&S, declName.substr(last, c - last), sofar);
if (next == (void *) -1) {
// Ambiguous result, we need to go through the long path
return false;
} else if (next && next != (void *) -1) {
// Need to handle typedef here too.
const TypedefNameDecl *typedefDecl = dyn_cast<TypedefNameDecl>(next);
if (typedefDecl) {
// We are stripping the typedef, this is technically incorrect,
// as the result (if resultType has been specified) will not be
// an accurate representation of the input string.
// As we strip the typedef we ought to rebuild the nested name
// specifier.
// Since we do not use this path for template handling, this
// is not relevant for ROOT itself ....
ASTContext &Context = S.getASTContext();
QualType T = Context.getTypedefType(typedefDecl);
const TagType *TagTy = T->getAs<TagType>();
if (TagTy) next = TagTy->getDecl();
}
// To use Lookup::Named we need to fit the assertion:
// ((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext()
// || cast<TagDecl>(LookupCtx)->isCompleteDefinition()
// || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
// "Declaration context must already be complete!"),
// function LookupQualifiedName, file SemaLookup.cpp, line 1614.
const clang::TagDecl *tdecl = dyn_cast<TagDecl>(next);
if (tdecl && !(next = tdecl->getDefinition())) {
//fprintf(stderr,"Incomplete (inner) type for %s (part %s).\n",
// declName.str().c_str(),
// declName.substr(last,c-last).str().c_str());
// Incomplete type we will not be able to go on.
// We always require completeness of the scope, if the caller
// want piece-meal instantiation, the calling code will need to
// split the call to findScope.
// if (instantiateTemplate) {
if (dyn_cast<ClassTemplateSpecializationDecl>(tdecl)) {
// Go back to the normal schedule since we need a valid point
// of instantiation:
// Assertion failed: (Loc.isValid() &&
// "point of instantiation must be valid!"),
// function setPointOfInstantiation, file DeclTemplate.h,
// line 1520.
// Which can happen here because the simple name maybe a
// typedef to a template (for example std::string).
return false;
}
next = RequireCompleteDeclContext(S, PP, tdecl, diagOnOff);
// } else {
// return false;
// }
}
sofar = dyn_cast_or_null<DeclContext>(next);
} else {
sofar = 0;
}
if (!sofar) {
// We are looking into something that is not a decl context,
// so we won't find anything.
return true;
}
last = c + 2;
++c; // Consume the second ':'
} else if (c + 1 == declName.size()) {
// End of the line.
next = utils::Lookup::Named(&S, declName.substr(last, c + 1 - last), sofar);
// If there is an ambiguity, we need to go the long route.
if (next == (void *) -1) return false;
if (next) {
resultDecl = next;
}
return true;
}
} // for each characters
// Should be unreacheable.
return false;
}
static QualType findBuiltinType(llvm::StringRef typeName, ASTContext &Context)
{
bool issigned = false;
bool isunsigned = false;
if (typeName.startswith("signed ")) {
issigned = true;
typeName = StringRef(typeName.data()+7, typeName.size()-7);
}
if (!issigned && typeName.startswith("unsigned ")) {
isunsigned = true;
typeName = StringRef(typeName.data()+9, typeName.size()-9);
}
if (typeName.equals("char")) {
if (isunsigned) return Context.UnsignedCharTy;
return Context.SignedCharTy;
}
if (typeName.equals("short")) {
if (isunsigned) return Context.UnsignedShortTy;
return Context.ShortTy;
}
if (typeName.equals("int")) {
if (isunsigned) return Context.UnsignedIntTy;
return Context.IntTy;
}
if (typeName.equals("long")) {
if (isunsigned) return Context.UnsignedLongTy;
return Context.LongTy;
}
if (typeName.equals("long long")) {
if (isunsigned) return Context.LongLongTy;
return Context.UnsignedLongLongTy;
}
if (!issigned && !isunsigned) {
if (typeName.equals("bool")) return Context.BoolTy;
if (typeName.equals("float")) return Context.FloatTy;
if (typeName.equals("double")) return Context.DoubleTy;
if (typeName.equals("long double")) return Context.LongDoubleTy;
if (typeName.equals("wchar_t")) return Context.WCharTy;
if (typeName.equals("char16_t")) return Context.Char16Ty;
if (typeName.equals("char32_t")) return Context.Char32Ty;
}
/* Missing
CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
*/
return QualType();
}
///\brief Look for a tag decl based on its name
///
///\param typeName name of the class, enum, uniorn or namespace being
/// looked for
///\param resultType reference to QualType that will be updated with the answer
///\param P Parse to use for the search
///\param diagOnOff whether the error diagnostics are printed or not.
///\return returns true if the answer is authoritative or false if a more
/// detailed search is needed (usually this is for class template
/// instances).
///
static bool quickFindType(llvm::StringRef typeName,
QualType &resultType,
Parser &P,
LookupHelper::DiagSetting diagOnOff) {
resultType = QualType();
llvm::StringRef quickTypeName = typeName.trim();
bool innerConst = false;
bool outerConst = false;
if (quickTypeName.startswith("const ")) {
// Use this syntax to avoid the redudant tests in substr.
quickTypeName = StringRef(quickTypeName.data()+6,
quickTypeName.size()-6);
innerConst = true;
}
enum PointerType { kPointerType, kLRefType, kRRefType, };
if (quickTypeName.endswith("const")) {
if (quickTypeName.size() < 6) return true;
auto c = quickTypeName[quickTypeName.size()-6];
if (c==' ' || c=='&' || c=='*') {
outerConst = true;
if (c == ' ')
quickTypeName = StringRef(quickTypeName.data(),
quickTypeName.size() - 6);
else quickTypeName = StringRef(quickTypeName.data(),
quickTypeName.size() - 5);
}
}
std::vector<PointerType> ptrref;
for(auto c = quickTypeName.end()-1; c != quickTypeName.begin(); --c) {
if (*c == '*') ptrref.push_back(kPointerType);
else if (*c == '&') {
if (*(c-1)== '&') {
--c;
ptrref.push_back(kRRefType);
} else
ptrref.push_back(kLRefType);
}
else break;
}
if (!ptrref.empty()) quickTypeName = StringRef(quickTypeName.data(),quickTypeName.size()-ptrref.size());
Sema &S = P.getActions();
ASTContext &Context = S.getASTContext();
QualType quickFind = findBuiltinType(quickTypeName, Context);
const Decl *quickDecl = nullptr;
if (quickFind.isNull() &&
quickFindDecl(quickTypeName, quickDecl, P, diagOnOff)) {
// The result of quickFindDecl was definitive, we don't need
// to check any further.
//const TypeDecl *typedecl = dyn_cast<TypeDecl>(quickDecl);
if (quickDecl) {
const TypeDecl *typedecl = dyn_cast<TypeDecl>(quickDecl);
if (typedecl) {
quickFind = Context.getTypeDeclType(typedecl);
} else {
return true;
}
} else {
return true;
}
}
if (!quickFind.isNull()) {
if (innerConst && !quickFind->isReferenceType()) quickFind.addConst();
for(auto t : ptrref) {
switch (t) {
case kPointerType :
quickFind = Context.getPointerType(quickFind);
break;
case kLRefType :
quickFind = Context.getLValueReferenceType(quickFind);
break;
case kRRefType :
quickFind = Context.getRValueReferenceType(quickFind);
break;
}
}
if (outerConst && !quickFind->isReferenceType()) quickFind.addConst();
resultType = quickFind;
return true;
}
return false;
}
QualType LookupHelper::findType(llvm::StringRef typeName,
DiagSetting diagOnOff) const {
//
// Our return value.
//
QualType TheQT;
if (typeName.empty()) return TheQT;
// Could trigger deserialization of decls.
Interpreter::PushTransactionRAII RAII(m_Interpreter);
// Deal with the most common case.
// Going through this custom finder is both much faster
// (6 times faster, 10.6s to 57.5s for 1 000 000 calls) and consumes
// infinite less memory (0B vs 181 B per call for 'Float_t*').
QualType quickFind;
if (quickFindType(typeName,quickFind, *m_Parser, diagOnOff)) {
// The result of quickFindDecl was definitive, we don't need
// to check any further.
return quickFind;
}
// Use P for shortness
Parser& P = *m_Parser;
ParserStateRAII ResetParserState(P, true /*skipToEOF*/);
prepareForParsing(P,m_Interpreter,
typeName, llvm::StringRef("lookup.type.by.name.file"),
diagOnOff);
//
// Try parsing the type name.
//
clang::ParsedAttributes Attrs(P.getAttrFactory());
TypeResult Res(P.ParseTypeName(0,Declarator::TypeNameContext,clang::AS_none,
0,&Attrs));
if (Res.isUsable()) {
// Accept it only if the whole name was parsed.
if (P.NextToken().getKind() == clang::tok::eof) {
TypeSourceInfo* TSI = 0;
TheQT = clang::Sema::GetTypeFromParser(Res.get(), &TSI);
}
}
// if (!quickFind.isNull() && !TheQT.isNull() && TheQT != quickFind) {
// fprintf(stderr,"Different result\n");
// fprintf(stderr,"quickFindType:"); quickFind.dump();
// fprintf(stderr,"TheQT :"); TheQT.dump();
//
// }
return TheQT;
}
const Decl* LookupHelper::findScope(llvm::StringRef className,
DiagSetting diagOnOff,
const Type** resultType /* = 0 */,
bool instantiateTemplate/*=true*/) const {
//
// Some utilities.
//
// Use P for shortness
Parser &P = *m_Parser;
Sema &S = P.getActions();
Preprocessor &PP = P.getPreprocessor();
ASTContext &Context = S.getASTContext();
// The user wants to see the template instantiation, existing or not.
// Here we might not have an active transaction to handle
// the caused instantiation decl.
// Also quickFindDecl could trigger deserialization of decls.
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
// See if we can find it without a buffer and any clang parsing,
// We need to go scope by scope.
{
const Decl *quickResult = nullptr;
if (quickFindDecl(className, quickResult, *m_Parser, diagOnOff)) {
// The result of quickFindDecl was definitive, we don't need
// to check any further.
if (!quickResult) {
return nullptr;
} else {
const TagDecl *tagdecl = dyn_cast<TagDecl>(quickResult);
const TypedefNameDecl *typedefDecl = dyn_cast<TypedefNameDecl>(quickResult);
if (typedefDecl) {
QualType T = Context.getTypedefType(typedefDecl);
const TagType *TagTy = T->getAs<TagType>();
if (TagTy) tagdecl = TagTy->getDecl();
// NOTE: Should we instantiate here? ... maybe ...
if (tagdecl && resultType) *resultType = T.getTypePtr();
} else if (tagdecl && resultType) {
*resultType = tagdecl->getTypeForDecl();
}
// fprintf(stderr,"Short cut taken for %s.\n",className.str().c_str());
if (tagdecl) {
const TagDecl *defdecl = tagdecl->getDefinition();
if (!defdecl || !defdecl->isCompleteDefinition()) {
// fprintf(stderr,"Incomplete type for %s.\n",className.str().c_str());
if (instantiateTemplate) {
if (dyn_cast<ClassTemplateSpecializationDecl>(tagdecl)) {
// Go back to the normal schedule since we need a valid point
// of instantiation:
// Assertion failed: (Loc.isValid() &&
// "point of instantiation must be valid!"),
// function setPointOfInstantiation, file DeclTemplate.h,
// line 1520.
// Which can happen here because the simple name maybe a
// typedef to a template (for example std::string).
// break;
// the next code executed must be the TransactionRAII below
} else
return RequireCompleteDeclContext(S, PP, tagdecl, diagOnOff);
} else {
return nullptr;
}
} else {
return defdecl; // now pointing to the definition.
}
} else if (isa<NamespaceDecl>(quickResult)) {
return quickResult->getCanonicalDecl();
} else if (auto alias = dyn_cast<NamespaceAliasDecl>(quickResult)) {
return alias->getNamespace()->getCanonicalDecl();
} else {
//fprintf(stderr,"Not a scope decl for %s.\n",className.str().c_str());
// The name exist and does not point to a 'scope' decl.
return nullptr;
}
}
}
}
ParserStateRAII ResetParserState(P, true /*skipToEOF*/);
prepareForParsing(P,m_Interpreter,
className.str() + "::",
llvm::StringRef("lookup.class.by.name.file"), diagOnOff);
//
// Our return values.
//
const Type* TheType = 0;
const Type** setResultType = &TheType;
if (resultType)
setResultType = resultType;
*setResultType = 0;
//
// Prevent failing on an assert in TryAnnotateCXXScopeToken.
//
if (!P.getCurToken().is(clang::tok::identifier)
&& !P.getCurToken().is(clang::tok::coloncolon)
&& !(P.getCurToken().is(clang::tok::annot_template_id)
&& P.NextToken().is(clang::tok::coloncolon))
&& !P.getCurToken().is(clang::tok::kw_decltype)) {
// error path
return 0;
}
//
// Try parsing the name as a nested-name-specifier.
//
if (P.TryAnnotateCXXScopeToken(false)) {
// error path
return 0;
}
Decl* TheDecl = 0;
if (P.getCurToken().getKind() == tok::annot_cxxscope) {
CXXScopeSpec SS;
S.RestoreNestedNameSpecifierAnnotation(P.getCurToken().getAnnotationValue(),
P.getCurToken().getAnnotationRange(),
SS);
if (SS.isValid()) {
NestedNameSpecifier* NNS = SS.getScopeRep();
NestedNameSpecifier::SpecifierKind Kind = NNS->getKind();
// Only accept the parse if we consumed all of the name.
if (P.NextToken().getKind() == clang::tok::eof) {
//
// Be careful, not all nested name specifiers refer to classes
// and namespaces, and those are the only things we want.
//
switch (Kind) {
case NestedNameSpecifier::Identifier: {
// Dependent type.
// We do not accept these.
}
break;
case NestedNameSpecifier::Namespace: {
// Namespace.
NamespaceDecl* NSD = NNS->getAsNamespace();
NSD = NSD->getCanonicalDecl();
TheDecl = NSD;
}
break;
case NestedNameSpecifier::NamespaceAlias: {
// Namespace alias.
// Note: In the future, should we return the alias instead?
NamespaceAliasDecl* NSAD = NNS->getAsNamespaceAlias();
NamespaceDecl* NSD = NSAD->getNamespace();
NSD = NSD->getCanonicalDecl();
TheDecl = NSD;
}
break;
case NestedNameSpecifier::TypeSpec:
// Type name.
// Intentional fall-though
case NestedNameSpecifier::TypeSpecWithTemplate: {
// Type name qualified with "template".
// Note: Do we need to check for a dependent type here?
NestedNameSpecifier *prefix = NNS->getPrefix();
if (prefix) {
QualType temp
= Context.getElaboratedType(ETK_None,prefix,
QualType(NNS->getAsType(),0));
*setResultType = temp.getTypePtr();
} else {
*setResultType = NNS->getAsType();
}
const TagType* TagTy = (*setResultType)->getAs<TagType>();
if (TagTy) {
// It is a class, struct, or union.
TagDecl* TD = TagTy->getDecl();
if (TD) {
TheDecl = TD->getDefinition();
// NOTE: if (TheDecl) ... check for theDecl->isInvalidDecl()
if (TD && TD->isInvalidDecl()) {
printf("Warning: FindScope got an invalid tag decl\n");
}
if (TheDecl && TheDecl->isInvalidDecl()) {
printf("ERROR: FindScope about to return an invalid decl\n");
}
if (!TheDecl && instantiateTemplate) {
// Make sure it is not just forward declared, and
// instantiate any templates.
DeclContext *ctxt = TD;
if (!S.RequireCompleteDeclContext(SS, ctxt)) {
// Success, type is complete, instantiations have
// been done.
TheDecl = TD->getDefinition();
if (TheDecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, TheDecl);
*setResultType = nullptr;
return 0;
}
} else {
// NOTE: We cannot instantiate the scope: not a valid decl.
// Need to rollback transaction.
UnloadDecl(&S, TD);
*setResultType = nullptr;
return 0;
}
}
}
}
}
break;
case clang::NestedNameSpecifier::Global: {
// Name was just "::" and nothing more.
TheDecl = Context.getTranslationUnitDecl();
}
break;
case NestedNameSpecifier::Super:
// Microsoft's __super::
return 0;
}
return TheDecl;
}
}
}
//
// Cleanup after failed parse as a nested-name-specifier.
//
P.SkipUntil(clang::tok::eof);
// Doesn't reset the diagnostic mappings
S.getDiagnostics().Reset(/*soft=*/true);
//
// Setup to reparse as a type.
//
std::unique_ptr<llvm::MemoryBuffer>
SB(llvm::MemoryBuffer::getMemBufferCopy(className.str() + "\n",
"lookup.type.file"));
SourceLocation NewLoc = m_Interpreter->getNextAvailableLoc();
FileID FID = S.getSourceManager().createFileID(std::move(SB),
SrcMgr::C_User,
/*LoadedID*/0,
/*LoadedOffset*/0, NewLoc);
PP.EnterSourceFile(FID, /*DirLookup*/0, NewLoc);
PP.Lex(const_cast<clang::Token&>(P.getCurToken()));
//
// Now try to parse the name as a type.
//
if (P.TryAnnotateTypeOrScopeToken()) {
// error path
return 0;
}
if (P.getCurToken().getKind() == tok::annot_typename) {
ParsedType T = P.getTypeAnnotation(const_cast<Token&>(P.getCurToken()));
// Only accept the parse if we consumed all of the name.
if (P.NextToken().getKind() == clang::tok::eof)
if (!T.get().isNull()) {
TypeSourceInfo *TSI = 0;
clang::QualType QT = clang::Sema::GetTypeFromParser(T, &TSI);
if (const TagType* TT = QT->getAs<TagType>()) {
TheDecl = TT->getDecl()->getDefinition();
*setResultType = QT.getTypePtr();
}
}
}
return TheDecl;
}
const ClassTemplateDecl* LookupHelper::findClassTemplate(llvm::StringRef Name,
DiagSetting diagOnOff) const {
//
// Find a class template decl given its name.
//
if (Name.empty()) return 0;
// Humm ... this seems to do the trick ... or does it? or is there a better way?
// Use P for shortness
Parser& P = *m_Parser;
Sema& S = P.getActions();
ASTContext& Context = S.getASTContext();
ParserStateRAII ResetParserState(P, true /*skipToEOF*/);
prepareForParsing(P,m_Interpreter,
Name.str(),
llvm::StringRef("lookup.class.by.name.file"), diagOnOff);
//
// Prevent failing on an assert in TryAnnotateCXXScopeToken.
//
if (!P.getCurToken().is(clang::tok::identifier)
&& !P.getCurToken().is(clang::tok::coloncolon)
&& !(P.getCurToken().is(clang::tok::annot_template_id)
&& P.NextToken().is(clang::tok::coloncolon))
&& !P.getCurToken().is(clang::tok::kw_decltype)) {
// error path
return 0;
}
//
// Now try to parse the name as a type.
//
if (P.TryAnnotateTypeOrScopeToken()) {
// error path
return 0;
}
DeclContext *where = 0;
if (P.getCurToken().getKind() == tok::annot_cxxscope) {
CXXScopeSpec SS;
S.RestoreNestedNameSpecifierAnnotation(P.getCurToken().getAnnotationValue(),
P.getCurToken().getAnnotationRange(),
SS);
if (SS.isValid()) {
P.ConsumeToken();
if (!P.getCurToken().is(clang::tok::identifier)) {
return 0;
}
NestedNameSpecifier *nested = SS.getScopeRep();
if (!nested) return 0;
switch (nested->getKind()) {
case NestedNameSpecifier::Global:
where = Context.getTranslationUnitDecl();
break;
case NestedNameSpecifier::Namespace:
where = nested->getAsNamespace();
break;
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Identifier:
return 0;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
{
const Type *ntype = nested->getAsType();
where = ntype->getAsCXXRecordDecl();
if (!where) return 0;
break;
}
case NestedNameSpecifier::Super:
// Microsoft's __super::
return 0;
};
}
} else if (P.getCurToken().is(clang::tok::annot_typename)) {
// A deduced template?
// P.getTypeAnnotation() takes a non-const Token& until clang r306291.
//auto ParsedTy = P.getTypeAnnotation(P.getCurToken());
auto ParsedTy
= ParsedType::getFromOpaquePtr(P.getCurToken().getAnnotationValue());
if (ParsedTy) {
QualType QT = ParsedTy.get();
const Type* TyPtr = QT.getTypePtr();
if (const auto *LocInfoTy = dyn_cast<LocInfoType>(TyPtr))
TyPtr = LocInfoTy->getType().getTypePtr();
TyPtr = TyPtr->getUnqualifiedDesugaredType();
if (const auto *DTST
= dyn_cast<DeducedTemplateSpecializationType>(TyPtr)) {
if (auto TD = DTST->getTemplateName().getAsTemplateDecl()) {
if (auto CTD = dyn_cast<ClassTemplateDecl>(TD))
return CTD;
}
}
}
} else if (P.getCurToken().is(clang::tok::identifier)) {
// We have a single indentifier, let's look for it in the
// the global scope.
where = Context.getTranslationUnitDecl();
}
if (where) {
// Great we now have a scope and something to search for,let's go ahead.
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
DeclContext::lookup_result R
= where->lookup(P.getCurToken().getIdentifierInfo());
for (DeclContext::lookup_iterator I = R.begin(), E = R.end();
I != E; ++I) {
ClassTemplateDecl *theDecl = dyn_cast<ClassTemplateDecl>(*I);
if (theDecl)
return theDecl;
}
}
return 0;
}
const ValueDecl* LookupHelper::findDataMember(const clang::Decl* scopeDecl,
llvm::StringRef dataName,
DiagSetting diagOnOff) const {
// Lookup a data member based on its Decl(Context), name.
Parser& P = *m_Parser;
Sema& S = P.getActions();
Preprocessor& PP = S.getPreprocessor();
IdentifierInfo *dataII = &PP.getIdentifierTable().get(dataName);
DeclarationName decl_name( dataII );
const clang::DeclContext *dc = llvm::cast<clang::DeclContext>(scopeDecl);
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
DeclContext::lookup_result lookup = const_cast<clang::DeclContext*>(dc)->lookup(decl_name);
for (DeclContext::lookup_iterator I = lookup.begin(), E = lookup.end();
I != E; ++I) {
const ValueDecl *result = dyn_cast<ValueDecl>(*I);
if (result && !isa<FunctionDecl>(result))
return result;
}
return 0;
}
static
DeclContext* getContextAndSpec(CXXScopeSpec &SS,
const Decl* scopeDecl,
ASTContext& Context, Sema &S) {
//
// Some validity checks on the passed decl.
//
DeclContext* foundDC = dyn_cast<DeclContext>(const_cast<Decl*>(scopeDecl));
if (foundDC->isDependentContext()) {
// Passed decl is a template, we cannot use it.
return 0;
}
if (scopeDecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, const_cast<Decl*>(scopeDecl));
return 0;
}
//
// Convert the passed decl into a nested name specifier,
// a scope spec, and a decl context.
//
NestedNameSpecifier* classNNS = 0;
if (const NamespaceDecl* NSD = dyn_cast<NamespaceDecl>(scopeDecl)) {
classNNS = NestedNameSpecifier::Create(Context, 0,
const_cast<NamespaceDecl*>(NSD));
SS.MakeTrivial(Context, classNNS, scopeDecl->getSourceRange());
return foundDC;
}
else if (const RecordDecl* RD = dyn_cast<RecordDecl>(scopeDecl)) {
const Type* T = Context.getRecordType(RD).getTypePtr();
classNNS = NestedNameSpecifier::Create(Context, 0, false, T);
// We pass a 'random' but valid source range.
SS.MakeTrivial(Context, classNNS, scopeDecl->getSourceRange());
if (S.RequireCompleteDeclContext(SS, foundDC)) {
// Forward decl or instantiation failure, we cannot use it.
return 0;
}
return foundDC;
}
else if (llvm::isa<TranslationUnitDecl>(scopeDecl)) {
// We pass a 'random' but valid source range.
SS.MakeGlobal(Context,scopeDecl->getLocation());
return foundDC;
}
// Not a namespace or class, we cannot use it.
return 0;
}
static
DeclContext* getCompleteContext(const Decl* scopeDecl,
ASTContext& Context, Sema &S) {
//
// Some validity checks on the passed decl.
//
DeclContext* foundDC = dyn_cast<DeclContext>(const_cast<Decl*>(scopeDecl));
if (foundDC->isDependentContext()) {
// Passed decl is a template, we cannot use it.
return 0;
}
if (scopeDecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, const_cast<Decl*>(scopeDecl));
return 0;
}
//
// Convert the passed decl into a nested name specifier,
// a scope spec, and a decl context.
//
NestedNameSpecifier* classNNS = 0;
if (isa<NamespaceDecl>(scopeDecl)) {
return foundDC;
}
else if (const RecordDecl* RD = dyn_cast<RecordDecl>(scopeDecl)) {
if (RD->getDefinition()) {
// We are already complete, we are done.
return foundDC;
} else {
//const Type* T = Context.getRecordType(RD).getTypePtr();
const Type* T = Context.getTypeDeclType(RD).getTypePtr();
classNNS = NestedNameSpecifier::Create(Context, 0, false, T);
// We pass a 'random' but valid source range.
CXXScopeSpec SS;
SS.MakeTrivial(Context, classNNS, scopeDecl->getSourceRange());
if (S.RequireCompleteDeclContext(SS, foundDC)) {
// Forward decl or instantiation failure, we cannot use it.
return 0;
}
}
}
else if (llvm::isa<TranslationUnitDecl>(scopeDecl)) {
return dyn_cast<DeclContext>(const_cast<Decl*>(scopeDecl));
}
else {
// Not a namespace or class, we cannot use it.
return 0;
}
return foundDC;
}
static bool FuncArgTypesMatch(const ASTContext& C,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
const FunctionProtoType* FPT) {
// FIXME: What if FTP->arg_size() != GivenArgTypes.size()?
FunctionProtoType::param_type_iterator ATI = FPT->param_type_begin();
FunctionProtoType::param_type_iterator E = FPT->param_type_end();
llvm::SmallVectorImpl<Expr*>::const_iterator GAI = GivenArgs.begin();
for (; ATI && (ATI != E); ++ATI, ++GAI) {
if ((*GAI)->isLValue()) {
// If the user specified a reference we may have transform it into
// an LValue non reference (See getExprProto) to have it in a form
// useful for the lookup. So we are a bit sloppy per se here (maybe)
const ReferenceType *RefType = (*ATI)->getAs<ReferenceType>();
if (RefType) {
if (!C.hasSameType(RefType->getPointeeType(),(*GAI)->getType()))
return false;
} else if (!C.hasSameType(*ATI,(*GAI)->getType())) {
return false;
}
} else if (!C.hasSameType(*ATI, (*GAI)->getType() )) {
return false;
}
}
return true;
}
static bool IsOverload(const ASTContext& C,
const TemplateArgumentListInfo* FuncTemplateArgs,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
const FunctionDecl* FD) {
//FunctionTemplateDecl* FTD = FD->getDescribedFunctionTemplate();
QualType FQT = C.getCanonicalType(FD->getType());
if (llvm::isa<FunctionNoProtoType>(FQT.getTypePtr())) {
// A K&R-style function (no prototype), is considered to match the args.
return false;
}
const FunctionProtoType* FPT = llvm::cast<FunctionProtoType>(FQT);
if ((GivenArgs.size() != FPT->getNumParams()) ||
//(GivenArgsAreEllipsis != FPT->isVariadic()) ||
!FuncArgTypesMatch(C, GivenArgs, FPT)) {
return true;
}
return false;
}
static
const FunctionDecl* overloadFunctionSelector(DeclContext* foundDC,
bool objectIsConst,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
LookupResult &Result,
DeclarationNameInfo &FuncNameInfo,
const TemplateArgumentListInfo* FuncTemplateArgs,
ASTContext& Context, Parser &P, Sema &S,
LookupHelper::DiagSetting diagOnOff) {
//
// Our return value.
//
FunctionDecl* TheDecl = 0;
//
// If we are looking up a member function, construct
// the implicit object argument.
//
// Note: For now this is always a non-CV qualified lvalue.
//
QualType ClassType;
Expr::Classification ObjExprClassification;
if (CXXRecordDecl* CRD = dyn_cast<CXXRecordDecl>(foundDC)) {
if (objectIsConst)
ClassType = Context.getTypeDeclType(CRD).getCanonicalType().withConst();
else ClassType = Context.getTypeDeclType(CRD).getCanonicalType();
OpaqueValueExpr ObjExpr(SourceLocation(),
ClassType, VK_LValue);
ObjExprClassification = ObjExpr.Classify(Context);
}
//
// Construct the overload candidate set.
//
OverloadCandidateSet Candidates(FuncNameInfo.getLoc(),
OverloadCandidateSet::CSK_Normal);
for (LookupResult::iterator I = Result.begin(), E = Result.end();
I != E; ++I) {
NamedDecl* ND = *I;
if (FunctionDecl* FD = dyn_cast<FunctionDecl>(ND)) {
if (isa<CXXMethodDecl>(FD) &&
!cast<CXXMethodDecl>(FD)->isStatic() &&
!isa<CXXConstructorDecl>(FD)) {
// Class method, not static, not a constructor, so has
// an implicit object argument.
CXXMethodDecl* MD = cast<CXXMethodDecl>(FD);
if (FuncTemplateArgs && (FuncTemplateArgs->size() != 0)) {
// Explicit template args were given, cannot use a plain func.
continue;
}
S.AddMethodCandidate(MD, I.getPair(), MD->getParent(),
/*ObjectType=*/ClassType,
/*ObjectClassification=*/ObjExprClassification,
llvm::makeArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
Candidates);
}
else {
const FunctionProtoType* Proto = dyn_cast<FunctionProtoType>(
FD->getType()->getAs<clang::FunctionType>());
if (!Proto) {
// Function has no prototype, cannot do overloading.
continue;
}
if (FuncTemplateArgs && (FuncTemplateArgs->size() != 0)) {
// Explicit template args were given, cannot use a plain func.
continue;
}
S.AddOverloadCandidate(FD, I.getPair(),
llvm::makeArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
Candidates);
}
}
else if (FunctionTemplateDecl* FTD =
dyn_cast<FunctionTemplateDecl>(ND)) {
if (isa<CXXMethodDecl>(FTD->getTemplatedDecl()) &&
!cast<CXXMethodDecl>(FTD->getTemplatedDecl())->isStatic() &&
!isa<CXXConstructorDecl>(FTD->getTemplatedDecl())) {
// Class method template, not static, not a constructor, so has
// an implicit object argument.
S.AddMethodTemplateCandidate(FTD, I.getPair(),
cast<CXXRecordDecl>(FTD->getDeclContext()),
const_cast<TemplateArgumentListInfo*>(FuncTemplateArgs),
/*ObjectType=*/ClassType,
/*ObjectClassification=*/ObjExprClassification,
llvm::makeArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
Candidates);
}
else {
S.AddTemplateOverloadCandidate(FTD, I.getPair(),
const_cast<TemplateArgumentListInfo*>(FuncTemplateArgs),
llvm::makeArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
Candidates, /*SuppressUserConversions=*/false);
}
}
else {
// Is there any other cases?
}
}
//
// Find the best viable function from the set.
//
{
OverloadCandidateSet::iterator Best;
OverloadingResult OR = Candidates.BestViableFunction(S,
Result.getNameLoc(),
Best);
if (OR == OR_Success) {
TheDecl = Best->Function;
// We prefer to get the canonical decl for consistency and ease
// of comparison.
TheDecl = TheDecl->getCanonicalDecl();
if (TheDecl->isTemplateInstantiation() && !TheDecl->isDefined()) {
//
// Tell the diagnostic engine to ignore all diagnostics.
//
bool OldSuppressAllDiagnostics
= S.getDiagnostics().getSuppressAllDiagnostics();
S.getDiagnostics().setSuppressAllDiagnostics(
diagOnOff == LookupHelper::NoDiagnostics);
S.InstantiateFunctionDefinition(SourceLocation(), TheDecl,
true /*recursive instantiation*/);
S.getDiagnostics().setSuppressAllDiagnostics(OldSuppressAllDiagnostics);
}
if (TheDecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, const_cast<FunctionDecl*>(TheDecl));
return 0;
}
}
}
return TheDecl;
}
static
const FunctionDecl* matchFunctionSelector(DeclContext* foundDC,
bool objectIsConst,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
LookupResult &Result,
DeclarationNameInfo &FuncNameInfo,
const TemplateArgumentListInfo* FuncTemplateArgs,
ASTContext& Context, Parser &P, Sema &S,
LookupHelper::DiagSetting diagOnOff) {
//
// Our return value.
//
const FunctionDecl* TheDecl = overloadFunctionSelector(foundDC, objectIsConst,
GivenArgs, Result,
FuncNameInfo,
FuncTemplateArgs,
Context,P,S,
diagOnOff);
if (TheDecl) {
if ( IsOverload(Context, FuncTemplateArgs, GivenArgs, TheDecl) ) {
return 0;
} else {
// Double check const-ness.
if (const clang::CXXMethodDecl *md =
llvm::dyn_cast<clang::CXXMethodDecl>(TheDecl)) {
if (md->getTypeQualifiers() & clang::Qualifiers::Const) {
if (!objectIsConst) {
TheDecl = 0;
}
} else {
if (objectIsConst) {
TheDecl = 0;
}
}
}
}
}
return TheDecl;
}
static bool ParseWithShortcuts(DeclContext* foundDC, ASTContext& Context,
llvm::StringRef funcName,
Interpreter* Interp,
UnqualifiedId &FuncId,
LookupHelper::DiagSetting diagOnOff) {
// Use a very simple parse step that dectect whether the name search (which
// is already supposed to be an unqualified name) is a simple identifier,
// a constructor name or a destructor name. In those 3 cases, we can easily
// create the UnqualifiedId object that would have resulted from the 'real'
// parse. By using this direct creation of the UnqualifiedId, we avoid the
// 'permanent' cost associated with creating a memory buffer and the
// associated FileID.
// If the name is a template or an operator, we revert to the regular parse
// (and its associated permanent cost).
// In the operator case, the additional work is in the case of a conversion
// operator where we would need to 'quickly' parse the type itself (if want
// to avoid the permanent cost).
// In the case with the template the problem gets a bit worse as we need to
// handle potentially arbitrary spaces and ordering
// ('const int' vs 'int const', etc.)
Parser &P = const_cast<Parser&>(Interp->getParser());
Sema &S = Interp->getSema();
if (funcName.size() == 0) return false;
Preprocessor& PP = S.getPreprocessor();
// See if we can avoid creating the buffer, for now we just look for
// simple indentifier, constructor and destructor.
if (funcName.size() > 8 && strncmp(funcName.data(),"operator",8) == 0
&&( funcName[8] == ' ' || funcName[8] == '*'
|| funcName[8] == '%' || funcName[8] == '&'
|| funcName[8] == '|' || funcName[8] == '/'
|| funcName[8] == '+' || funcName[8] == '-'
|| funcName[8] == '(' || funcName[8] == '['
|| funcName[8] == '=' || funcName[8] == '!'
|| funcName[8] == '<' || funcName[8] == '>'
|| funcName[8] == '-' || funcName[8] == '^')
) {
// We have called:
// setOperatorFunctionId (SourceLocation OperatorLoc,
// OverloadedOperatorKind Op,
// SourceLocation SymbolLocations[3])
// or
// setConversionFunctionId (SourceLocation OperatorLoc,
// ParsedType Ty, SourceLocation EndLoc)
} else if (funcName.find('<') != StringRef::npos) {
// We might have a template name,
// setTemplateId (TemplateIdAnnotation *TemplateId)
// or
// setConstructorTemplateId (TemplateIdAnnotation *TemplateId)
} else if (funcName[0] == '~') {
// Destructor.
// Let's see if this is our contructor.
TagDecl *decl = llvm::dyn_cast<TagDecl>(foundDC);
if (decl) {
// We have a class or struct or something.
if (funcName.substr(1).equals(decl->getName())) {
ParsedType PT;
QualType QT( decl->getTypeForDecl(), 0 );
PT.set(QT);
FuncId.setDestructorName(SourceLocation(),PT,SourceLocation());
return true;
}
}
// So it starts with ~ but is not followed by the name of
// a class or at least not the one that is the declaration context,
// let's try a real parsing, to see if we can do better.
} else {
// We either have a simple type or a constructor name
TagDecl *decl = llvm::dyn_cast<TagDecl>(foundDC);
if (decl) {
// We have a class or struct or something.
if (funcName.equals(decl->getName())) {
ParsedType PT;
QualType QT( decl->getTypeForDecl(), 0 );
PT.set(QT);
FuncId.setConstructorName(PT,SourceLocation(),SourceLocation());
} else {
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get(funcName);
FuncId.setIdentifier (TypeInfoII, SourceLocation() );
}
return true;
} else {
// We have a namespace like context, it can't be a constructor
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get(funcName);
FuncId.setIdentifier (TypeInfoII, SourceLocation() );
return true;
}
}
//
// Setup to reparse as a type.
//
//
// Create a fake file to parse the function name.
//
// FIXME:, TODO: Cleanup that complete mess.
{
PP.getDiagnostics().setSuppressAllDiagnostics(diagOnOff ==
LookupHelper::NoDiagnostics);
std::unique_ptr<llvm::MemoryBuffer>
SB(llvm::MemoryBuffer::getMemBufferCopy(funcName.str() + "\n",
"lookup.funcname.file"));
SourceLocation NewLoc = Interp->getNextAvailableLoc();
FileID FID = S.getSourceManager().createFileID(std::move(SB),
SrcMgr::C_User,
/*LoadedID*/0,
/*LoadedOffset*/0, NewLoc);
PP.EnterSourceFile(FID, /*DirLookup*/0, NewLoc);
PP.Lex(const_cast<clang::Token&>(P.getCurToken()));
}
//
// Parse the function name.
//
SourceLocation TemplateKWLoc;
CXXScopeSpec SS;
{
Decl *decl = llvm::dyn_cast<Decl>(foundDC);
getContextAndSpec(SS,decl,Context,S);
}
if (P.ParseUnqualifiedId(SS, /*EnteringContext*/false,
/*AllowDestructorName*/true,
/*AllowConstructorName*/true,
/*AllowDeductionGuide*/ false,
ParsedType(), TemplateKWLoc,
FuncId)) {
// Failed parse, cleanup.
return false;
}
return true;
}
template <typename T>
T findFunction(DeclContext* foundDC,
llvm::StringRef funcName,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
bool objectIsConst,
ASTContext& Context, Interpreter* Interp,
T (*functionSelector)(DeclContext* foundDC,
bool objectIsConst,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
LookupResult &Result,
DeclarationNameInfo &FuncNameInfo,
const TemplateArgumentListInfo* FuncTemplateArgs,
ASTContext& Context, Parser &P, Sema &S,
LookupHelper::DiagSetting diagOnOff),
LookupHelper::DiagSetting diagOnOff
) {
// Given the correctly types arguments, etc. find the function itself.
//
// Make the class we are looking up the function
// in the current scope to please the constructor
// name lookup. We do not need to do this otherwise,
// and may be able to remove it in the future if
// the way constructors are looked up changes.
//
Parser &P = const_cast<Parser&>(Interp->getParser());
Sema &S = Interp->getSema();
DeclContext* OldEntity = P.getCurScope()->getEntity();
DeclContext* TUCtx = Context.getTranslationUnitDecl();
P.getCurScope()->setEntity(TUCtx);
P.EnterScope(Scope::DeclScope);
P.getCurScope()->setEntity(foundDC);
P.EnterScope(Scope::DeclScope);
Sema::ContextRAII SemaContext(S, foundDC);
S.EnterDeclaratorContext(P.getCurScope(), foundDC);
UnqualifiedId FuncId;
ParserStateRAII ResetParserState(P, true /*skipToEOF*/);
if (!ParseWithShortcuts(foundDC, Context, funcName, Interp,
FuncId, diagOnOff)) {
// Failed parse, cleanup.
// Destroy the scope we created first, and
// restore the original.
S.ExitDeclaratorContext(P.getCurScope());
P.ExitScope();
P.ExitScope();
P.getCurScope()->setEntity(OldEntity);
// Then exit.
return 0;
}
//
// Get any template args in the function name.
//
TemplateArgumentListInfo FuncTemplateArgsBuffer;
DeclarationNameInfo FuncNameInfo;
const TemplateArgumentListInfo* FuncTemplateArgs;
S.DecomposeUnqualifiedId(FuncId, FuncTemplateArgsBuffer, FuncNameInfo,
FuncTemplateArgs);
//
// Lookup the function name in the given class now.
//
DeclarationName FuncName = FuncNameInfo.getName();
SourceLocation FuncNameLoc = FuncNameInfo.getLoc();
LookupResult Result(S, FuncName, FuncNameLoc, Sema::LookupMemberName,
Sema::NotForRedeclaration);
Result.suppressDiagnostics();
if (!S.LookupQualifiedName(Result, foundDC)) {
// Lookup failed.
// Destroy the scope we created first, and
// restore the original.
S.ExitDeclaratorContext(P.getCurScope());
P.ExitScope();
P.ExitScope();
P.getCurScope()->setEntity(OldEntity);
// Then cleanup and exit.
return 0;
}
//
// Destroy the scope we created, and restore the original.
//
S.ExitDeclaratorContext(P.getCurScope());
P.ExitScope();
P.ExitScope();
P.getCurScope()->setEntity(OldEntity);
//
// Check for lookup failure.
//
if (Result.getResultKind() != LookupResult::Found &&
Result.getResultKind() != LookupResult::FoundOverloaded) {
// Lookup failed.
return 0;
}
return functionSelector(foundDC,objectIsConst,GivenArgs,
Result,
FuncNameInfo,
FuncTemplateArgs,
Context, P, S, diagOnOff);
}
template <typename DigestArgsInput, typename returnType>
returnType execFindFunction(Parser &P,
Interpreter* Interp,
const clang::Decl* scopeDecl,
llvm::StringRef funcName,
const typename DigestArgsInput::ArgsInput &funcArgs,
bool objectIsConst,
returnType (*functionSelector)(DeclContext* foundDC,
bool objectIsConst,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
LookupResult &Result,
DeclarationNameInfo &FuncNameInfo,
const TemplateArgumentListInfo* FuncTemplateArgs,
ASTContext& Context, Parser &P, Sema &S,
LookupHelper::DiagSetting diagOnOff),
LookupHelper::DiagSetting diagOnOff
)
{
assert(scopeDecl && "Decl cannot be null");
//
// Some utilities.
//
Sema& S = P.getActions();
ASTContext& Context = S.getASTContext();
//
// Convert the passed decl into a nested name specifier,
// a scope spec, and a decl context.
//
// Do this 'early' to save on the expansive parser setup,
// in case of failure.
//
DeclContext* foundDC = getCompleteContext(scopeDecl,Context,S);
if (!foundDC) return 0;
DigestArgsInput inputEval;
llvm::SmallVector<Expr*, 4> GivenArgs;
if (!inputEval(GivenArgs,funcArgs,diagOnOff,P,Interp)) return 0;
Interpreter::PushTransactionRAII pushedT(Interp);
return findFunction(foundDC,
funcName, GivenArgs, objectIsConst,
Context, Interp, functionSelector,
diagOnOff);
}
struct NoParse {
typedef const char* ArgsInput;
bool operator()(llvm::SmallVectorImpl<Expr*> & /* GivenArgs */,
const ArgsInput &/* funcArgs */,
LookupHelper::DiagSetting /* diagOnOff */,
Parser & /* P */, const Interpreter* /* Interp */)
{
return true;
}
};
struct ExprFromTypes {
typedef llvm::SmallVectorImpl<QualType> ArgsInput;
llvm::SmallVector<ExprAlloc, 4> ExprMemory;
bool operator()(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const ArgsInput &GivenTypes,
LookupHelper::DiagSetting /* diagOnOff */,
Parser & /* P */, const Interpreter* /* Interp */) {
if (GivenTypes.empty()) return true;
else return getExprProto(GivenArgs,GivenTypes);
}
bool getExprProto(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const llvm::SmallVectorImpl<QualType> &GivenTypes) {
//
// Create the array of Expr from the array of Types.
//
typedef llvm::SmallVectorImpl<QualType>::const_iterator iterator;
for(iterator iter = GivenTypes.begin(), end = GivenTypes.end();
iter != end;
++iter) {
const clang::QualType QT = iter->getCanonicalType();
{
ExprValueKind VK = VK_RValue;
if (QT->getAs<LValueReferenceType>()) {
VK = VK_LValue;
}
clang::QualType NonRefQT(QT.getNonReferenceType());
unsigned int slot = ExprMemory.size();
ExprMemory.resize(slot+1);
Expr* val = new (&ExprMemory[slot]) OpaqueValueExpr(SourceLocation(),
NonRefQT, VK);
GivenArgs.push_back(val);
}
}
return true;
}
};
struct ParseProto {
typedef llvm::StringRef ArgsInput;
llvm::SmallVector<ExprAlloc, 4> ExprMemory;
bool operator()(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const ArgsInput &funcProto,
LookupHelper::DiagSetting diagOnOff,
Parser &P, const Interpreter* Interp) {
if (funcProto.empty()) return true;
else return Parse(GivenArgs,funcProto,diagOnOff,P,Interp);
}
bool Parse(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const ArgsInput &funcProto,
LookupHelper::DiagSetting diagOnOff,
Parser &P, const Interpreter* Interp) {
//
// Parse the prototype now.
//
ParserStateRAII ResetParserState(P, true /*skipToEOF*/);
prepareForParsing(P,Interp,
funcProto, llvm::StringRef("func.prototype.file"), diagOnOff);
unsigned int nargs = 0;
while (P.getCurToken().isNot(tok::eof)) {
TypeResult Res(P.ParseTypeName());
if (!Res.isUsable()) {
// Bad parse, done.
return false;
}
TypeSourceInfo *TSI = 0;
clang::QualType QT = clang::Sema::GetTypeFromParser(Res.get(), &TSI);
QT = QT.getCanonicalType();
{
ExprValueKind VK = VK_RValue;
if (QT->getAs<LValueReferenceType>()) {
VK = VK_LValue;
}
clang::QualType NonRefQT(QT.getNonReferenceType());
ExprMemory.resize(++nargs);
new (&ExprMemory[nargs-1]) OpaqueValueExpr(TSI->getTypeLoc().getLocStart(),
NonRefQT, VK);
}
// Type names should be comma separated.
// FIXME: Here if we have type followed by name won't work. Eg int f, ...
if (!P.getCurToken().is(clang::tok::comma)) {
break;
}
// Eat the comma.
P.ConsumeToken();
}
for(unsigned int slot = 0; slot < nargs; ++slot) {
Expr* val = (OpaqueValueExpr*)( &ExprMemory[slot] );
GivenArgs.push_back(val);
}
if (P.getCurToken().isNot(tok::eof)) {
// We did not consume all of the prototype, bad parse.
return false;
}
//
// Cleanup after prototype parse.
//
P.SkipUntil(clang::tok::eof);
// Doesn't reset the diagnostic mappings
Sema& S = P.getActions();
S.getDiagnostics().Reset(/*soft=*/true);
return true;
}
};
static
const FunctionTemplateDecl* findFunctionTemplateSelector(DeclContext* ,
bool /* objectIsConst */,
const llvm::SmallVectorImpl<Expr*> &,
LookupResult &Result,
DeclarationNameInfo &,
const TemplateArgumentListInfo* ExplicitTemplateArgs,
ASTContext&, Parser &,
Sema &S,
LookupHelper::DiagSetting diagOnOff) {
//
// Check for lookup failure.
//
if (Result.empty())
return 0;
if (Result.isSingleResult())
return dyn_cast<FunctionTemplateDecl>(Result.getFoundDecl());
else {
for (LookupResult::iterator I = Result.begin(), E = Result.end();
I != E; ++I) {
NamedDecl* ND = *I;
FunctionTemplateDecl *MethodTmpl =dyn_cast<FunctionTemplateDecl>(ND);
if (MethodTmpl) {
return MethodTmpl;
}
}
return 0;
}
}
const FunctionTemplateDecl*
LookupHelper::findFunctionTemplate(const clang::Decl* scopeDecl,
llvm::StringRef templateName,
DiagSetting diagOnOff,
bool objectIsConst) const {
// Lookup a function template based on its Decl(Context), name.
return execFindFunction<NoParse>(*m_Parser, m_Interpreter,
scopeDecl,
templateName, "",
objectIsConst,
findFunctionTemplateSelector,
diagOnOff);
}
static
const FunctionDecl* findAnyFunctionSelector(DeclContext* ,
bool /* objectIsConst */,
const llvm::SmallVectorImpl<Expr*> &,
LookupResult &Result,
DeclarationNameInfo &,
const TemplateArgumentListInfo* ExplicitTemplateArgs,
ASTContext&, Parser &, Sema &S,
LookupHelper::DiagSetting diagOnOff) {
//
// Check for lookup failure.
//
if (Result.empty())
return 0;
if (Result.isSingleResult())
return dyn_cast<FunctionDecl>(Result.getFoundDecl());
else {
NamedDecl *aResult = *(Result.begin());
FunctionDecl *res = dyn_cast<FunctionDecl>(aResult);
if (res) return res;
FunctionTemplateDecl *MethodTmpl =dyn_cast<FunctionTemplateDecl>(aResult);
if (MethodTmpl) {
if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size()==0) {
// Not argument was specified, any instantiation will do.
if (MethodTmpl->spec_begin() != MethodTmpl->spec_end()) {
return *( MethodTmpl->spec_begin() );
}
}
// pick a specialization that result match the given arguments
SourceLocation loc;
sema::TemplateDeductionInfo Info(loc);
FunctionDecl *fdecl = 0;
Sema::TemplateDeductionResult TemplDedResult
= S.DeduceTemplateArguments(MethodTmpl,
const_cast<TemplateArgumentListInfo*>(ExplicitTemplateArgs),
fdecl,
Info);
if (TemplDedResult != Sema::TDK_Success) {
// Deduction failure.
return 0;
} else {
// Instantiate the function if needed.
if (!fdecl->isDefined())
S.InstantiateFunctionDefinition(loc, fdecl,
true /*recursive instantiation*/);
if (fdecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, fdecl);
return 0;
}
return fdecl;
}
}
return 0;
}
}
const FunctionDecl* LookupHelper::findAnyFunction(const clang::Decl*scopeDecl,
llvm::StringRef funcName,
DiagSetting diagOnOff,
bool objectIsConst) const {
return execFindFunction<NoParse>(*m_Parser, m_Interpreter,
scopeDecl,
funcName, "",
objectIsConst,
findAnyFunctionSelector,
diagOnOff);
}
const FunctionDecl*
LookupHelper::findFunctionProto(const Decl* scopeDecl,
llvm::StringRef funcName,
const llvm::SmallVectorImpl<QualType>& funcProto,
DiagSetting diagOnOff, bool objectIsConst) const {
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ExprFromTypes>(*m_Parser, m_Interpreter,
scopeDecl,
funcName,
funcProto,
objectIsConst,
overloadFunctionSelector,
diagOnOff);
}
const FunctionDecl* LookupHelper::findFunctionProto(const Decl* scopeDecl,
llvm::StringRef funcName,
llvm::StringRef funcProto,
DiagSetting diagOnOff,
bool objectIsConst) const{
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ParseProto>(*m_Parser, m_Interpreter,
scopeDecl,
funcName,
funcProto,
objectIsConst,
overloadFunctionSelector,
diagOnOff);
}
const FunctionDecl*
LookupHelper::matchFunctionProto(const Decl* scopeDecl,
llvm::StringRef funcName,
llvm::StringRef funcProto,
DiagSetting diagOnOff,
bool objectIsConst) const {
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ParseProto>(*m_Parser, m_Interpreter,
scopeDecl,
funcName,
funcProto,
objectIsConst,
matchFunctionSelector,
diagOnOff);
}
const FunctionDecl*
LookupHelper::matchFunctionProto(const Decl* scopeDecl,
llvm::StringRef funcName,
const llvm::SmallVectorImpl<QualType>& funcProto,
DiagSetting diagOnOff,
bool objectIsConst) const {
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ExprFromTypes>(*m_Parser, m_Interpreter,
scopeDecl,
funcName,
funcProto,
objectIsConst,
matchFunctionSelector,
diagOnOff);
}
struct ParseArgs {
typedef llvm::StringRef ArgsInput;
bool operator()(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const ArgsInput &funcArgs,
LookupHelper::DiagSetting diagOnOff,
Parser &P, const Interpreter* Interp) {
if (funcArgs.empty()) return true;
else return Parse(GivenArgs,funcArgs,diagOnOff,P,Interp);
}
bool Parse(llvm::SmallVectorImpl<Expr*> &GivenArgs,
llvm::StringRef funcArgs,
LookupHelper::DiagSetting diagOnOff,
Parser &P, const Interpreter* Interp) {
//
// Parse the arguments now.
//
Interpreter::PushTransactionRAII TforDeser(Interp);
ParserStateRAII ResetParserState(P, true /*skipToEOF*/);
prepareForParsing(P,Interp,
funcArgs, llvm::StringRef("func.args.file"), diagOnOff);
Sema& S = P.getActions();
ASTContext& Context = S.getASTContext();
PrintingPolicy Policy(Context.getPrintingPolicy());
Policy.SuppressTagKeyword = true;
Policy.SuppressUnwrittenScope = true;
Policy.SuppressInitializers = true;
Policy.AnonymousTagLocations = false;
std::string proto;
{
bool first_time = true;
while (P.getCurToken().isNot(tok::eof)) {
ExprResult Res = P.ParseAssignmentExpression();
if (Res.isUsable()) {
Expr* expr = Res.get();
GivenArgs.push_back(expr);
if (first_time) {
first_time = false;
}
else {
proto += ',';
}
stdstrstream tmp;
expr->printPretty(tmp, /*PrinterHelper=*/0, Policy,
/*Indentation=*/0);
proto += tmp.str();
}
if (!P.getCurToken().is(tok::comma)) {
break;
}
P.ConsumeToken();
}
}
// For backward compatibility with CINT accept (for now?) a trailing close
// parenthesis.
if (P.getCurToken().isNot(tok::eof) && P.getCurToken().isNot(tok::r_paren) ) {
// We did not consume all of the arg list, bad parse.
return false;
}
//
// Cleanup after the arg list parse.
//
P.SkipUntil(clang::tok::eof);
// Doesn't reset the diagnostic mappings
S.getDiagnostics().Reset(/*soft=*/true);
return true;
}
};
const FunctionDecl*
LookupHelper::findFunctionArgs(const Decl* scopeDecl,
llvm::StringRef funcName,
llvm::StringRef funcArgs,
DiagSetting diagOnOff,
bool objectIsConst) const {
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ParseArgs>(*m_Parser, m_Interpreter,
scopeDecl,
funcName,
funcArgs,
objectIsConst,
overloadFunctionSelector,
diagOnOff);
}
void LookupHelper::findArgList(llvm::StringRef argList,
llvm::SmallVectorImpl<Expr*>& argExprs,
DiagSetting diagOnOff) const {
if (argList.empty()) return;
//
// Some utilities.
//
// Use P for shortness
Parser& P = *m_Parser;
ParserStateRAII ResetParserState(P, true /*skipToEOF*/);
prepareForParsing(P,m_Interpreter,
argList, llvm::StringRef("arg.list.file"), diagOnOff);
//
// Parse the arguments now.
//
{
bool hasUnusableResult = false;
while (P.getCurToken().isNot(tok::eof)) {
ExprResult Res = P.ParseAssignmentExpression();
if (Res.isUsable()) {
argExprs.push_back(Res.get());
}
else {
hasUnusableResult = true;
break;
}
if (!P.getCurToken().is(tok::comma)) {
break;
}
P.ConsumeToken();
}
if (hasUnusableResult)
// if one of the arguments is not usable return empty.
argExprs.clear();
}
}
static
bool hasFunctionSelector(DeclContext* ,
bool /* objectIsConst */,
const llvm::SmallVectorImpl<Expr*> &,
LookupResult &Result,
DeclarationNameInfo &,
const TemplateArgumentListInfo* ,
ASTContext&, Parser &, Sema &,
LookupHelper::DiagSetting /*diagOnOff*/) {
//
// Check for lookup failure.
//
if (Result.empty())
return false;
if (Result.isSingleResult())
return isa<FunctionDecl>(Result.getFoundDecl());
// We have many - those must be functions.
return true;
}
bool LookupHelper::hasFunction(const clang::Decl* scopeDecl,
llvm::StringRef funcName,
DiagSetting diagOnOff) const {
return execFindFunction<NoParse>(*m_Parser, m_Interpreter,
scopeDecl,
funcName, "",
false /* objectIsConst */,
hasFunctionSelector,
diagOnOff);
}
static const clang::Type* getType(LookupHelper* LH, llvm::StringRef Type) {
QualType Qt = LH->findType(Type, LookupHelper::WithDiagnostics);
assert(!Qt.isNull() && "Type should exist");
return Qt.getTypePtr();
}
LookupHelper::StringType
LookupHelper::getStringType(const clang::Type* Type) {
assert(Type && "Type cannot be null");
const Transaction*& Cache = m_Interpreter->getStdStringTransaction();
if (!Cache || !m_StringTy[kStdString]) {
// getStringType can be called multiple times with Cache being null, and
// the local cache should be discarded when that occurs.
if (!Cache)
m_StringTy = {};
QualType Qt = findType("std::string", WithDiagnostics);
m_StringTy[kStdString] = Qt.isNull() ? nullptr : Qt.getTypePtr();
if (!m_StringTy[kStdString]) return kNotAString;
Cache = m_Interpreter->getLatestTransaction();
m_StringTy[kWCharString] = getType(this, "std::wstring");
const clang::LangOptions& LO = m_Interpreter->getCI()->getLangOpts();
if (LO.CPlusPlus11) {
m_StringTy[kUTF16Str] = getType(this, "std::u16string");
m_StringTy[kUTF32Str] = getType(this, "std::u32string");
}
}
ASTContext& Ctx = m_Interpreter->getSema().getASTContext();
for (unsigned I = 0; I < kNumCachedStrings; ++I) {
if (m_StringTy[I] && Ctx.hasSameType(Type, m_StringTy[I]))
return StringType(I);
}
return kNotAString;
}
} // end namespace cling