1413 lines
50 KiB
C++
1413 lines
50 KiB
C++
//------------------------------------------------------------------------------
|
|
// CLING - the C++ LLVM-based InterpreterG :)
|
|
// version: $Id: AST.cpp 45014 2012-07-11 20:31:42Z vvassilev $
|
|
// author: Vassil Vassilev <vvasilev@cern.ch>
|
|
//------------------------------------------------------------------------------
|
|
|
|
#include "cling/Interpreter/LookupHelper.h"
|
|
|
|
#include "cling/Interpreter/Interpreter.h"
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/Parse/Parser.h"
|
|
#include "clang/Parse/RAIIObjectsForParser.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Overload.h"
|
|
#include "clang/Sema/Sema.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
|
|
using namespace clang;
|
|
|
|
namespace cling {
|
|
|
|
///\brief Cleanup Parser state after a failed lookup.
|
|
///
|
|
/// After a failed lookup we need to discard the remaining unparsed input,
|
|
/// restore the original state of the incremental parsing flag, clear any
|
|
/// pending diagnostics, restore the suppress diagnostics flag, and restore
|
|
/// the spell checking language options.
|
|
///
|
|
class ParserStateRAII {
|
|
private:
|
|
Parser* P;
|
|
Preprocessor& PP;
|
|
bool ResetIncrementalProcessing;
|
|
bool OldSuppressAllDiagnostics;
|
|
bool OldSpellChecking;
|
|
DestroyTemplateIdAnnotationsRAIIObj CleanupTemplateIds;
|
|
|
|
public:
|
|
ParserStateRAII(Parser& p)
|
|
: P(&p), PP(p.getPreprocessor()),
|
|
ResetIncrementalProcessing(p.getPreprocessor()
|
|
.isIncrementalProcessingEnabled()),
|
|
OldSuppressAllDiagnostics(p.getPreprocessor().getDiagnostics()
|
|
.getSuppressAllDiagnostics()),
|
|
OldSpellChecking(p.getPreprocessor().getLangOpts().SpellChecking),
|
|
CleanupTemplateIds(p)
|
|
{
|
|
}
|
|
|
|
~ParserStateRAII()
|
|
{
|
|
//
|
|
// Advance the parser to the end of the file, and pop the include stack.
|
|
//
|
|
// Note: Consuming the EOF token will pop the include stack.
|
|
//
|
|
P->SkipUntil(tok::eof, /*StopAtSemi*/false, /*DontConsume*/false,
|
|
/*StopAtCodeCompletion*/false);
|
|
PP.enableIncrementalProcessing(ResetIncrementalProcessing);
|
|
P->getActions().getDiagnostics().Reset();
|
|
PP.getDiagnostics().setSuppressAllDiagnostics(OldSuppressAllDiagnostics);
|
|
const_cast<LangOptions&>(PP.getLangOpts()).SpellChecking =
|
|
OldSpellChecking;
|
|
}
|
|
};
|
|
|
|
///\brief Class to help with the custom allocation of clang::Expr
|
|
///
|
|
struct ExprAlloc {
|
|
char fBuffer[sizeof(clang::OpaqueValueExpr)];
|
|
};
|
|
|
|
// pin *tor here so that we can have clang::Parser defined and be able to call
|
|
// the dtor on the OwningPtr
|
|
LookupHelper::LookupHelper(clang::Parser* P, Interpreter* interp)
|
|
: m_Parser(P), m_Interpreter(interp) {}
|
|
|
|
LookupHelper::~LookupHelper() {}
|
|
|
|
QualType LookupHelper::findType(llvm::StringRef typeName) const {
|
|
//
|
|
// Our return value.
|
|
//
|
|
QualType TheQT;
|
|
|
|
if (typeName.empty()) return TheQT;
|
|
|
|
// Could trigger deserialization of decls.
|
|
Interpreter::PushTransactionRAII RAII(m_Interpreter);
|
|
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing(typeName, llvm::StringRef("lookup.type.by.name.file"));
|
|
//
|
|
// Try parsing the type name.
|
|
//
|
|
clang::ParsedAttributes Attrs(P.getAttrFactory());
|
|
|
|
TypeResult Res(P.ParseTypeName(0,Declarator::TypeNameContext,clang::AS_none,
|
|
0,&Attrs));
|
|
if (Res.isUsable()) {
|
|
// Accept it only if the whole name was parsed.
|
|
if (P.NextToken().getKind() == clang::tok::eof) {
|
|
TypeSourceInfo* TSI = 0;
|
|
TheQT = clang::Sema::GetTypeFromParser(Res.get(), &TSI);
|
|
}
|
|
}
|
|
return TheQT;
|
|
}
|
|
|
|
const Decl* LookupHelper::findScope(llvm::StringRef className,
|
|
const Type** resultType /* = 0 */,
|
|
bool instantiateTemplate/*=true*/) const {
|
|
//
|
|
// Some utilities.
|
|
//
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
Preprocessor& PP = P.getPreprocessor();
|
|
ASTContext& Context = S.getASTContext();
|
|
|
|
// The user wants to see the template instantiation, existing or not.
|
|
// Here we might not have an active transaction to handle
|
|
// the caused instantiation decl.
|
|
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
|
|
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing(className.str() + "::",
|
|
llvm::StringRef("lookup.class.by.name.file"));
|
|
//
|
|
// Our return values.
|
|
//
|
|
const Type* TheType = 0;
|
|
const Type** setResultType = &TheType;
|
|
if (resultType)
|
|
setResultType = resultType;
|
|
*setResultType = 0;
|
|
|
|
const Decl* TheDecl = 0;
|
|
|
|
//
|
|
// Prevent failing on an assert in TryAnnotateCXXScopeToken.
|
|
//
|
|
if (!P.getCurToken().is(clang::tok::identifier)
|
|
&& !P.getCurToken().is(clang::tok::coloncolon)
|
|
&& !(P.getCurToken().is(clang::tok::annot_template_id)
|
|
&& P.NextToken().is(clang::tok::coloncolon))
|
|
&& !P.getCurToken().is(clang::tok::kw_decltype)) {
|
|
// error path
|
|
return TheDecl;
|
|
}
|
|
//
|
|
// Try parsing the name as a nested-name-specifier.
|
|
//
|
|
if (P.TryAnnotateCXXScopeToken(false)) {
|
|
// error path
|
|
return TheDecl;
|
|
}
|
|
if (P.getCurToken().getKind() == tok::annot_cxxscope) {
|
|
CXXScopeSpec SS;
|
|
S.RestoreNestedNameSpecifierAnnotation(P.getCurToken().getAnnotationValue(),
|
|
P.getCurToken().getAnnotationRange(),
|
|
SS);
|
|
if (SS.isValid()) {
|
|
NestedNameSpecifier* NNS = SS.getScopeRep();
|
|
NestedNameSpecifier::SpecifierKind Kind = NNS->getKind();
|
|
// Only accept the parse if we consumed all of the name.
|
|
if (P.NextToken().getKind() == clang::tok::eof) {
|
|
//
|
|
// Be careful, not all nested name specifiers refer to classes
|
|
// and namespaces, and those are the only things we want.
|
|
//
|
|
switch (Kind) {
|
|
case NestedNameSpecifier::Identifier: {
|
|
// Dependent type.
|
|
// We do not accept these.
|
|
}
|
|
break;
|
|
case NestedNameSpecifier::Namespace: {
|
|
// Namespace.
|
|
NamespaceDecl* NSD = NNS->getAsNamespace();
|
|
NSD = NSD->getCanonicalDecl();
|
|
TheDecl = NSD;
|
|
}
|
|
break;
|
|
case NestedNameSpecifier::NamespaceAlias: {
|
|
// Namespace alias.
|
|
// Note: In the future, should we return the alias instead?
|
|
NamespaceAliasDecl* NSAD = NNS->getAsNamespaceAlias();
|
|
NamespaceDecl* NSD = NSAD->getNamespace();
|
|
NSD = NSD->getCanonicalDecl();
|
|
TheDecl = NSD;
|
|
}
|
|
break;
|
|
case NestedNameSpecifier::TypeSpec:
|
|
// Type name.
|
|
// Intentional fall-though
|
|
case NestedNameSpecifier::TypeSpecWithTemplate: {
|
|
// Type name qualified with "template".
|
|
// Note: Do we need to check for a dependent type here?
|
|
NestedNameSpecifier *prefix = NNS->getPrefix();
|
|
if (prefix) {
|
|
QualType temp
|
|
= Context.getElaboratedType(ETK_None,prefix,
|
|
QualType(NNS->getAsType(),0));
|
|
*setResultType = temp.getTypePtr();
|
|
} else {
|
|
*setResultType = NNS->getAsType();
|
|
}
|
|
const TagType* TagTy = (*setResultType)->getAs<TagType>();
|
|
if (TagTy) {
|
|
// It is a class, struct, or union.
|
|
TagDecl* TD = TagTy->getDecl();
|
|
if (TD) {
|
|
TheDecl = TD->getDefinition();
|
|
if (!TheDecl && instantiateTemplate) {
|
|
|
|
// Make sure it is not just forward declared, and
|
|
// instantiate any templates.
|
|
if (!S.RequireCompleteDeclContext(SS, TD)) {
|
|
// Success, type is complete, instantiations have
|
|
// been done.
|
|
TheDecl = TD->getDefinition();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case clang::NestedNameSpecifier::Global: {
|
|
// Name was just "::" and nothing more.
|
|
TheDecl = Context.getTranslationUnitDecl();
|
|
}
|
|
break;
|
|
}
|
|
return TheDecl;
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// Cleanup after failed parse as a nested-name-specifier.
|
|
//
|
|
P.SkipUntil(clang::tok::eof, /*StopAtSemi*/false, /*DontConsume*/false,
|
|
/*StopAtCodeCompletion*/false);
|
|
S.getDiagnostics().Reset();
|
|
//
|
|
// Setup to reparse as a type.
|
|
//
|
|
|
|
llvm::MemoryBuffer* SB =
|
|
llvm::MemoryBuffer::getMemBufferCopy(className.str() + "\n",
|
|
"lookup.type.file");
|
|
clang::FileID FID = S.getSourceManager().createFileIDForMemBuffer(SB);
|
|
PP.EnterSourceFile(FID, 0, clang::SourceLocation());
|
|
PP.Lex(const_cast<clang::Token&>(P.getCurToken()));
|
|
|
|
//
|
|
// Now try to parse the name as a type.
|
|
//
|
|
if (P.TryAnnotateTypeOrScopeToken(false, false)) {
|
|
// error path
|
|
return TheDecl;
|
|
}
|
|
if (P.getCurToken().getKind() == tok::annot_typename) {
|
|
ParsedType T = P.getTypeAnnotation(const_cast<Token&>(P.getCurToken()));
|
|
// Only accept the parse if we consumed all of the name.
|
|
if (P.NextToken().getKind() == clang::tok::eof)
|
|
if (!T.get().isNull()) {
|
|
TypeSourceInfo *TSI = 0;
|
|
clang::QualType QT = clang::Sema::GetTypeFromParser(T, &TSI);
|
|
if (const TagType* TT = QT->getAs<TagType>()) {
|
|
TheDecl = TT->getDecl()->getDefinition();
|
|
*setResultType = QT.getTypePtr();
|
|
}
|
|
}
|
|
}
|
|
return TheDecl;
|
|
}
|
|
|
|
const ClassTemplateDecl* LookupHelper::findClassTemplate(llvm::StringRef Name) const {
|
|
//
|
|
// Find a class template decl given its name.
|
|
//
|
|
|
|
if (Name.empty()) return 0;
|
|
|
|
// Humm ... this seems to do the trick ... or does it? or is there a better way?
|
|
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
ASTContext& Context = S.getASTContext();
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing(Name.str(),
|
|
llvm::StringRef("lookup.class.by.name.file"));
|
|
|
|
//
|
|
// Prevent failing on an assert in TryAnnotateCXXScopeToken.
|
|
//
|
|
if (!P.getCurToken().is(clang::tok::identifier)
|
|
&& !P.getCurToken().is(clang::tok::coloncolon)
|
|
&& !(P.getCurToken().is(clang::tok::annot_template_id)
|
|
&& P.NextToken().is(clang::tok::coloncolon))
|
|
&& !P.getCurToken().is(clang::tok::kw_decltype)) {
|
|
// error path
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Now try to parse the name as a type.
|
|
//
|
|
if (P.TryAnnotateTypeOrScopeToken(false, false)) {
|
|
// error path
|
|
return 0;
|
|
}
|
|
DeclContext *where = 0;
|
|
if (P.getCurToken().getKind() == tok::annot_cxxscope) {
|
|
CXXScopeSpec SS;
|
|
S.RestoreNestedNameSpecifierAnnotation(P.getCurToken().getAnnotationValue(),
|
|
P.getCurToken().getAnnotationRange(),
|
|
SS);
|
|
if (SS.isValid()) {
|
|
P.ConsumeToken();
|
|
if (!P.getCurToken().is(clang::tok::identifier)) {
|
|
return 0;
|
|
}
|
|
NestedNameSpecifier *nested = SS.getScopeRep();
|
|
if (!nested) return 0;
|
|
switch (nested->getKind()) {
|
|
case NestedNameSpecifier::Global:
|
|
where = Context.getTranslationUnitDecl();
|
|
break;
|
|
case NestedNameSpecifier::Namespace:
|
|
where = nested->getAsNamespace();
|
|
break;
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Identifier:
|
|
return 0;
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
{
|
|
const Type *ntype = nested->getAsType();
|
|
where = ntype->getAsCXXRecordDecl();
|
|
if (!where) return 0;
|
|
break;
|
|
}
|
|
};
|
|
}
|
|
} else if (P.getCurToken().is(clang::tok::identifier)) {
|
|
// We have a single indentifier, let's look for it in the
|
|
// the global scope.
|
|
where = Context.getTranslationUnitDecl();
|
|
}
|
|
if (where) {
|
|
// Great we now have a scope and something to search for,let's go ahead.
|
|
DeclContext::lookup_result R
|
|
= where->lookup(P.getCurToken().getIdentifierInfo());
|
|
for (DeclContext::lookup_iterator I = R.begin(), E = R.end();
|
|
I != E; ++I) {
|
|
ClassTemplateDecl *theDecl = dyn_cast<ClassTemplateDecl>(*I);
|
|
if (theDecl)
|
|
return theDecl;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
DeclContext* getContextAndSpec(CXXScopeSpec &SS,
|
|
const Decl* scopeDecl,
|
|
ASTContext& Context, Sema &S) {
|
|
//
|
|
// Convert the passed decl into a nested name specifier,
|
|
// a scope spec, and a decl context.
|
|
//
|
|
NestedNameSpecifier* classNNS = 0;
|
|
if (const NamespaceDecl* NSD = dyn_cast<NamespaceDecl>(scopeDecl)) {
|
|
classNNS = NestedNameSpecifier::Create(Context, 0,
|
|
const_cast<NamespaceDecl*>(NSD));
|
|
}
|
|
else if (const RecordDecl* RD = dyn_cast<RecordDecl>(scopeDecl)) {
|
|
const Type* T = Context.getRecordType(RD).getTypePtr();
|
|
classNNS = NestedNameSpecifier::Create(Context, 0, false, T);
|
|
}
|
|
else if (llvm::isa<TranslationUnitDecl>(scopeDecl)) {
|
|
classNNS = NestedNameSpecifier::GlobalSpecifier(Context);
|
|
}
|
|
else {
|
|
// Not a namespace or class, we cannot use it.
|
|
return 0;
|
|
}
|
|
DeclContext* foundDC = dyn_cast<DeclContext>(const_cast<Decl*>(scopeDecl));
|
|
//
|
|
// Some validity checks on the passed decl.
|
|
//
|
|
if (foundDC->isDependentContext()) {
|
|
// Passed decl is a template, we cannot use it.
|
|
return 0;
|
|
}
|
|
SS.MakeTrivial(Context, classNNS, SourceRange());
|
|
if (S.RequireCompleteDeclContext(SS, foundDC)) {
|
|
// Forward decl or instantiation failure, we cannot use it.
|
|
return 0;
|
|
}
|
|
|
|
return foundDC;
|
|
}
|
|
|
|
static bool FuncArgTypesMatch(const ASTContext& C,
|
|
const llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
const FunctionProtoType* FPT) {
|
|
// FIXME: What if FTP->arg_size() != GivenArgTypes.size()?
|
|
FunctionProtoType::arg_type_iterator ATI = FPT->arg_type_begin();
|
|
FunctionProtoType::arg_type_iterator E = FPT->arg_type_end();
|
|
llvm::SmallVector<Expr*, 4>::const_iterator GAI = GivenArgs.begin();
|
|
for (; ATI && (ATI != E); ++ATI, ++GAI) {
|
|
if ((*GAI)->isLValue()) {
|
|
// If the user specified a reference we may have transform it into
|
|
// an LValue non reference (See getExprProto) to have it in a form
|
|
// useful for the lookup. So we are a bit sloppy per se here (maybe)
|
|
const ReferenceType *RefType = (*ATI)->getAs<ReferenceType>();
|
|
if (RefType) {
|
|
if (!C.hasSameType(RefType->getPointeeType(),(*GAI)->getType()))
|
|
return false;
|
|
} else if (!C.hasSameType(*ATI,(*GAI)->getType())) {
|
|
return false;
|
|
}
|
|
} else if (!C.hasSameType(*ATI, (*GAI)->getType() )) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool IsOverload(const ASTContext& C,
|
|
const TemplateArgumentListInfo* FuncTemplateArgs,
|
|
const llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
const FunctionDecl* FD) {
|
|
|
|
//FunctionTemplateDecl* FTD = FD->getDescribedFunctionTemplate();
|
|
QualType FQT = C.getCanonicalType(FD->getType());
|
|
if (llvm::isa<FunctionNoProtoType>(FQT.getTypePtr())) {
|
|
// A K&R-style function (no prototype), is considered to match the args.
|
|
return false;
|
|
}
|
|
const FunctionProtoType* FPT = llvm::cast<FunctionProtoType>(FQT);
|
|
if ((GivenArgs.size() != FPT->getNumArgs()) ||
|
|
//(GivenArgsAreEllipsis != FPT->isVariadic()) ||
|
|
!FuncArgTypesMatch(C, GivenArgs, FPT)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static
|
|
const FunctionDecl* overloadFunctionSelector(DeclContext* foundDC,
|
|
bool objectIsConst,
|
|
const llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
LookupResult &Result,
|
|
DeclarationNameInfo &FuncNameInfo,
|
|
const TemplateArgumentListInfo* FuncTemplateArgs,
|
|
ASTContext& Context, Parser &P, Sema &S) {
|
|
//
|
|
// Our return value.
|
|
//
|
|
FunctionDecl* TheDecl = 0;
|
|
|
|
//
|
|
// If we are looking up a member function, construct
|
|
// the implicit object argument.
|
|
//
|
|
// Note: For now this is always a non-CV qualified lvalue.
|
|
//
|
|
QualType ClassType;
|
|
Expr::Classification ObjExprClassification;
|
|
if (CXXRecordDecl* CRD = dyn_cast<CXXRecordDecl>(foundDC)) {
|
|
if (objectIsConst)
|
|
ClassType = Context.getTypeDeclType(CRD).getCanonicalType().withConst();
|
|
else ClassType = Context.getTypeDeclType(CRD).getCanonicalType();
|
|
OpaqueValueExpr ObjExpr(SourceLocation(),
|
|
ClassType, VK_LValue);
|
|
ObjExprClassification = ObjExpr.Classify(Context);
|
|
}
|
|
|
|
//
|
|
// Construct the overload candidate set.
|
|
//
|
|
OverloadCandidateSet Candidates(FuncNameInfo.getLoc());
|
|
for (LookupResult::iterator I = Result.begin(), E = Result.end();
|
|
I != E; ++I) {
|
|
NamedDecl* ND = *I;
|
|
if (FunctionDecl* FD = dyn_cast<FunctionDecl>(ND)) {
|
|
if (isa<CXXMethodDecl>(FD) &&
|
|
!cast<CXXMethodDecl>(FD)->isStatic() &&
|
|
!isa<CXXConstructorDecl>(FD)) {
|
|
// Class method, not static, not a constructor, so has
|
|
// an implicit object argument.
|
|
CXXMethodDecl* MD = cast<CXXMethodDecl>(FD);
|
|
if (FuncTemplateArgs && (FuncTemplateArgs->size() != 0)) {
|
|
// Explicit template args were given, cannot use a plain func.
|
|
continue;
|
|
}
|
|
S.AddMethodCandidate(MD, I.getPair(), MD->getParent(),
|
|
/*ObjectType=*/ClassType,
|
|
/*ObjectClassification=*/ObjExprClassification,
|
|
llvm::makeArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
|
|
Candidates);
|
|
}
|
|
else {
|
|
const FunctionProtoType* Proto = dyn_cast<FunctionProtoType>(
|
|
FD->getType()->getAs<clang::FunctionType>());
|
|
if (!Proto) {
|
|
// Function has no prototype, cannot do overloading.
|
|
continue;
|
|
}
|
|
if (FuncTemplateArgs && (FuncTemplateArgs->size() != 0)) {
|
|
// Explicit template args were given, cannot use a plain func.
|
|
continue;
|
|
}
|
|
S.AddOverloadCandidate(FD, I.getPair(),
|
|
llvm::makeArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
|
|
Candidates);
|
|
}
|
|
}
|
|
else if (FunctionTemplateDecl* FTD =
|
|
dyn_cast<FunctionTemplateDecl>(ND)) {
|
|
if (isa<CXXMethodDecl>(FTD->getTemplatedDecl()) &&
|
|
!cast<CXXMethodDecl>(FTD->getTemplatedDecl())->isStatic() &&
|
|
!isa<CXXConstructorDecl>(FTD->getTemplatedDecl())) {
|
|
// Class method template, not static, not a constructor, so has
|
|
// an implicit object argument.
|
|
S.AddMethodTemplateCandidate(FTD, I.getPair(),
|
|
cast<CXXRecordDecl>(FTD->getDeclContext()),
|
|
const_cast<TemplateArgumentListInfo*>(FuncTemplateArgs),
|
|
/*ObjectType=*/ClassType,
|
|
/*ObjectClassification=*/ObjExprClassification,
|
|
llvm::makeArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
|
|
Candidates);
|
|
}
|
|
else {
|
|
S.AddTemplateOverloadCandidate(FTD, I.getPair(),
|
|
const_cast<TemplateArgumentListInfo*>(FuncTemplateArgs),
|
|
llvm::makeArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
|
|
Candidates, /*SuppressUserConversions=*/false);
|
|
}
|
|
}
|
|
else {
|
|
// Is there any other cases?
|
|
}
|
|
}
|
|
//
|
|
// Find the best viable function from the set.
|
|
//
|
|
{
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult OR = Candidates.BestViableFunction(S,
|
|
Result.getNameLoc(),
|
|
Best);
|
|
if (OR == OR_Success) {
|
|
TheDecl = Best->Function;
|
|
// We prefer to get the canonical decl for consistency and ease
|
|
// of comparison.
|
|
TheDecl = TheDecl->getCanonicalDecl();
|
|
if (TheDecl->isTemplateInstantiation() && !TheDecl->isDefined())
|
|
S.InstantiateFunctionDefinition(SourceLocation(),TheDecl,true);
|
|
}
|
|
}
|
|
return TheDecl;
|
|
}
|
|
|
|
static
|
|
const FunctionDecl* matchFunctionSelector(DeclContext* foundDC,
|
|
bool objectIsConst,
|
|
const llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
LookupResult &Result,
|
|
DeclarationNameInfo &FuncNameInfo,
|
|
const TemplateArgumentListInfo* FuncTemplateArgs,
|
|
ASTContext& Context, Parser &P, Sema &S) {
|
|
//
|
|
// Our return value.
|
|
//
|
|
const FunctionDecl* TheDecl = overloadFunctionSelector(foundDC, objectIsConst,
|
|
GivenArgs, Result,
|
|
FuncNameInfo,
|
|
FuncTemplateArgs,
|
|
Context,P,S);
|
|
|
|
if (TheDecl) {
|
|
if ( IsOverload(Context, FuncTemplateArgs, GivenArgs, TheDecl) ) {
|
|
return 0;
|
|
} else {
|
|
// Double check const-ness.
|
|
if (const clang::CXXMethodDecl *md =
|
|
llvm::dyn_cast<clang::CXXMethodDecl>(TheDecl)) {
|
|
if (md->getTypeQualifiers() & clang::Qualifiers::Const) {
|
|
if (!objectIsConst) {
|
|
TheDecl = 0;
|
|
}
|
|
} else {
|
|
if (objectIsConst) {
|
|
TheDecl = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return TheDecl;
|
|
}
|
|
|
|
static bool ParseWithShortcuts(DeclContext* foundDC, CXXScopeSpec &SS,
|
|
llvm::StringRef funcName,
|
|
Parser &P, Sema &S,
|
|
UnqualifiedId &FuncId) {
|
|
|
|
// Use a very simple parse step that dectect whether the name search (which
|
|
// is already supposed to be an unqualified name) is a simple identifier,
|
|
// a constructor name or a destructor name. In those 3 cases, we can easily
|
|
// create the UnqualifiedId object that would have resulted from the 'real'
|
|
// parse. By using this direct creation of the UnqualifiedId, we avoid the
|
|
// 'permanent' cost associated with creating a memory buffer and the
|
|
// associated FileID.
|
|
|
|
// If the name is a template or an operator, we revert to the regular parse
|
|
// (and its associated permanent cost).
|
|
|
|
// In the operator case, the additional work is in the case of a conversion
|
|
// operator where we would need to 'quickly' parse the type itself (if want
|
|
// to avoid the permanent cost).
|
|
|
|
// In the case with the template the problem gets a bit worse as we need to
|
|
// handle potentially arbitrary spaces and ordering
|
|
// ('const int' vs 'int const', etc.)
|
|
|
|
if (funcName.size() == 0) return false;
|
|
Preprocessor& PP = S.getPreprocessor();
|
|
|
|
// See if we can avoid creating the buffer, for now we just look for
|
|
// simple indentifier, constructor and destructor.
|
|
|
|
|
|
if (funcName.size() > 8 && strncmp(funcName.data(),"operator",8) == 0
|
|
&&( funcName[8] == ' ' || funcName[8] == '*'
|
|
|| funcName[8] == '%' || funcName[8] == '&'
|
|
|| funcName[8] == '|' || funcName[8] == '/'
|
|
|| funcName[8] == '+' || funcName[8] == '-'
|
|
|| funcName[8] == '(' || funcName[8] == '['
|
|
|| funcName[8] == '=' || funcName[8] == '!'
|
|
|| funcName[8] == '<' || funcName[8] == '>'
|
|
|| funcName[8] == '-' || funcName[8] == '^')
|
|
) {
|
|
// We have called:
|
|
// setOperatorFunctionId (SourceLocation OperatorLoc,
|
|
// OverloadedOperatorKind Op,
|
|
// SourceLocation SymbolLocations[3])
|
|
// or
|
|
// setConversionFunctionId (SourceLocation OperatorLoc,
|
|
// ParsedType Ty, SourceLocation EndLoc)
|
|
} else if (funcName.find('<') != StringRef::npos) {
|
|
// We might have a template name,
|
|
// setTemplateId (TemplateIdAnnotation *TemplateId)
|
|
// or
|
|
// setConstructorTemplateId (TemplateIdAnnotation *TemplateId)
|
|
} else if (funcName[0] == '~') {
|
|
// Destructor.
|
|
// Let's see if this is our contructor.
|
|
TagDecl *decl = llvm::dyn_cast<TagDecl>(foundDC);
|
|
if (decl) {
|
|
// We have a class or struct or something.
|
|
if (funcName.substr(1).equals(decl->getName())) {
|
|
ParsedType PT;
|
|
QualType QT( decl->getTypeForDecl(), 0 );
|
|
PT.set(QT);
|
|
FuncId.setDestructorName(SourceLocation(),PT,SourceLocation());
|
|
return true;
|
|
}
|
|
}
|
|
// So it starts with ~ but is not followed by the name of
|
|
// a class or at least not the one that is the declaration context,
|
|
// let's try a real parsing, to see if we can do better.
|
|
} else {
|
|
// We either have a simple type or a constructor name
|
|
TagDecl *decl = llvm::dyn_cast<TagDecl>(foundDC);
|
|
if (decl) {
|
|
// We have a class or struct or something.
|
|
if (funcName.equals(decl->getName())) {
|
|
ParsedType PT;
|
|
QualType QT( decl->getTypeForDecl(), 0 );
|
|
PT.set(QT);
|
|
FuncId.setConstructorName(PT,SourceLocation(),SourceLocation());
|
|
} else {
|
|
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get(funcName);
|
|
FuncId.setIdentifier (TypeInfoII, SourceLocation() );
|
|
}
|
|
return true;
|
|
} else {
|
|
// We have a namespace like context, it can't be a constructor
|
|
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get(funcName);
|
|
FuncId.setIdentifier (TypeInfoII, SourceLocation() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Setup to reparse as a type.
|
|
//
|
|
//
|
|
// Create a fake file to parse the function name.
|
|
//
|
|
{
|
|
llvm::MemoryBuffer* SB
|
|
= llvm::MemoryBuffer::getMemBufferCopy(funcName.str()
|
|
+ "\n", "lookup.funcname.file");
|
|
clang::FileID FID = S.getSourceManager().createFileIDForMemBuffer(SB);
|
|
PP.EnterSourceFile(FID, /*DirLookup=*/0, clang::SourceLocation());
|
|
PP.Lex(const_cast<clang::Token&>(P.getCurToken()));
|
|
}
|
|
|
|
|
|
//
|
|
// Parse the function name.
|
|
//
|
|
SourceLocation TemplateKWLoc;
|
|
if (P.ParseUnqualifiedId(SS, /*EnteringContext*/false,
|
|
/*AllowDestructorName*/true,
|
|
/*AllowConstructorName*/true,
|
|
ParsedType(), TemplateKWLoc,
|
|
FuncId)) {
|
|
// Failed parse, cleanup.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T findFunction(DeclContext* foundDC, CXXScopeSpec &SS,
|
|
llvm::StringRef funcName,
|
|
const llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
bool objectIsConst,
|
|
ASTContext& Context, Parser &P, Sema &S,
|
|
T (*functionSelector)(DeclContext* foundDC,
|
|
bool objectIsConst,
|
|
const llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
LookupResult &Result,
|
|
DeclarationNameInfo &FuncNameInfo,
|
|
const TemplateArgumentListInfo* FuncTemplateArgs,
|
|
ASTContext& Context, Parser &P, Sema &S)
|
|
) {
|
|
// Given the correctly types arguments, etc. find the function itself.
|
|
|
|
//
|
|
// Our return value.
|
|
//
|
|
FunctionDecl* TheDecl = 0;
|
|
|
|
//
|
|
// Make the class we are looking up the function
|
|
// in the current scope to please the constructor
|
|
// name lookup. We do not need to do this otherwise,
|
|
// and may be able to remove it in the future if
|
|
// the way constructors are looked up changes.
|
|
//
|
|
void* OldEntity = P.getCurScope()->getEntity();
|
|
DeclContext* TUCtx = Context.getTranslationUnitDecl();
|
|
P.getCurScope()->setEntity(TUCtx);
|
|
P.EnterScope(Scope::DeclScope);
|
|
P.getCurScope()->setEntity(foundDC);
|
|
P.EnterScope(Scope::DeclScope);
|
|
Sema::ContextRAII SemaContext(S, foundDC);
|
|
S.EnterDeclaratorContext(P.getCurScope(), foundDC);
|
|
|
|
UnqualifiedId FuncId;
|
|
if (!ParseWithShortcuts(foundDC,SS,funcName,P,S,FuncId)) {
|
|
// Failed parse, cleanup.
|
|
// Destroy the scope we created first, and
|
|
// restore the original.
|
|
S.ExitDeclaratorContext(P.getCurScope());
|
|
P.ExitScope();
|
|
P.ExitScope();
|
|
P.getCurScope()->setEntity(OldEntity);
|
|
// Then exit.
|
|
return TheDecl;
|
|
}
|
|
|
|
//
|
|
// Get any template args in the function name.
|
|
//
|
|
TemplateArgumentListInfo FuncTemplateArgsBuffer;
|
|
DeclarationNameInfo FuncNameInfo;
|
|
const TemplateArgumentListInfo* FuncTemplateArgs;
|
|
S.DecomposeUnqualifiedId(FuncId, FuncTemplateArgsBuffer, FuncNameInfo,
|
|
FuncTemplateArgs);
|
|
|
|
//
|
|
// Lookup the function name in the given class now.
|
|
//
|
|
DeclarationName FuncName = FuncNameInfo.getName();
|
|
SourceLocation FuncNameLoc = FuncNameInfo.getLoc();
|
|
LookupResult Result(S, FuncName, FuncNameLoc, Sema::LookupMemberName,
|
|
Sema::NotForRedeclaration);
|
|
if (!S.LookupQualifiedName(Result, foundDC)) {
|
|
// Lookup failed.
|
|
// Destroy the scope we created first, and
|
|
// restore the original.
|
|
S.ExitDeclaratorContext(P.getCurScope());
|
|
P.ExitScope();
|
|
P.ExitScope();
|
|
P.getCurScope()->setEntity(OldEntity);
|
|
// Then cleanup and exit.
|
|
return TheDecl;
|
|
}
|
|
|
|
//
|
|
// Destroy the scope we created, and restore the original.
|
|
//
|
|
S.ExitDeclaratorContext(P.getCurScope());
|
|
P.ExitScope();
|
|
P.ExitScope();
|
|
P.getCurScope()->setEntity(OldEntity);
|
|
//
|
|
// Check for lookup failure.
|
|
//
|
|
if (Result.getResultKind() != LookupResult::Found &&
|
|
Result.getResultKind() != LookupResult::FoundOverloaded) {
|
|
// Lookup failed.
|
|
return TheDecl;
|
|
}
|
|
return functionSelector(foundDC,objectIsConst,GivenArgs,
|
|
Result,
|
|
FuncNameInfo,
|
|
FuncTemplateArgs,
|
|
Context, P, S);
|
|
}
|
|
|
|
static
|
|
bool getExprProto(llvm::SmallVector<ExprAlloc, 4> &ExprMemory,
|
|
llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
const llvm::SmallVector<QualType, 4> &GivenTypes) {
|
|
//
|
|
// Create the array of Expr from the array of Types.
|
|
//
|
|
|
|
typedef llvm::SmallVector<QualType, 4>::const_iterator iterator;
|
|
for(iterator iter = GivenTypes.begin(), end = GivenTypes.end();
|
|
iter != end;
|
|
++iter) {
|
|
const clang::QualType QT = iter->getCanonicalType();
|
|
{
|
|
ExprValueKind VK = VK_RValue;
|
|
if (QT->getAs<LValueReferenceType>()) {
|
|
VK = VK_LValue;
|
|
}
|
|
clang::QualType NonRefQT(QT.getNonReferenceType());
|
|
unsigned int slot = ExprMemory.size();
|
|
ExprMemory.resize(slot+1);
|
|
Expr* val = new (&ExprMemory[slot]) OpaqueValueExpr(SourceLocation(),
|
|
NonRefQT, VK);
|
|
GivenArgs.push_back(val);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static
|
|
bool ParseProto(llvm::SmallVector<ExprAlloc, 4> &ExprMemory,
|
|
llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
ASTContext& Context, Parser &P,Sema &S) {
|
|
//
|
|
// Parse the prototype now.
|
|
//
|
|
|
|
unsigned int nargs = 0;
|
|
while (P.getCurToken().isNot(tok::eof)) {
|
|
TypeResult Res(P.ParseTypeName());
|
|
if (!Res.isUsable()) {
|
|
// Bad parse, done.
|
|
return false;
|
|
}
|
|
TypeSourceInfo *TSI = 0;
|
|
clang::QualType QT = clang::Sema::GetTypeFromParser(Res.get(), &TSI);
|
|
QT = QT.getCanonicalType();
|
|
{
|
|
ExprValueKind VK = VK_RValue;
|
|
if (QT->getAs<LValueReferenceType>()) {
|
|
VK = VK_LValue;
|
|
}
|
|
clang::QualType NonRefQT(QT.getNonReferenceType());
|
|
ExprMemory.resize(++nargs);
|
|
new (&ExprMemory[nargs-1]) OpaqueValueExpr(TSI->getTypeLoc().getLocStart(),
|
|
NonRefQT, VK);
|
|
}
|
|
// Type names should be comma separated.
|
|
// FIXME: Here if we have type followed by name won't work. Eg int f, ...
|
|
if (!P.getCurToken().is(clang::tok::comma)) {
|
|
break;
|
|
}
|
|
// Eat the comma.
|
|
P.ConsumeToken();
|
|
}
|
|
for(unsigned int slot = 0; slot < nargs; ++slot) {
|
|
Expr* val = (OpaqueValueExpr*)( &ExprMemory[slot] );
|
|
GivenArgs.push_back(val);
|
|
}
|
|
if (P.getCurToken().isNot(tok::eof)) {
|
|
// We did not consume all of the prototype, bad parse.
|
|
return false;
|
|
}
|
|
//
|
|
// Cleanup after prototype parse.
|
|
//
|
|
P.SkipUntil(clang::tok::eof, /*StopAtSemi*/false, /*DontConsume*/false,
|
|
/*StopAtCodeCompletion*/false);
|
|
S.getDiagnostics().Reset();
|
|
|
|
return true;
|
|
}
|
|
|
|
static
|
|
const FunctionDecl* findAnyFunctionSelector(DeclContext* ,
|
|
bool /* objectIsConst */,
|
|
const llvm::SmallVector<Expr*, 4> &,
|
|
LookupResult &Result,
|
|
DeclarationNameInfo &,
|
|
const TemplateArgumentListInfo* ExplicitTemplateArgs,
|
|
ASTContext&, Parser &, Sema &S) {
|
|
//
|
|
// Check for lookup failure.
|
|
//
|
|
if (Result.empty())
|
|
return 0;
|
|
if (Result.isSingleResult())
|
|
return dyn_cast<FunctionDecl>(Result.getFoundDecl());
|
|
else {
|
|
NamedDecl *aResult = *(Result.begin());
|
|
FunctionDecl *res = dyn_cast<FunctionDecl>(aResult);
|
|
if (res) return res;
|
|
FunctionTemplateDecl *MethodTmpl =dyn_cast<FunctionTemplateDecl>(aResult);
|
|
if (MethodTmpl) {
|
|
// pick a specialization that result match the given arguments
|
|
SourceLocation loc;
|
|
sema::TemplateDeductionInfo Info(loc);
|
|
FunctionDecl *fdecl = 0;
|
|
Sema::TemplateDeductionResult Result
|
|
= S.DeduceTemplateArguments(MethodTmpl,
|
|
const_cast<TemplateArgumentListInfo*>(ExplicitTemplateArgs),
|
|
fdecl,
|
|
Info);
|
|
if (Result) {
|
|
// deduction failure
|
|
return 0;
|
|
} else {
|
|
// Instantiate the function is needed.
|
|
if (!fdecl->isDefined())
|
|
S.InstantiateFunctionDefinition(loc,fdecl,true);
|
|
return fdecl;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
const FunctionDecl* LookupHelper::findAnyFunction(const clang::Decl*scopeDecl,
|
|
llvm::StringRef funcName,
|
|
bool objectIsConst
|
|
) const{
|
|
|
|
//FIXME: remove code duplication with findFunctionArgs() and friends.
|
|
|
|
assert(scopeDecl && "Decl cannot be null");
|
|
//
|
|
// Some utilities.
|
|
//
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
ASTContext& Context = S.getASTContext();
|
|
|
|
//
|
|
// Convert the passed decl into a nested name specifier,
|
|
// a scope spec, and a decl context.
|
|
//
|
|
// Do this 'early' to save on the expansive parser setup,
|
|
// in case of failure.
|
|
//
|
|
CXXScopeSpec SS;
|
|
DeclContext* foundDC = getContextAndSpec(SS,scopeDecl,Context,S);
|
|
if (!foundDC) return 0;
|
|
|
|
ParserStateRAII ResetParserState(P);
|
|
llvm::SmallVector<Expr*, 4> GivenArgs;
|
|
|
|
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
|
|
return findFunction(foundDC, SS,
|
|
funcName, GivenArgs, objectIsConst,
|
|
Context, P, S, findAnyFunctionSelector);
|
|
}
|
|
|
|
const FunctionDecl* LookupHelper::findFunctionProto(const Decl* scopeDecl,
|
|
llvm::StringRef funcName,
|
|
const llvm::SmallVector<QualType, 4>& funcProto,
|
|
bool objectIsConst
|
|
) const {
|
|
assert(scopeDecl && "Decl cannot be null");
|
|
//
|
|
// Some utilities.
|
|
//
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
ASTContext& Context = S.getASTContext();
|
|
|
|
//
|
|
// Convert the passed decl into a nested name specifier,
|
|
// a scope spec, and a decl context.
|
|
//
|
|
// Do this 'early' to save on the expansive parser setup,
|
|
// in case of failure.
|
|
//
|
|
CXXScopeSpec SS;
|
|
DeclContext* foundDC = getContextAndSpec(SS,scopeDecl,Context,S);
|
|
if (!foundDC) return 0;
|
|
|
|
llvm::SmallVector<ExprAlloc, 4> ExprMemory;
|
|
llvm::SmallVector<Expr*, 4> GivenArgs;
|
|
if (!funcProto.empty()) {
|
|
if (!getExprProto(ExprMemory, GivenArgs, funcProto) ) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Parse the prototype now.
|
|
//
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing("", llvm::StringRef("func.prototype.file"));
|
|
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
|
|
return findFunction(foundDC, SS,
|
|
funcName, GivenArgs, objectIsConst,
|
|
Context, P, S,
|
|
overloadFunctionSelector);
|
|
}
|
|
|
|
const FunctionDecl* LookupHelper::findFunctionProto(const Decl* scopeDecl,
|
|
llvm::StringRef funcName,
|
|
llvm::StringRef funcProto,
|
|
bool objectIsConst
|
|
) const {
|
|
assert(scopeDecl && "Decl cannot be null");
|
|
//
|
|
// Some utilities.
|
|
//
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
ASTContext& Context = S.getASTContext();
|
|
|
|
//
|
|
// Convert the passed decl into a nested name specifier,
|
|
// a scope spec, and a decl context.
|
|
//
|
|
// Do this 'early' to save on the expansive parser setup,
|
|
// in case of failure.
|
|
//
|
|
CXXScopeSpec SS;
|
|
DeclContext* foundDC = getContextAndSpec(SS,scopeDecl,Context,S);
|
|
if (!foundDC) return 0;
|
|
|
|
//
|
|
// Parse the prototype now.
|
|
//
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing(funcProto, llvm::StringRef("func.prototype.file"));
|
|
|
|
llvm::SmallVector<ExprAlloc, 4> ExprMemory;
|
|
llvm::SmallVector<Expr*, 4> GivenArgs;
|
|
if (!funcProto.empty()) {
|
|
if (!ParseProto(ExprMemory, GivenArgs,Context,P,S) ) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
|
|
return findFunction(foundDC, SS,
|
|
funcName, GivenArgs, objectIsConst,
|
|
Context, P, S,
|
|
overloadFunctionSelector);
|
|
}
|
|
|
|
const FunctionDecl* LookupHelper::matchFunctionProto(const Decl* scopeDecl,
|
|
llvm::StringRef funcName,
|
|
llvm::StringRef funcProto,
|
|
bool objectIsConst
|
|
) const {
|
|
assert(scopeDecl && "Decl cannot be null");
|
|
//
|
|
// Some utilities.
|
|
//
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
ASTContext& Context = S.getASTContext();
|
|
|
|
//
|
|
// Convert the passed decl into a nested name specifier,
|
|
// a scope spec, and a decl context.
|
|
//
|
|
// Do this 'early' to save on the expansive parser setup,
|
|
// in case of failure.
|
|
//
|
|
CXXScopeSpec SS;
|
|
DeclContext* foundDC = getContextAndSpec(SS,scopeDecl,Context,S);
|
|
if (!foundDC) return 0;
|
|
|
|
//
|
|
// Parse the prototype now.
|
|
//
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing(funcProto, llvm::StringRef("func.prototype.file"));
|
|
|
|
llvm::SmallVector<ExprAlloc, 4> ExprMemory;
|
|
llvm::SmallVector<Expr*, 4> GivenArgs;
|
|
if (!funcProto.empty()) {
|
|
if (!ParseProto(ExprMemory,GivenArgs,Context,P,S) ) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
|
|
return findFunction(foundDC, SS,
|
|
funcName, GivenArgs, objectIsConst,
|
|
Context, P, S,
|
|
matchFunctionSelector);
|
|
}
|
|
|
|
const FunctionDecl* LookupHelper::matchFunctionProto(const Decl* scopeDecl,
|
|
llvm::StringRef funcName,
|
|
const llvm::SmallVector<QualType, 4>& funcProto,
|
|
bool objectIsConst
|
|
) const {
|
|
assert(scopeDecl && "Decl cannot be null");
|
|
//
|
|
// Some utilities.
|
|
//
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
ASTContext& Context = S.getASTContext();
|
|
|
|
//
|
|
// Convert the passed decl into a nested name specifier,
|
|
// a scope spec, and a decl context.
|
|
//
|
|
// Do this 'early' to save on the expansive parser setup,
|
|
// in case of failure.
|
|
//
|
|
CXXScopeSpec SS;
|
|
DeclContext* foundDC = getContextAndSpec(SS,scopeDecl,Context,S);
|
|
if (!foundDC) return 0;
|
|
|
|
|
|
llvm::SmallVector<ExprAlloc, 4> ExprMemory;
|
|
llvm::SmallVector<Expr*, 4> GivenArgs;
|
|
if (!funcProto.empty()) {
|
|
if (!getExprProto(ExprMemory, GivenArgs, funcProto) ) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Parse the prototype now.
|
|
//
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing("", llvm::StringRef("func.prototype.file"));
|
|
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
|
|
return findFunction(foundDC, SS,
|
|
funcName, GivenArgs, objectIsConst,
|
|
Context, P, S,
|
|
matchFunctionSelector);
|
|
}
|
|
|
|
static
|
|
bool ParseArgs(llvm::SmallVector<Expr*, 4> &GivenArgs,
|
|
ASTContext& Context, Parser &P, Sema &S) {
|
|
|
|
//
|
|
// Parse the arguments now.
|
|
//
|
|
|
|
PrintingPolicy Policy(Context.getPrintingPolicy());
|
|
Policy.SuppressTagKeyword = true;
|
|
Policy.SuppressUnwrittenScope = true;
|
|
Policy.SuppressInitializers = true;
|
|
Policy.AnonymousTagLocations = false;
|
|
std::string proto;
|
|
{
|
|
bool first_time = true;
|
|
while (P.getCurToken().isNot(tok::eof)) {
|
|
ExprResult Res = P.ParseAssignmentExpression();
|
|
if (Res.isUsable()) {
|
|
Expr* expr = Res.release();
|
|
GivenArgs.push_back(expr);
|
|
if (first_time) {
|
|
first_time = false;
|
|
}
|
|
else {
|
|
proto += ',';
|
|
}
|
|
std::string empty;
|
|
llvm::raw_string_ostream tmp(empty);
|
|
expr->printPretty(tmp, /*PrinterHelper=*/0, Policy,
|
|
/*Indentation=*/0);
|
|
proto += tmp.str();
|
|
}
|
|
if (!P.getCurToken().is(tok::comma)) {
|
|
break;
|
|
}
|
|
P.ConsumeToken();
|
|
}
|
|
}
|
|
// For backward compatibility with CINT accept (for now?) a trailing close
|
|
// parenthesis.
|
|
if (P.getCurToken().isNot(tok::eof) && P.getCurToken().isNot(tok::r_paren) ) {
|
|
// We did not consume all of the arg list, bad parse.
|
|
return false;
|
|
}
|
|
//
|
|
// Cleanup after the arg list parse.
|
|
//
|
|
P.SkipUntil(clang::tok::eof, /*StopAtSemi*/false, /*DontConsume*/false,
|
|
/*StopAtCodeCompletion*/false);
|
|
S.getDiagnostics().Reset();
|
|
return true;
|
|
}
|
|
|
|
const FunctionDecl* LookupHelper::findFunctionArgs(const Decl* scopeDecl,
|
|
llvm::StringRef funcName,
|
|
llvm::StringRef funcArgs,
|
|
bool objectIsConst
|
|
) const {
|
|
assert(scopeDecl && "Decl cannot be null");
|
|
//
|
|
// Some utilities.
|
|
//
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
ASTContext& Context = S.getASTContext();
|
|
|
|
//
|
|
// Convert the passed decl into a nested name specifier,
|
|
// a scope spec, and a decl context.
|
|
//
|
|
// Do this 'early' to save on the expansive parser setup,
|
|
// in case of failure.
|
|
//
|
|
CXXScopeSpec SS;
|
|
DeclContext* foundDC = getContextAndSpec(SS,scopeDecl,Context,S);
|
|
if (!foundDC) return 0;
|
|
|
|
//
|
|
// Parse the arguments now.
|
|
//
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing(funcArgs, llvm::StringRef("func.args.file"));
|
|
|
|
llvm::SmallVector<Expr*, 4> GivenArgs;
|
|
if (!funcArgs.empty()) {
|
|
if (!ParseArgs(GivenArgs,Context,P,S) ) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
|
|
return findFunction(foundDC, SS,
|
|
funcName, GivenArgs, objectIsConst,
|
|
Context, P, S, overloadFunctionSelector);
|
|
}
|
|
|
|
void LookupHelper::findArgList(llvm::StringRef argList,
|
|
llvm::SmallVector<Expr*, 4>& argExprs) const {
|
|
if (argList.empty()) return;
|
|
|
|
//
|
|
// Some utilities.
|
|
//
|
|
// Use P for shortness
|
|
Parser& P = *m_Parser;
|
|
ParserStateRAII ResetParserState(P);
|
|
prepareForParsing(argList, llvm::StringRef("arg.list.file"));
|
|
//
|
|
// Parse the arguments now.
|
|
//
|
|
{
|
|
bool hasUnusableResult = false;
|
|
while (P.getCurToken().isNot(tok::eof)) {
|
|
ExprResult Res = P.ParseAssignmentExpression();
|
|
if (Res.isUsable()) {
|
|
argExprs.push_back(Res.release());
|
|
}
|
|
else {
|
|
hasUnusableResult = true;
|
|
break;
|
|
}
|
|
if (!P.getCurToken().is(tok::comma)) {
|
|
break;
|
|
}
|
|
P.ConsumeToken();
|
|
}
|
|
if (hasUnusableResult)
|
|
// if one of the arguments is not usable return empty.
|
|
argExprs.clear();
|
|
}
|
|
}
|
|
|
|
void LookupHelper::prepareForParsing(llvm::StringRef code,
|
|
llvm::StringRef bufferName) const {
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
Preprocessor& PP = P.getPreprocessor();
|
|
//
|
|
// Tell the diagnostic engine to ignore all diagnostics.
|
|
//
|
|
PP.getDiagnostics().setSuppressAllDiagnostics(true);
|
|
//
|
|
// Tell the parser to not attempt spelling correction.
|
|
//
|
|
const_cast<LangOptions&>(PP.getLangOpts()).SpellChecking = 0;
|
|
//
|
|
// Turn on ignoring of the main file eof token.
|
|
//
|
|
// Note: We need this because token readahead in the following
|
|
// routine calls ends up parsing it multiple times.
|
|
//
|
|
if (!PP.isIncrementalProcessingEnabled()) {
|
|
PP.enableIncrementalProcessing();
|
|
}
|
|
if (!code.empty()) {
|
|
//
|
|
// Create a fake file to parse the type name.
|
|
//
|
|
llvm::MemoryBuffer* SB
|
|
= llvm::MemoryBuffer::getMemBufferCopy(code.str() + "\n",
|
|
bufferName.str());
|
|
FileID FID = S.getSourceManager().createFileIDForMemBuffer(SB);
|
|
//
|
|
// Switch to the new file the way #include does.
|
|
//
|
|
// Note: To switch back to the main file we must consume an eof token.
|
|
//
|
|
PP.EnterSourceFile(FID, /*DirLookup=*/0, SourceLocation());
|
|
PP.Lex(const_cast<Token&>(P.getCurToken()));
|
|
}
|
|
}
|
|
|
|
static
|
|
bool hasFunctionSelector(DeclContext* ,
|
|
bool /* objectIsConst */,
|
|
const llvm::SmallVector<Expr*, 4> &,
|
|
LookupResult &Result,
|
|
DeclarationNameInfo &,
|
|
const TemplateArgumentListInfo* ,
|
|
ASTContext&, Parser &, Sema &) {
|
|
//
|
|
// Check for lookup failure.
|
|
//
|
|
if (Result.empty())
|
|
return false;
|
|
if (Result.isSingleResult())
|
|
return isa<FunctionDecl>(Result.getFoundDecl());
|
|
// We have many - those must be functions.
|
|
return true;
|
|
}
|
|
|
|
bool LookupHelper::hasFunction(const clang::Decl* scopeDecl,
|
|
llvm::StringRef funcName) const {
|
|
|
|
//FIXME: remove code duplication with findFunctionArgs() and friends.
|
|
|
|
assert(scopeDecl && "Decl cannot be null");
|
|
//
|
|
// Some utilities.
|
|
//
|
|
Parser& P = *m_Parser;
|
|
Sema& S = P.getActions();
|
|
ASTContext& Context = S.getASTContext();
|
|
|
|
//
|
|
// Convert the passed decl into a nested name specifier,
|
|
// a scope spec, and a decl context.
|
|
//
|
|
// Do this 'early' to save on the expansive parser setup,
|
|
// in case of failure.
|
|
//
|
|
CXXScopeSpec SS;
|
|
DeclContext* foundDC = getContextAndSpec(SS,scopeDecl,Context,S);
|
|
if (!foundDC) return 0;
|
|
|
|
ParserStateRAII ResetParserState(P);
|
|
llvm::SmallVector<Expr*, 4> GivenArgs;
|
|
|
|
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
|
|
return findFunction(foundDC, SS,
|
|
funcName, GivenArgs, false /* objectIsConst */,
|
|
Context, P, S, hasFunctionSelector);
|
|
}
|
|
|
|
|
|
} // end namespace cling
|