cling/lib/Interpreter/IncrementalJIT.cpp
Bertrand Bellenot 92213e719a Switch object format from ELF to COFF and fix symbols lookup
- Switch object format from ELF (Linux) to COFF (Windows)
- Fix mangled symbols lookup on Windows: remove leading '_' and use malloc to simulate __imp_ variables (that are indirection pointers)
2017-11-29 22:30:07 +01:00

460 lines
17 KiB
C++

//--------------------------------------------------------------------*- C++ -*-
// CLING - the C++ LLVM-based InterpreterG :)
// author: Axel Naumann <axel@cern.ch>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
#include "IncrementalJIT.h"
#include "IncrementalExecutor.h"
#include "cling/Utils/Platform.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/Support/DynamicLibrary.h"
#if defined(__APPLE__) || defined (_MSC_VER)
// Apple and Windows add an extra '_'
# define MANGLE_PREFIX "_"
#endif
using namespace llvm;
namespace {
///\brief Memory manager providing the lop-level link to the
/// IncrementalExecutor, handles missing or special / replaced symbols.
class ClingMemoryManager: public SectionMemoryManager {
public:
ClingMemoryManager(cling::IncrementalExecutor& Exe) {}
///\brief Simply wraps the base class's function setting AbortOnFailure
/// to false and instead using the error handling mechanism to report it.
void* getPointerToNamedFunction(const std::string &Name,
bool /*AbortOnFailure*/ =true) override {
return SectionMemoryManager::getPointerToNamedFunction(Name, false);
}
};
class NotifyFinalizedT {
public:
NotifyFinalizedT(cling::IncrementalJIT &jit) : m_JIT(jit) {}
void operator()(llvm::orc::RTDyldObjectLinkingLayerBase::ObjHandleT H) {
m_JIT.RemoveUnfinalizedSection(H);
}
private:
cling::IncrementalJIT &m_JIT;
};
} // unnamed namespace
namespace cling {
///\brief Memory manager for the OrcJIT layers to resolve symbols from the
/// common IncrementalJIT. I.e. the master of the Orcs.
/// Each ObjectLayer instance has one Azog object.
class Azog: public RTDyldMemoryManager {
cling::IncrementalJIT& m_jit;
struct AllocInfo {
uint8_t *m_Start = nullptr;
uint8_t *m_End = nullptr;
uint8_t *m_Current = nullptr;
void allocate(RTDyldMemoryManager *exeMM,
uintptr_t Size, uint32_t Align,
bool code, bool isReadOnly) {
uintptr_t RequiredSize = Size;
if (code)
m_Start = exeMM->allocateCodeSection(RequiredSize, Align,
0 /* SectionID */,
"codeReserve");
else if (isReadOnly)
m_Start = exeMM->allocateDataSection(RequiredSize, Align,
0 /* SectionID */,
"rodataReserve",isReadOnly);
else
m_Start = exeMM->allocateDataSection(RequiredSize, Align,
0 /* SectionID */,
"rwataReserve",isReadOnly);
m_Current = m_Start;
m_End = m_Start + RequiredSize;
}
uint8_t* getNextAddr(uintptr_t Size, unsigned Alignment) {
if (!Alignment)
Alignment = 16;
assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two.");
uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1)/Alignment + 1);
if ( (m_Current + RequiredSize) > m_End ) {
// This must be the last block.
if ((m_Current + Size) <= m_End) {
RequiredSize = Size;
} else {
cling::errs() << "Error in block allocation by Azog. "
<< "Not enough memory was reserved for the current module. "
<< Size << " (with alignment: " << RequiredSize
<< " ) is needed but\n"
<< "we only have " << (m_End - m_Current) << ".\n";
return nullptr;
}
}
uintptr_t Addr = (uintptr_t)m_Current;
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
m_Current = (uint8_t*)(Addr + Size);
return (uint8_t*)Addr;
}
operator bool() {
return m_Current != nullptr;
}
};
AllocInfo m_Code;
AllocInfo m_ROData;
AllocInfo m_RWData;
#ifdef CLING_WIN_SEH_EXCEPTIONS
uintptr_t getBaseAddr() const {
if (LLVM_LIKELY(m_Code.m_Start && m_ROData.m_Start && m_RWData.m_Start)) {
return uintptr_t(std::min(std::min(m_Code.m_Start, m_ROData.m_Start),
m_RWData.m_Start));
}
if (LLVM_LIKELY(m_Code.m_Start)) {
return uintptr_t(m_ROData.m_Start
? std::min(m_Code.m_Start, m_ROData.m_Start)
: std::min(m_Code.m_Start, m_RWData.m_Start));
}
return uintptr_t(m_ROData.m_Start && m_RWData.m_Start
? std::min(m_ROData.m_Start, m_RWData.m_Start)
: std::max(m_ROData.m_Start, m_RWData.m_Start));
}
// FIXME: This is directly mirroring a structure in RTDyldMemoryManager that
// is private. Get Win64 exceptions into LLVM or add an accessor for it.
platform::windows::EHFrameInfos m_EHFrames;
#endif
public:
Azog(cling::IncrementalJIT& Jit): m_jit(Jit) {}
RTDyldMemoryManager* getExeMM() const { return m_jit.m_ExeMM.get(); }
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override {
uint8_t *Addr = nullptr;
if (m_Code) {
Addr = m_Code.getNextAddr(Size, Alignment);
}
if (!Addr) {
Addr = getExeMM()->allocateCodeSection(Size, Alignment, SectionID, SectionName);
m_jit.m_SectionsAllocatedSinceLastLoad.insert(Addr);
}
return Addr;
}
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override {
uint8_t *Addr = nullptr;
if (IsReadOnly && m_ROData) {
Addr = m_ROData.getNextAddr(Size,Alignment);
} else if (m_RWData) {
Addr = m_RWData.getNextAddr(Size,Alignment);
}
if (!Addr) {
Addr = getExeMM()->allocateDataSection(Size, Alignment, SectionID,
SectionName, IsReadOnly);
m_jit.m_SectionsAllocatedSinceLastLoad.insert(Addr);
}
return Addr;
}
void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
uintptr_t RODataSize, uint32_t RODataAlign,
uintptr_t RWDataSize, uint32_t RWDataAlign) override {
m_Code.allocate(getExeMM(),CodeSize, CodeAlign, true, false);
m_ROData.allocate(getExeMM(),RODataSize, RODataAlign, false, true);
m_RWData.allocate(getExeMM(),RWDataSize, RWDataAlign, false, false);
m_jit.m_SectionsAllocatedSinceLastLoad.insert(m_Code.m_Start);
m_jit.m_SectionsAllocatedSinceLastLoad.insert(m_ROData.m_Start);
m_jit.m_SectionsAllocatedSinceLastLoad.insert(m_RWData.m_Start);
}
bool needsToReserveAllocationSpace() override {
return true; // getExeMM()->needsToReserveAllocationSpace();
}
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {
#ifdef CLING_WIN_SEH_EXCEPTIONS
const platform::windows::RuntimePRFunction PRFunc = { Addr, Size };
m_EHFrames.emplace_back(PRFunc);
#else
return getExeMM()->registerEHFrames(Addr, LoadAddr, Size);
#endif
}
void deregisterEHFrames() override {
#ifdef CLING_WIN_SEH_EXCEPTIONS
platform::DeRegisterEHFrames(getBaseAddr(), m_EHFrames);
platform::windows::EHFrameInfos().swap(m_EHFrames);
#else
return getExeMM()->deregisterEHFrames();
#endif
}
uint64_t getSymbolAddress(const std::string &Name) override {
// FIXME: We should decide if we want to handle the error here or make the
// return type of the function llvm::Expected<uint64_t> relying on the
// users to decide how to handle the error.
if (auto Addr = m_jit.getSymbolAddressWithoutMangling(Name,
true /*also use dlsym*/)
.getAddress())
return *Addr;
llvm_unreachable("Handle the error case");
return ~0U;
}
void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) override {
return getExeMM()->getPointerToNamedFunction(Name, AbortOnFailure);
}
using llvm::RuntimeDyld::MemoryManager::notifyObjectLoaded;
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &O) override {
return getExeMM()->notifyObjectLoaded(EE, O);
}
bool finalizeMemory(std::string *ErrMsg = nullptr) override {
// Each set of objects loaded will be finalized exactly once, but since
// symbol lookup during relocation may recursively trigger the
// loading/relocation of other modules, and since we're forwarding all
// finalizeMemory calls to a single underlying memory manager, we need to
// defer forwarding the call on until all necessary objects have been
// loaded. Otherwise, during the relocation of a leaf object, we will end
// up finalizing memory, causing a crash further up the stack when we
// attempt to apply relocations to finalized memory.
// To avoid finalizing too early, look at how many objects have been
// loaded but not yet finalized. This is a bit of a hack that relies on
// the fact that we're lazily emitting object files: The only way you can
// get more than one set of objects loaded but not yet finalized is if
// they were loaded during relocation of another set.
if (m_jit.m_UnfinalizedSections.size() == 1) {
#ifdef CLING_WIN_SEH_EXCEPTIONS
platform::RegisterEHFrames(getBaseAddr(), m_EHFrames, true);
#endif
return getExeMM()->finalizeMemory(ErrMsg);
}
return false;
};
}; // class Azog
IncrementalJIT::IncrementalJIT(IncrementalExecutor& exe,
std::unique_ptr<TargetMachine> TM):
m_Parent(exe),
m_TM(std::move(TM)),
m_TMDataLayout(m_TM->createDataLayout()),
m_ExeMM(std::make_shared<ClingMemoryManager>(m_Parent)),
m_NotifyObjectLoaded(*this),
m_ObjectLayer(m_SymbolMap, [this] () { return llvm::make_unique<Azog>(*this); },
m_NotifyObjectLoaded, NotifyFinalizedT(*this)),
m_CompileLayer(m_ObjectLayer, llvm::orc::SimpleCompiler(*m_TM)),
m_LazyEmitLayer(m_CompileLayer) {
// Force the JIT to query for symbols local to itself, i.e. if it resides in a
// shared library it will resolve symbols from there first. This is done to
// implement our proto symbol versioning protection. Namely, if some other
// library provides llvm symbols, we want out JIT to avoid looking at them.
//
// FIXME: In general, this approach causes numerous issues when cling is
// embedded and the framework needs to provide its own set of symbols which
// exist in llvm. Most notably if the framework links against different
// versions of linked against llvm libraries. For instance, if we want to provide
// a custom zlib in the framework the JIT will still resolve to llvm's version
// of libz causing hard-to-debug bugs. In order to work around such cases we
// need to swap the llvm system libraries, which can be tricky for two
// reasons: (a) llvm's cmake doesn't really support it; (b) only works if we
// build llvm from sources.
llvm::sys::DynamicLibrary::SearchOrder
= llvm::sys::DynamicLibrary::SO_LoadedFirst;
// Enable JIT symbol resolution from the binary.
llvm::sys::DynamicLibrary::LoadLibraryPermanently(0, 0);
// Make debug symbols available.
m_GDBListener = 0; // JITEventListener::createGDBRegistrationListener();
// #if MCJIT
// llvm::EngineBuilder builder(std::move(m));
// std::string errMsg;
// builder.setErrorStr(&errMsg);
// builder.setOptLevel(llvm::CodeGenOpt::Less);
// builder.setEngineKind(llvm::EngineKind::JIT);
// std::unique_ptr<llvm::RTDyldMemoryManager>
// MemMan(new ClingMemoryManager(*this));
// builder.setMCJITMemoryManager(std::move(MemMan));
// // EngineBuilder uses default c'ted TargetOptions, too:
// llvm::TargetOptions TargetOpts;
// TargetOpts.NoFramePointerElim = 1;
// TargetOpts.JITEmitDebugInfo = 1;
// builder.setTargetOptions(TargetOpts);
// m_engine.reset(builder.create());
// assert(m_engine && "Cannot create module!");
// #endif
}
llvm::JITSymbol
IncrementalJIT::getInjectedSymbols(const std::string& Name) const {
using JITSymbol = llvm::JITSymbol;
auto SymMapI = m_SymbolMap.find(Name);
if (SymMapI != m_SymbolMap.end())
return JITSymbol(SymMapI->second, llvm::JITSymbolFlags::Exported);
return JITSymbol(nullptr);
}
std::pair<void*, bool>
IncrementalJIT::lookupSymbol(llvm::StringRef Name, void *InAddr, bool Jit) {
// FIXME: See comments on DLSym below.
#if !defined(LLVM_ON_WIN32)
void* Addr = llvm::sys::DynamicLibrary::SearchForAddressOfSymbol(Name);
#else
void* Addr = const_cast<void*>(platform::DLSym(Name));
#endif
if (InAddr && (!Addr || Jit)) {
if (Jit) {
std::string Key(Name);
#ifdef MANGLE_PREFIX
Key.insert(0, MANGLE_PREFIX);
#endif
m_SymbolMap[Key] = llvm::JITTargetAddress(InAddr);
}
llvm::sys::DynamicLibrary::AddSymbol(Name, InAddr);
return std::make_pair(InAddr, true);
}
return std::make_pair(Addr, false);
}
llvm::JITSymbol
IncrementalJIT::getSymbolAddressWithoutMangling(const std::string& Name,
bool AlsoInProcess) {
if (auto Sym = getInjectedSymbols(Name))
return Sym;
if (AlsoInProcess) {
if (llvm::JITSymbol SymInfo = m_ExeMM->findSymbol(Name)) {
if (auto AddrOrErr = SymInfo.getAddress())
return llvm::JITSymbol(*AddrOrErr, llvm::JITSymbolFlags::Exported);
else
llvm_unreachable("Handle the error case");
}
#ifdef LLVM_ON_WIN32
// FIXME: DLSym symbol lookup can overlap m_ExeMM->findSymbol wasting time
// looking for a symbol in libs where it is already known not to exist.
// Perhaps a better solution would be to have IncrementalJIT own the
// DynamicLibraryManger instance (or at least have a reference) that will
// look only through user loaded libraries.
// An upside to doing it this way is RTLD_GLOBAL won't need to be used
// allowing libs with competing symbols to co-exists.
if (const void* Sym = platform::DLSym(Name))
return llvm::JITSymbol(llvm::JITTargetAddress(Sym),
llvm::JITSymbolFlags::Exported);
#endif
}
if (auto Sym = m_LazyEmitLayer.findSymbol(Name, false))
return Sym;
return llvm::JITSymbol(nullptr);
}
void IncrementalJIT::addModule(const std::shared_ptr<llvm::Module>& module) {
// If this module doesn't have a DataLayout attached then attach the
// default.
module->setDataLayout(m_TMDataLayout);
// LLVM MERGE FIXME: update this to use new interfaces.
auto Resolver = llvm::orc::createLambdaResolver(
[&](const std::string &S) {
if (auto Sym = getInjectedSymbols(S)) {
if (auto AddrOrErr = Sym.getAddress())
return JITSymbol((uint64_t)*AddrOrErr, Sym.getFlags());
else
llvm_unreachable("Handle the error case");
}
return m_ExeMM->findSymbol(S);
},
[&](const std::string &Name) {
if (auto Sym = getSymbolAddressWithoutMangling(Name, true)) {
if (auto AddrOrErr = Sym.getAddress())
return JITSymbol(*AddrOrErr, Sym.getFlags());
else
llvm_unreachable("Handle the error case");
}
const std::string* NameNP = &Name;
#ifdef MANGLE_PREFIX
std::string NameNoPrefix;
const size_t PrfxLen = strlen(MANGLE_PREFIX);
if (!Name.compare(0, PrfxLen, MANGLE_PREFIX)) {
NameNoPrefix = Name.substr(PrfxLen);
NameNP = &NameNoPrefix;
}
#endif
/// This method returns the address of the specified function or variable
/// that could not be resolved by getSymbolAddress() or by resolving
/// possible weak symbols by the ExecutionEngine.
/// It is used to resolve symbols during module linking.
uint64_t addr = uint64_t(getParent().NotifyLazyFunctionCreators(*NameNP));
return JITSymbol(addr, llvm::JITSymbolFlags::Weak);
});
if (auto H = m_LazyEmitLayer.addModule(module, std::move(Resolver)))
m_UnloadPoints[module.get()] = *H;
else
llvm_unreachable("Handle the error case");
}
llvm::Error
IncrementalJIT::removeModule(const std::shared_ptr<llvm::Module>& module) {
// FIXME: Track down what calls this routine on a not-yet-added module. Once
// this is resolved we can remove this check enabling the assert.
auto IUnload = m_UnloadPoints.find(module.get());
if (IUnload == m_UnloadPoints.end())
return llvm::Error::success();
auto Handle = IUnload->second;
assert(*Handle && "Trying to remove a non existent module!");
m_UnloadPoints.erase(IUnload);
return m_LazyEmitLayer.removeModule(Handle);
}
}// end namespace cling