cling/lib/Interpreter/DeclUnloader.cpp
Vassil Vassilev 3a82a25051 Do not rely on getSpecializations.
The getSpecialization interface now deserializes lazily template
specializations. While unloading we trigger creation of new specializations
which does not make sense.
2018-01-21 09:14:46 +01:00

1048 lines
38 KiB
C++

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// author: Vassil Vassilev <vvasilev@cern.ch>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
#include "DeclUnloader.h"
#include "cling/Utils/AST.h"
#ifdef LLVM_ON_WIN32
#include "cling/Utils/Diagnostics.h"
#endif
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Sema.h"
#include "llvm/IR/Constants.h"
namespace cling {
using namespace clang;
bool DeclUnloader::isDefinition(TagDecl* R) {
return R->isCompleteDefinition() && isa<CXXRecordDecl>(R);
}
void DeclUnloader::resetDefinitionData(TagDecl *decl) {
auto canon = dyn_cast<CXXRecordDecl>(decl->getCanonicalDecl());
assert(canon && "Only CXXRecordDecl have DefinitionData");
for (auto iter = canon->getMostRecentDecl(); iter;
iter = iter->getPreviousDecl()) {
auto declcxx = dyn_cast<CXXRecordDecl>(iter);
assert(declcxx && "Only CXXRecordDecl have DefinitionData");
declcxx->DefinitionData = nullptr;
}
}
// Copied and adapted from: ASTReaderDecl.cpp
template<typename DeclT>
void DeclUnloader::removeRedeclFromChain(DeclT* R) {
//RedeclLink is a protected member.
struct RedeclDerived : public Redeclarable<DeclT> {
typedef typename Redeclarable<DeclT>::DeclLink DeclLink_t;
static DeclLink_t& getLink(DeclT* LR) {
Redeclarable<DeclT>* D = LR;
return ((RedeclDerived*)D)->RedeclLink;
}
static void setLatest(DeclT* Latest) {
// Convert A -> Latest -> B into A -> Latest
getLink(Latest->getFirstDecl()).setLatest(Latest);
}
static void skipPrev(DeclT* Next) {
// Convert A -> B -> Next into A -> Next
DeclT* Skip = Next->getPreviousDecl();
getLink(Next).setPrevious(Skip->getPreviousDecl());
}
static void setFirst(DeclT* First) {
// Convert A -> First -> B into First -> B
DeclT* Latest = First->getMostRecentDecl();
getLink(First)
= DeclLink_t(DeclLink_t::LatestLink, First->getASTContext());
getLink(First).setLatest(Latest);
}
};
assert(R != R->getFirstDecl() && "Cannot remove only redecl from chain");
const bool isdef = isDefinition(R);
// In the following cases, A marks the first, Z the most recent and
// R the decl to be removed from the chain.
DeclT* Prev = R->getPreviousDecl();
if (R == R->getMostRecentDecl()) {
// A -> .. -> R
RedeclDerived::setLatest(Prev);
} else {
// Find the next redecl, starting at the end
DeclT* Next = R->getMostRecentDecl();
while (Next && Next->getPreviousDecl() != R)
Next = Next->getPreviousDecl();
if (!Next) {
// R is not (yet?) wired up.
return;
}
if (R->getPreviousDecl()) {
// A -> .. -> R -> .. -> Z
RedeclDerived::skipPrev(Next);
} else {
assert(R->getFirstDecl() == R && "Logic error");
// R -> .. -> Z
RedeclDerived::setFirst(Next);
}
}
// If the decl was the definition, the other decl might have their
// DefinitionData pointing to it.
// This is really need only if DeclT is a TagDecl or derived.
if (isdef) {
resetDefinitionData(Prev);
}
}
///\brief Adds the previous declaration into the lookup map on DC.
/// @param[in] D - The decl that is being removed.
/// @param[in] DC - The DeclContext to add the previous declaration of D.
///\returns the previous declaration.
///
static Decl* handleRedelaration(Decl* D, DeclContext* DC) {
NamedDecl* ND = dyn_cast<NamedDecl>(D);
if (!ND)
return nullptr;
DeclarationName Name = ND->getDeclName();
if (Name.isEmpty())
return nullptr;
NamedDecl* MostRecent = ND->getMostRecentDecl();
NamedDecl* MostRecentNotThis = MostRecent;
if (MostRecentNotThis == ND) {
MostRecentNotThis = dyn_cast_or_null<NamedDecl>(ND->getPreviousDecl());
if (!MostRecentNotThis || MostRecentNotThis == ND)
return MostRecentNotThis;
}
if (StoredDeclsMap* Map = DC->getPrimaryContext()->getLookupPtr()) {
StoredDeclsMap::iterator Pos = Map->find(Name);
if (Pos != Map->end() && !Pos->second.isNull()) {
DeclContext::lookup_result decls = Pos->second.getLookupResult();
// FIXME: A decl meant to be added in the lookup already exists
// in the lookup table. My assumption is that the DeclUnloader
// adds it here. This needs to be investigated mode. For now
// std::find gets promoted from assert to condition :)
// DeclContext::lookup_result::iterator is not an InputIterator
// (const member, thus no op=(const iterator&)), thus we cannot use
// std::find. MSVC actually cares!
auto hasDecl = [](const DeclContext::lookup_result& Result,
const NamedDecl* Needle) -> bool {
for (auto IDecl: Result) {
if (IDecl == Needle)
return true;
}
return false;
};
if (!hasDecl(decls, MostRecentNotThis) && hasDecl(decls, ND)) {
// The decl was registered in the lookup, update it.
Pos->second.HandleRedeclaration(MostRecentNotThis,
/*IsKnownNewer*/ true);
}
}
}
return MostRecentNotThis;
}
///\brief Removes given declaration from the chain of redeclarations.
/// Rebuilds the chain and sets properly first and last redeclaration.
/// @param[in] R - The redeclarable, its chain to be rebuilt.
/// @param[in] DC - Remove the redecl's lookup entry from this DeclContext.
///
///\returns the most recent redeclaration in the new chain.
///
template <typename T>
bool DeclUnloader::VisitRedeclarable(clang::Redeclarable<T>* R, DeclContext* DC) {
if (R->getFirstDecl() == R) {
// This is the only element in the chain.
return true;
}
// Make sure we update the lookup maps, because the removed decl might
// be registered in the lookup and still findable.
T* MostRecentNotThis = (T*)handleRedelaration((T*)R, DC);
// Set a new latest redecl.
removeRedeclFromChain((T*)R);
#ifndef NDEBUG
// Validate redecl chain by iterating through it.
std::set<clang::Redeclarable<T>*> CheckUnique;
(void)CheckUnique;
for (auto RD: MostRecentNotThis->redecls()) {
assert(CheckUnique.insert(RD).second && "Dupe redecl chain element");
(void)RD;
}
#else
(void)MostRecentNotThis; // templated function issues a lot -Wunused-variable
#endif
return true;
}
// Copied and adapted from GlobalDCE.cpp
class GlobalValueEraser {
private:
typedef llvm::SmallPtrSet<llvm::GlobalValue*, 32> Globals;
Globals VisitedGlobals;
llvm::SmallPtrSet<llvm::Constant *, 8> SeenConstants;
clang::CodeGenerator* m_CodeGen;
public:
GlobalValueEraser(clang::CodeGenerator* CG)
: m_CodeGen(CG) { }
///\brief Erases the given global value and all unused leftovers
///
///\param[in] GV - The removal starting point.
///
///\returns true if something was erased.
///
bool EraseGlobalValue(llvm::GlobalValue* GV) {
using namespace llvm;
bool Changed = false;
Changed |= RemoveUnusedGlobalValue(*GV);
// Collect all uses of globals by GV
CollectAllUsesOfGlobals(GV);
FindUsedValues(*GV->getParent());
// The first pass is to drop initializers of global vars which are dead.
for (Globals::iterator I = VisitedGlobals.begin(),
E = VisitedGlobals.end(); I != E; ++I)
if (GlobalVariable* GVar = dyn_cast<GlobalVariable>(*I)) {
GVar->setInitializer(0);
}
else if (GlobalAlias* GA = dyn_cast<GlobalAlias>(*I)) {
GA->setAliasee(0);
}
else {
Function* F = cast<Function>(*I);
if (!F->isDeclaration())
F->deleteBody();
}
if (!VisitedGlobals.empty()) {
// Now that all interferences have been dropped, delete the actual
// objects themselves.
for (Globals::iterator I = VisitedGlobals.begin(),
E = VisitedGlobals.end(); I != E; ++I) {
RemoveUnusedGlobalValue(**I);
if ((*I)->getNumUses())
continue;
// Required by ::DwarfEHPrepare::InsertUnwindResumeCalls (in the JIT)
if ((*I)->getName().equals("_Unwind_Resume"))
continue;
m_CodeGen->forgetGlobal(*I);
(*I)->eraseFromParent();
}
Changed = true;
}
// Make sure that all memory is released
VisitedGlobals.clear();
SeenConstants.clear();
return Changed;
}
private:
/// Find values that are marked as llvm.used.
void FindUsedValues(const llvm::Module& m) {
for (const llvm::GlobalVariable& GV : m.globals()) {
if (!GV.getName().startswith("llvm.used"))
continue;
const llvm::ConstantArray* Inits
= cast<llvm::ConstantArray>(GV.getInitializer());
for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i) {
llvm::Value *Operand
= Inits->getOperand(i)->stripPointerCastsNoFollowAliases();
VisitedGlobals.erase(cast<llvm::GlobalValue>(Operand));
}
}
}
/// CollectAllUsesOfGlobals - collects recursively all referenced globals by
/// GV.
void CollectAllUsesOfGlobals(llvm::GlobalValue *G) {
using namespace llvm;
// If the global is already in the set, no need to reprocess it.
if (!VisitedGlobals.insert(G).second)
return;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G)) {
// If this is a global variable, we must make sure to add any global
// values referenced by the initializer to the collection set.
if (GV->hasInitializer())
MarkConstant(GV->getInitializer());
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(G)) {
// The target of a global alias as referenced.
// GA->getAliasee() is sometimes returning NULL on Windows
if (llvm::Constant* C = GA->getAliasee())
MarkConstant(C);
} else {
// Otherwise this must be a function object. We have to scan the body
// of the function looking for constants and global values which are
// used as operands. Any operands of these types must be processed to
// ensure that any globals used will be marked as collected.
Function *F = cast<Function>(G);
if (F->hasPrefixData())
MarkConstant(F->getPrefixData());
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
for (User::op_iterator U = I->op_begin(), E = I->op_end();U!=E; ++U)
if (GlobalValue *GV = dyn_cast<GlobalValue>(*U))
CollectAllUsesOfGlobals(GV);
else if (Constant *C = dyn_cast<Constant>(*U))
MarkConstant(C);
}
}
void MarkConstant(llvm::Constant *C) {
using namespace llvm;
if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
return CollectAllUsesOfGlobals(GV);
// Loop over all of the operands of the constant, adding any globals they
// use to the list of needed globals.
for (User::op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) {
Constant *Op = dyn_cast<Constant>(*I);
// We already processed this constant there's no need to do it again.
if (Op && SeenConstants.insert(Op).second)
MarkConstant(Op);
}
}
// RemoveUnusedGlobalValue - Loop over all of the uses of the specified
// GlobalValue, looking for the constant pointer ref that may be pointing to
// it. If found, check to see if the constant pointer ref is safe to
// destroy, and if so, nuke it. This will reduce the reference count on the
// global value, which might make it deader.
//
bool RemoveUnusedGlobalValue(llvm::GlobalValue &GV) {
using namespace llvm;
if (GV.use_empty())
return false;
GV.removeDeadConstantUsers();
return GV.use_empty();
}
};
DeclUnloader::~DeclUnloader() {
SourceManager& SM = m_Sema->getSourceManager();
for (FileIDs::iterator I = m_FilesToUncache.begin(),
E = m_FilesToUncache.end(); I != E; ++I) {
// We need to reset the cache
SM.invalidateCache(*I);
}
}
void DeclUnloader::CollectFilesToUncache(SourceLocation Loc) {
if (!m_CurTransaction)
return;
const SourceManager& SM = m_Sema->getSourceManager();
FileID FID = SM.getFileID(SM.getSpellingLoc(Loc));
// FID == m_CurTransaction->getBufferFID() done last in TransactionUnloader
if (!FID.isInvalid() && FID > m_CurTransaction->getBufferFID())
m_FilesToUncache.insert(FID);
}
bool DeclUnloader::VisitDecl(Decl* D) {
assert(D && "The Decl is null");
CollectFilesToUncache(D->getLocStart());
DeclContext* DC = D->getLexicalDeclContext();
bool Successful = true;
if (DC->containsDecl(D))
DC->removeDecl(D);
// With the bump allocator this is nop.
if (Successful)
m_Sema->getASTContext().Deallocate(D);
return Successful;
}
// Remove a decl and possibly it's parent entry in lookup tables.
static void eraseDeclFromMap(StoredDeclsMap* Map, NamedDecl* ND) {
assert(Map && ND && "eraseDeclFromMap recieved NULL value(s)");
// Make sure we the decl doesn't exist in the lookup tables.
StoredDeclsMap::iterator Pos = Map->find(ND->getDeclName());
if (Pos != Map->end()) {
// Most decls only have one entry in their list, special case it.
if (Pos->second.getAsDecl() == ND) {
// This is the only decl, no need to call Pos->second.remove(ND);
// as it only sets data to nullptr, just remove the entire entry
Map->erase(Pos);
}
else if (StoredDeclsList::DeclsTy* Vec = Pos->second.getAsVector()) {
// Otherwise iterate over the list with entries with the same name.
for (NamedDecl* NDi : *Vec) {
if (NDi == ND)
Pos->second.remove(ND);
}
if (Vec->empty())
Map->erase(Pos);
}
else if (Pos->second.isNull()) // least common case
Map->erase(Pos);
}
}
#ifndef NDEBUG
// Make sure we the decl doesn't exist in the lookup tables.
static void checkDeclIsGone(StoredDeclsMap* Map, NamedDecl* ND) {
assert(Map && ND && "checkDeclIsGone recieved NULL value(s)");
StoredDeclsMap::iterator Pos = Map->find(ND->getDeclName());
if ( Pos != Map->end()) {
// Most decls only have one entry in their list, special case it.
if (NamedDecl* OldD = Pos->second.getAsDecl())
assert(OldD != ND && "Lookup entry still exists.");
else if (StoredDeclsList::DeclsTy* Vec = Pos->second.getAsVector()) {
// Otherwise iterate over the list with entries with the same name.
// TODO: Walk the redeclaration chain if the entry was a redeclaration.
for (StoredDeclsList::DeclsTy::const_iterator I = Vec->begin(),
E = Vec->end(); I != E; ++I)
assert(*I != ND && "Lookup entry still exists.");
}
else
assert(Pos->second.isNull() && "!?");
}
}
#endif
bool DeclUnloader::VisitNamedDecl(NamedDecl* ND) {
bool Successful = VisitDecl(ND);
DeclContext* DC = ND->getDeclContext();
while (DC->isTransparentContext())
DC = DC->getLookupParent();
// if the decl was anonymous we are done.
if (!ND->getIdentifier())
return Successful;
// If the decl was removed make sure that we fix the lookup
if (Successful) {
if (Scope* S = m_Sema->getScopeForContext(DC))
S->RemoveDecl(ND);
if (utils::Analyze::isOnScopeChains(ND, *m_Sema))
m_Sema->IdResolver.RemoveDecl(ND);
}
// Cleanup the lookup tables.
// DeclContexts like EnumDecls don't have lookup maps.
if (StoredDeclsMap* Map = DC->getPrimaryContext()->getLookupPtr()) {
eraseDeclFromMap(Map, ND);
#ifndef NDEBUG
checkDeclIsGone(Map, ND);
#endif
}
return Successful;
}
bool DeclUnloader::VisitDeclaratorDecl(DeclaratorDecl* DD) {
// VisitDeclaratorDecl: ValueDecl
auto found = std::find(m_Sema->UnusedFileScopedDecls.begin(/*ExtSource*/0,
/*Local*/true),
m_Sema->UnusedFileScopedDecls.end(), DD);
if (found != m_Sema->UnusedFileScopedDecls.end())
m_Sema->UnusedFileScopedDecls.erase(found,
m_Sema->UnusedFileScopedDecls.end());
return VisitValueDecl(DD);
}
bool DeclUnloader::VisitUsingShadowDecl(UsingShadowDecl* USD) {
// UsingShadowDecl: NamedDecl, Redeclarable
bool Successful = true;
// FIXME: This is needed when we have newest clang:
//Successful = VisitRedeclarable(USD, USD->getDeclContext());
Successful &= VisitNamedDecl(USD);
// Unregister from the using decl that it shadows.
USD->getUsingDecl()->removeShadowDecl(USD);
return Successful;
}
bool DeclUnloader::VisitTypedefNameDecl(TypedefNameDecl* TND) {
// TypedefNameDecl: TypeDecl, Redeclarable
bool Successful = VisitRedeclarable(TND, TND->getDeclContext());
Successful &= VisitTypeDecl(TND);
return Successful;
}
bool DeclUnloader::VisitVarDecl(VarDecl* VD) {
// llvm::Module cannot contain:
// * variables and parameters with dependent context;
// * mangled names for parameters;
if (!isa<ParmVarDecl>(VD) && !VD->getDeclContext()->isDependentContext()) {
// Cleanup the module if the transaction was committed and code was
// generated. This has to go first, because it may need the AST
// information which we will remove soon. (Eg. mangleDeclName iterates the
// redecls)
GlobalDecl GD(VD);
MaybeRemoveDeclFromModule(GD);
}
// VarDecl : DeclaratiorDecl, Redeclarable
bool Successful = VisitRedeclarable(VD, VD->getDeclContext());
Successful &= VisitDeclaratorDecl(VD);
return Successful;
}
namespace {
typedef llvm::SmallVector<VarDecl*, 2> Vars;
class StaticVarCollector : public RecursiveASTVisitor<StaticVarCollector> {
Vars& m_V;
public:
StaticVarCollector(FunctionDecl* FD, Vars& V) : m_V(V) {
TraverseStmt(FD->getBody());
}
bool VisitDeclStmt(DeclStmt* DS) {
for(DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
I != E; ++I)
if (VarDecl* VD = dyn_cast<VarDecl>(*I))
if (VD->isStaticLocal())
m_V.push_back(VD);
return true;
}
};
}
bool DeclUnloader::VisitFunctionDecl(FunctionDecl* FD) {
// The Structors need to be handled differently.
if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) {
// Cleanup the module if the transaction was committed and code was
// generated. This has to go first, because it may need the AST info
// which we will remove soon. (Eg. mangleDeclName iterates the redecls)
GlobalDecl GD(FD);
MaybeRemoveDeclFromModule(GD);
// Handle static locals. void func() { static int var; } is represented in
// the llvm::Module is a global named @func.var
Vars V;
StaticVarCollector c(FD, V);
for (Vars::iterator I = V.begin(), E = V.end(); I != E; ++I) {
GlobalDecl GD(*I);
MaybeRemoveDeclFromModule(GD);
}
}
// VisitRedeclarable() will mess around with this!
bool wasCanonical = FD->isCanonicalDecl();
// FunctionDecl : DeclaratiorDecl, DeclContext, Redeclarable
// We start with the decl context first, because parameters are part of the
// DeclContext and when trying to remove them we need the full redecl chain
// still in place.
bool Successful = VisitDeclContext(FD);
Successful &= VisitRedeclarable(FD, FD->getDeclContext());
Successful &= VisitDeclaratorDecl(FD);
// Template instantiation of templated function first creates a canonical
// declaration and after the actual template specialization. For example:
// template<typename T> T TemplatedF(T t);
// template<> int TemplatedF(int i) { return i + 1; } creates:
// 1. Canonical decl: int TemplatedF(int i);
// 2. int TemplatedF(int i){ return i + 1; }
//
// The template specialization is attached to the list of specialization of
// the templated function.
// When TemplatedF is looked up it finds the templated function and the
// lookup is extended by the templated function with its specializations.
// In the end we don't need to remove the canonical decl because, it
// doesn't end up in the lookup table.
//
class FunctionTemplateDeclExt : public FunctionTemplateDecl {
public:
static void removeSpecialization(FunctionTemplateDecl* self,
const FunctionDecl* specialization) {
assert(self && specialization && "Cannot be null!");
assert(specialization == specialization->getCanonicalDecl()
&& "Not the canonical specialization!?");
typedef llvm::SmallVector<FunctionDecl*, 4> Specializations;
typedef llvm::FoldingSetVector< FunctionTemplateSpecializationInfo> Set;
FunctionTemplateDeclExt* This = (FunctionTemplateDeclExt*) self;
Specializations specializations;
const Set& specs = This->getCommonPtr()->Specializations;
if (!specs.size()) // nothing to remove
return;
// Collect all the specializations without the one to remove.
for(Set::const_iterator I = specs.begin(),E = specs.end(); I != E; ++I){
assert(I->Function && "Must have a specialization.");
if (I->Function != specialization)
specializations.push_back(I->Function);
}
This->getCommonPtr()->Specializations.clear();
//Readd the collected specializations.
void* InsertPos = 0;
FunctionTemplateSpecializationInfo* FTSI = 0;
for (size_t i = 0, e = specializations.size(); i < e; ++i) {
FTSI = specializations[i]->getTemplateSpecializationInfo();
assert(FTSI && "Must not be null.");
// Avoid assertion on add.
FTSI->SetNextInBucket(0);
This->addSpecialization(FTSI, InsertPos);
}
#ifndef NDEBUG
const TemplateArgumentList* args
= specialization->getTemplateSpecializationArgs();
assert(!self->findSpecialization(args->asArray(), InsertPos)
&& "Finds the removed decl again!");
#endif
}
};
if (FD->isFunctionTemplateSpecialization() && wasCanonical) {
// Only the canonical declarations are registered in the list of the
// specializations.
FunctionTemplateDecl* FTD
= FD->getTemplateSpecializationInfo()->getTemplate();
// The canonical declaration of every specialization is registered with
// the FunctionTemplateDecl.
// Note this might unload too much in the case:
// template<typename T> T f(){ return T();}
// template<> int f();
// template<> int f() { return 0;}
// when the template specialization was forward declared the canonical
// becomes the first forward declaration. If the canonical forward
// declaration was declared outside the set of the decls to unload we have
// to keep it registered as a template specialization.
//
// In order to diagnose mismatches of the specializations, clang 'injects'
// a implicit forward declaration making it very hard distinguish between
// the explicit and the implicit forward declaration. So far the only way
// to distinguish is by source location comparison.
// FIXME: When the misbehavior of clang is fixed we must avoid relying on
// source locations
FunctionTemplateDeclExt::removeSpecialization(FTD, FD);
}
return Successful;
}
bool DeclUnloader::VisitCXXConstructorDecl(CXXConstructorDecl* CXXCtor) {
// Cleanup the module if the transaction was committed and code was
// generated. This has to go first, because it may need the AST information
// which we will remove soon. (Eg. mangleDeclName iterates the redecls)
// Brute-force all possibly generated ctors.
// Ctor_Complete Complete object ctor.
// Ctor_Base Base object ctor.
// Ctor_Comdat The COMDAT used for ctors.
GlobalDecl GD(CXXCtor, Ctor_Complete);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXCtor, Ctor_Base);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXCtor, Ctor_Comdat);
MaybeRemoveDeclFromModule(GD);
bool Successful = VisitCXXMethodDecl(CXXCtor);
return Successful;
}
bool DeclUnloader::VisitCXXDestructorDecl(CXXDestructorDecl* CXXDtor) {
// Cleanup the module if the transaction was committed and code was
// generated. This has to go first, because it may need the AST information
// which we will remove soon. (Eg. mangleDeclName iterates the redecls)
// Brute-force all possibly generated dtors.
// Dtor_Deleting Deleting dtor.
// Dtor_Complete Complete object dtor.
// Dtor_Base Base object dtor.
// Dtor_Comdat The COMDAT used for dtors.
GlobalDecl GD(CXXDtor, Dtor_Deleting);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXDtor, Dtor_Complete);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXDtor, Dtor_Base);
MaybeRemoveDeclFromModule(GD);
GD = GlobalDecl(CXXDtor, Dtor_Comdat);
MaybeRemoveDeclFromModule(GD);
bool Successful = VisitCXXMethodDecl(CXXDtor);
return Successful;
}
bool DeclUnloader::VisitDeclContext(DeclContext* DC) {
bool Successful = true;
typedef llvm::SmallVector<Decl*, 64> Decls;
Decls declsToErase;
// Removing from single-linked list invalidates the iterators.
for (DeclContext::decl_iterator I = DC->noload_decls_begin();
I != DC->noload_decls_end(); ++I) {
declsToErase.push_back(*I);
}
for(Decls::reverse_iterator I = declsToErase.rbegin(),
E = declsToErase.rend(); I != E; ++I) {
Successful = Visit(*I) && Successful;
assert(Successful);
}
return Successful;
}
bool DeclUnloader::VisitNamespaceDecl(NamespaceDecl* NSD) {
// NamespaceDecl: NamedDecl, DeclContext, Redeclarable
bool Successful = VisitDeclContext(NSD);
Successful &= VisitRedeclarable(NSD, NSD->getDeclContext());
Successful &= VisitNamedDecl(NSD);
return Successful;
}
bool DeclUnloader::VisitLinkageSpecDecl(LinkageSpecDecl* LSD) {
// LinkageSpecDecl: DeclContext
// Re-add any previous declarations so they are reachable throughout the
// translation unit. Also remove any global variables from:
// m_Sema->Context.getExternCContextDecl()
if (LSD->isExternCContext()) {
// Sadly ASTContext::getExternCContextDecl will create if it doesn't exist
// Hopefully LSD->isExternCContext() means that it already does exist
ExternCContextDecl* ECD = m_Sema->Context.getExternCContextDecl();
StoredDeclsMap* Map = ECD ? ECD->getLookupPtr() : nullptr;
for (Decl* D : LSD->noload_decls()) {
if (NamedDecl* ND = dyn_cast<NamedDecl>(D)) {
// extern "C" linkage goes in the translation unit
DeclContext* DC = m_Sema->getASTContext().getTranslationUnitDecl();
handleRedelaration(ND, DC);
if (Map)
eraseDeclFromMap(Map, ND);
}
}
}
bool Successful = VisitDeclContext(LSD);
Successful &= VisitDecl(LSD);
return Successful;
}
bool DeclUnloader::VisitTagDecl(TagDecl* TD) {
// TagDecl: TypeDecl, DeclContext, Redeclarable
bool Successful = VisitDeclContext(TD);
Successful &= VisitRedeclarable(TD, TD->getDeclContext());
Successful &= VisitTypeDecl(TD);
return Successful;
}
bool DeclUnloader::VisitRecordDecl(RecordDecl* RD) {
if (RD->isInjectedClassName())
return true;
/// The injected class name in C++ is the name of the class that
/// appears inside the class itself. For example:
///
/// \code
/// struct C {
/// // C is implicitly declared here as a synonym for the class name.
/// };
///
/// C::C c; // same as "C c;"
/// \endcode
// It is another question why it is on the redecl chain.
// The test show it can be either:
// ... <- InjectedC <- C <- ..., i.e previous decl or
// ... <- C <- InjectedC <- ...
RecordDecl* InjectedRD = RD->getPreviousDecl();
if (!(InjectedRD && InjectedRD->isInjectedClassName())) {
InjectedRD = RD->getMostRecentDecl();
while (InjectedRD) {
if (InjectedRD->isInjectedClassName()
&& InjectedRD->getPreviousDecl() == RD)
break;
InjectedRD = InjectedRD->getPreviousDecl();
}
}
bool Successful = true;
if (InjectedRD) {
assert(InjectedRD->isInjectedClassName() && "Not injected classname?");
Successful &= VisitRedeclarable(InjectedRD, InjectedRD->getDeclContext());
}
Successful &= VisitTagDecl(RD);
return Successful;
}
void DeclUnloader::MaybeRemoveDeclFromModule(GlobalDecl& GD) const {
if (!m_CurTransaction
|| !m_CurTransaction->getModule()) // syntax-only mode exit
return;
using namespace llvm;
if (const auto VD = dyn_cast_or_null<clang::ValueDecl>(GD.getDecl())) {
const QualType QT = VD->getType();
if (!QT.isNull() && QT->isDependentType()) {
// The module cannot contain symbols for dependent decls.
return;
}
}
// if it was successfully removed from the AST we have to check whether
// code was generated and remove it.
// From llvm's mailing list, explanation of the RAUW'd assert:
//
// The problem isn't with your call to
// replaceAllUsesWith per se, the problem is that somebody (I would guess
// the JIT?) is holding it in a ValueMap.
//
// We used to have a problem that some parts of the code would keep a
// mapping like so:
// std::map<Value *, ...>
// while somebody else would modify the Value* without them noticing,
// leading to a dangling pointer in the map. To fix that, we invented the
// ValueMap which puts a Use that doesn't show up in the use_iterator on
// the Value it holds. When the Value is erased or RAUW'd, the ValueMap is
// notified and in this case decides that's not okay and terminates the
// program.
//
// Probably what's happened here is that the calling function has had its
// code generated by the JIT, but not the callee. Thus the JIT emitted a
// call to a generated stub, and will do the codegen of the callee once
// that stub is reached. Of course, once the JIT is in this state, it holds
// on to the Function with a ValueMap in order to prevent things from
// getting out of sync.
//
if (m_CurTransaction->getState() == Transaction::kCommitted) {
std::string mangledName;
{
#if LLVM_ON_WIN32
// clang cannot mangle everything in the ms-abi.
#ifndef NDEBUG
utils::DiagnosticsStore Errors(m_Sema->getDiagnostics(), false, false);
assert(Errors.empty() || (Errors.size() == 1 &&
Errors[0].getMessage().startswith("cannot mangle this")));
#else
utils::DiagnosticsOverride IgnoreMangleErrors(m_Sema->getDiagnostics());
#endif
#endif
utils::Analyze::maybeMangleDeclName(GD, mangledName);
}
// Handle static locals. void func() { static int var; } is represented
// in the llvm::Module is a global named @func.var
if (const VarDecl* VD = dyn_cast<VarDecl>(GD.getDecl())) {
if (VD->isStaticLocal()) {
std::string functionMangledName;
GlobalDecl FDGD(cast<FunctionDecl>(VD->getDeclContext()));
utils::Analyze::maybeMangleDeclName(FDGD, functionMangledName);
mangledName = functionMangledName + "." + mangledName;
}
}
auto M = m_CurTransaction->getModule();
GlobalValue* GV = M->getNamedValue(mangledName);
if (GV) { // May be deferred decl and thus 0
GlobalValueEraser GVEraser(m_CodeGen);
GVEraser.EraseGlobalValue(GV);
}
m_CodeGen->forgetDecl(GD, mangledName);
}
}
bool DeclUnloader::VisitMacro(Transaction::MacroDirectiveInfo MacroD) {
assert(MacroD.m_MD && "The MacroDirective is null");
assert(MacroD.m_II && "The IdentifierInfo is null");
CollectFilesToUncache(MacroD.m_MD->getLocation());
Preprocessor& PP = m_Sema->getPreprocessor();
#ifndef NDEBUG
bool ExistsInPP = false;
// Make sure the macro is in the Preprocessor. Not sure if not redundant
// because removeMacro looks for the macro anyway in the DenseMap Macros[]
for (Preprocessor::macro_iterator
I = PP.macro_begin(/*IncludeExternalMacros*/false),
E = PP.macro_end(/*IncludeExternalMacros*/false); E !=I; ++I) {
if ((*I).first == MacroD.m_II) {
// FIXME:check whether we have the concrete directive on the macro chain
// && (*I).second == MacroD.m_MD
ExistsInPP = true;
break;
}
}
assert(ExistsInPP && "Not in the Preprocessor?!");
#endif
const MacroDirective* MD = MacroD.m_MD;
// Undef the definition
const MacroInfo* MI = MD->getMacroInfo();
// If the macro is not defined, this is a noop undef, just return.
if (MI == 0)
return false;
// Remove the pair from the macros
PP.removeMacro(MacroD.m_II, const_cast<MacroDirective*>(MacroD.m_MD));
return true;
}
bool DeclUnloader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl* R){
// RedeclarableTemplateDecl: TemplateDecl, Redeclarable
bool Successful = VisitRedeclarable(R, R->getDeclContext());
Successful &= VisitTemplateDecl(R);
return Successful;
}
bool DeclUnloader::VisitFunctionTemplateDecl(FunctionTemplateDecl* FTD) {
bool Successful = true;
// Remove specializations:
for (FunctionTemplateDecl::spec_iterator I = FTD->spec_begin(),
E = FTD->spec_end(); I != E; ++I)
Successful &= Visit(*I);
Successful &= VisitRedeclarableTemplateDecl(FTD);
Successful &= VisitFunctionDecl(FTD->getTemplatedDecl());
return Successful;
}
bool DeclUnloader::VisitClassTemplateDecl(ClassTemplateDecl* CTD) {
// ClassTemplateDecl: TemplateDecl, Redeclarable
bool Successful = true;
// Remove specializations:
for (ClassTemplateDecl::spec_iterator I = CTD->spec_begin(),
E = CTD->spec_end(); I != E; ++I)
Successful &= Visit(*I);
Successful &= VisitRedeclarableTemplateDecl(CTD);
Successful &= Visit(CTD->getTemplatedDecl());
return Successful;
}
namespace {
// A template specialization is attached to the list of specialization of
// the templated class.
//
class ClassTemplateDeclExt : public ClassTemplateDecl {
public:
static void removeSpecialization(ClassTemplateDecl* self,
ClassTemplateSpecializationDecl* spec) {
assert(!isa<ClassTemplatePartialSpecializationDecl>(spec) &&
"Use removePartialSpecialization");
assert(self && spec && "Cannot be null!");
assert(spec == spec->getCanonicalDecl()
&& "Not the canonical specialization!?");
typedef llvm::SmallVector<ClassTemplateSpecializationDecl*, 4> Specializations;
typedef llvm::FoldingSetVector<ClassTemplateSpecializationDecl> Set;
ClassTemplateDeclExt* This = (ClassTemplateDeclExt*) self;
Specializations specializations;
Set& specs = This->getCommonPtr()->Specializations;
if (!specs.size()) // nothing to remove
return;
// Collect all the specializations without the one to remove.
for(Set::iterator I = specs.begin(),E = specs.end(); I != E; ++I){
if (&*I != spec)
specializations.push_back(&*I);
}
This->getCommonPtr()->Specializations.clear();
//Readd the collected specializations.
void* InsertPos = 0;
ClassTemplateSpecializationDecl* CTSD = 0;
for (size_t i = 0, e = specializations.size(); i < e; ++i) {
CTSD = specializations[i];
assert(CTSD && "Must not be null.");
// Avoid assertion on add.
CTSD->SetNextInBucket(0);
This->AddSpecialization(CTSD, InsertPos);
}
}
static void removePartialSpecialization(ClassTemplateDecl* self,
ClassTemplatePartialSpecializationDecl* spec) {
assert(self && spec && "Cannot be null!");
assert(spec == spec->getCanonicalDecl()
&& "Not the canonical specialization!?");
typedef llvm::SmallVector<ClassTemplatePartialSpecializationDecl*, 4>
Specializations;
typedef llvm::FoldingSetVector<ClassTemplatePartialSpecializationDecl> Set;
ClassTemplateDeclExt* This = (ClassTemplateDeclExt*) self;
Specializations specializations;
Set& specs = This->getPartialSpecializations();
if (!specs.size()) // nothing to remove
return;
// Collect all the specializations without the one to remove.
for(Set::iterator I = specs.begin(),E = specs.end(); I != E; ++I){
if (&*I != spec)
specializations.push_back(&*I);
}
This->getPartialSpecializations().clear();
//Readd the collected specializations.
void* InsertPos = 0;
ClassTemplatePartialSpecializationDecl* CTPSD = 0;
for (size_t i = 0, e = specializations.size(); i < e; ++i) {
CTPSD = specializations[i];
assert(CTPSD && "Must not be null.");
// Avoid assertion on add.
CTPSD->SetNextInBucket(0);
This->AddPartialSpecialization(CTPSD, InsertPos);
}
}
};
} // end anonymous namespace
bool DeclUnloader::VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl* CTSD) {
// ClassTemplateSpecializationDecl: CXXRecordDecl, FoldingSet
bool Successful = VisitCXXRecordDecl(CTSD);
ClassTemplateSpecializationDecl* CanonCTSD =
static_cast<ClassTemplateSpecializationDecl*>(CTSD->getCanonicalDecl());
if (auto D = dyn_cast<ClassTemplatePartialSpecializationDecl>(CanonCTSD))
ClassTemplateDeclExt::removePartialSpecialization(
D->getSpecializedTemplate(),
D);
else
ClassTemplateDeclExt::removeSpecialization(CTSD->getSpecializedTemplate(),
CanonCTSD);
return Successful;
}
} // end namespace cling