cling/lib/Interpreter/LookupHelper.cpp
Jonas Hahnfeld 52df1a551a Globally enable incremental extensions
We are relying on this since a while, for example for reemission of
template symbols. At the moment, we get the incremental extensions
because Preprocessor::enableIncrementalProcessing() turns them on
internally, but this will change with LLVM 18 where this method only
controls incremental processing of a single Preprocessor object.
2024-08-09 08:59:03 +02:00

2123 lines
83 KiB
C++

//------------------------------------------------------------------------------
// CLING - the C++ LLVM-based InterpreterG :)
// author: Vassil Vassilev <vvasilev@cern.ch>
//
// This file is dual-licensed: you can choose to license it under the University
// of Illinois Open Source License or the GNU Lesser General Public License. See
// LICENSE.TXT for details.
//------------------------------------------------------------------------------
#include "cling/Interpreter/LookupHelper.h"
#include "cling/Utils/Output.h"
#include "DeclUnloader.h"
#include "cling/Interpreter/Interpreter.h"
#include "cling/Utils/AST.h"
#include "cling/Utils/ParserStateRAII.h"
#include "clang/AST/ASTContext.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
using namespace clang;
namespace cling {
///\brief Class to help with the custom allocation of clang::Expr
///
struct ExprAlloc {
char fBuffer[sizeof(clang::OpaqueValueExpr)];
};
class StartParsingRAII {
LookupHelper& m_LH;
llvm::SaveAndRestore<bool> SaveIsRecursivelyRunning;
// Save and restore the state of the Parser and lexer.
// Note: ROOT::Internal::ParsingStateRAII also save and restore the state of
// Sema, including pending instantiation for example. It is not clear
// whether we need to do so here too or whether we need to also see the
// "on-going" semantic information ... For now, we leave Sema untouched.
clang::Preprocessor::CleanupAndRestoreCacheRAII fCleanupRAII;
clang::Parser::ParserCurTokRestoreRAII fSavedCurToken;
ParserStateRAII ResetParserState;
clang::Sema::SFINAETrap fSFINAETrap;
void prepareForParsing(llvm::StringRef code, llvm::StringRef bufferName,
LookupHelper::DiagSetting diagOnOff);
public:
StartParsingRAII(LookupHelper& LH, llvm::StringRef code,
llvm::StringRef bufferName,
LookupHelper::DiagSetting diagOnOff)
: m_LH(LH), SaveIsRecursivelyRunning(LH.IsRecursivelyRunning),
fCleanupRAII(LH.m_Parser->getPreprocessor()),
fSavedCurToken(*LH.m_Parser),
ResetParserState(*LH.m_Parser,
!LH.IsRecursivelyRunning /*skipToEOF*/),
fSFINAETrap(m_LH.m_Parser->getActions()) {
LH.IsRecursivelyRunning = true;
prepareForParsing(code, bufferName, diagOnOff);
}
~StartParsingRAII() { pop(); }
void pop() const {}
};
void StartParsingRAII::prepareForParsing(llvm::StringRef code,
llvm::StringRef bufferName,
LookupHelper::DiagSetting diagOnOff) {
++m_LH.m_TotalParseRequests;
Parser& P = *m_LH.m_Parser;
Sema& S = P.getActions();
Preprocessor& PP = P.getPreprocessor();
//
// Tell the diagnostic engine to ignore all diagnostics.
//
P.getActions().getDiagnostics().setSuppressAllDiagnostics(
diagOnOff == LookupHelper::NoDiagnostics);
//
// Tell Sema we are not in the process of doing an instantiation.
// fSFINAETrap will reset any SFINAE error count of a SFINAE context from "above".
// fSFINAETrap will reset this value to the previous one; the line below is overwriting
// the value set by fSFINAETrap.
P.getActions().InNonInstantiationSFINAEContext = true;
//
// Tell the parser to not attempt spelling correction.
//
const_cast<LangOptions&>(PP.getLangOpts()).SpellChecking = 0;
assert(!code.empty() &&
"prepareForParsing should only be called when need");
// Create a fake file to parse the type name.
FileID FID;
llvm::hash_code hashedCode = llvm::hash_value(code);
auto cacheItr = m_LH.m_ParseBufferCache.find(hashedCode);
SourceLocation NewLoc;
SourceManager& SM = S.getSourceManager();
bool CacheIsValid = false;
if (cacheItr != m_LH.m_ParseBufferCache.end()) {
SourceLocation FileStartLoc =
SourceLocation::getFromRawEncoding(cacheItr->second);
FID = SM.getFileID(FileStartLoc);
bool Invalid = true;
llvm::StringRef FIDContents = SM.getBufferData(FID, &Invalid);
// A FileID is a (cached via ContentCache) SourceManager view of a
// FileManager::FileEntry (which is a wrapper on the file system file).
// In a subtle cases, code unloading can remove the cached region.
// However we are safe because it will empty the ContentCache and force
// the FileEntry to be re-read. It will keep the FileID intact and valid
// by design. When we reprocess the same (but modified) file it will get
// a new FileID. Then the Invalid flag will be false but the underlying
// buffer content will be empty. It will not compare equal to the lookup
// string and we will avoid using (a potentially broken) cache.
assert(!Invalid);
// Compare the contents of the cached buffer and the string we should
// process. If there are hash collisions this assert should trigger
// making it easier to debug.
CacheIsValid = FIDContents.equals(llvm::StringRef(code.str() + "\n"));
assert(CacheIsValid && "Hash collision!");
if (CacheIsValid) {
// We have already included this file once. Reuse the include loc.
NewLoc = SM.getIncludeLoc(FID);
// The Preprocessor will try to set the NumCreatedFIDs but we are
// reparsing and this value was already set. Force reset it to avoid
// triggering an assertion in the setNumCreatedFIDsForFileID routine.
SM.setNumCreatedFIDsForFileID(FID, 0, /*force*/ true);
++m_LH.m_CacheHits;
}
}
if (!CacheIsValid) {
std::unique_ptr<llvm::MemoryBuffer> SB
= llvm::MemoryBuffer::getMemBufferCopy(code.str() + "\n",
bufferName.str());
NewLoc = m_LH.m_Interpreter->getNextAvailableLoc();
FID = SM.createFileID(std::move(SB), SrcMgr::C_User, /*LoadedID*/0,
/*LoadedOffset*/0, NewLoc);
SourceLocation FileStartLoc = SM.getLocForStartOfFile(FID);
m_LH.m_ParseBufferCache[hashedCode] = FileStartLoc.getRawEncoding();
}
//
// Switch to the new file the way #include does.
//
// Note: To switch back to the main file we must consume an eof token.
//
PP.EnterSourceFile(FID, /*DirLookup*/0, NewLoc);
PP.Lex(const_cast<Token&>(P.getCurToken()));
}
// pin *tor here so that we can have clang::Parser defined and be able to call
// the dtor on the OwningPtr
LookupHelper::LookupHelper(clang::Parser* P, Interpreter* interp)
: m_Parser(P), m_Interpreter(interp) {
}
LookupHelper::~LookupHelper() {}
static
DeclContext* getCompleteContext(const Decl* scopeDecl,
ASTContext& Context, Sema &S);
static const TagDecl* RequireCompleteDeclContext(Sema& S,
Preprocessor& PP,
const TagDecl *tobeCompleted,
LookupHelper::DiagSetting diagOnOff)
{
// getContextAndSpec create the CXXScopeSpec and requires the scope
// to be complete, so this is exactly what we need.
bool OldSuppressAllDiagnostics(PP.getDiagnostics()
.getSuppressAllDiagnostics());
PP.getDiagnostics().setSuppressAllDiagnostics(
diagOnOff == LookupHelper::NoDiagnostics);
ASTContext& Context = S.getASTContext();
DeclContext* complete = getCompleteContext(tobeCompleted,Context,S);
PP.getDiagnostics().setSuppressAllDiagnostics(OldSuppressAllDiagnostics);
if (!complete)
return 0;
if (const TagDecl *result = dyn_cast<TagDecl>(complete))
return result->getDefinition();
return 0;
}
///\brief Look for a tag decl based on its name
///
///\param declName name of the class, enum, uniorn or namespace being
/// looked for
///\param resultDecl pointer that will be updated with the answer
///\param P Parse to use for the search
///\param diagOnOff whether the error diagnostics are printed or not.
///\return returns true if the answer is authoritative or false if a more
/// detailed search is needed (usually this is for class template
/// instances).
///
static bool quickFindDecl(llvm::StringRef declName,
const Decl *& resultDecl,
Parser &P,
LookupHelper::DiagSetting diagOnOff) {
Sema &S = P.getActions();
Preprocessor &PP = P.getPreprocessor();
resultDecl = nullptr;
const clang::DeclContext *sofar = nullptr;
const clang::Decl *next = nullptr;
for (size_t c = 0, last = 0; c < declName.size(); ++c) {
const char current = declName[c];
if (current == '<' || current == '>' ||
current == ' ' || current == '&' ||
current == '*' || current == '[' ||
current == ']') {
// For now we do not know how to deal with
// template instances.
return false;
}
if (current == ':') {
if (c + 2 >= declName.size() || declName[c + 1] != ':') {
// Looks like an invalid name, we won't find anything.
return true;
}
next = utils::Lookup::Named(&S, declName.substr(last, c - last), sofar);
if (next == (void *) -1) {
// Ambiguous result, we need to go through the long path
return false;
} else if (next && next != (void *) -1) {
// Need to handle typedef here too.
const TypedefNameDecl *typedefDecl = dyn_cast<TypedefNameDecl>(next);
if (typedefDecl) {
// We are stripping the typedef, this is technically incorrect,
// as the result (if resultType has been specified) will not be
// an accurate representation of the input string.
// As we strip the typedef we ought to rebuild the nested name
// specifier.
// Since we do not use this path for template handling, this
// is not relevant for ROOT itself ....
ASTContext &Context = S.getASTContext();
QualType T = Context.getTypedefType(typedefDecl);
const TagType *TagTy = T->getAs<TagType>();
if (TagTy) next = TagTy->getDecl();
}
// To use Lookup::Named we need to fit the assertion:
// ((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext()
// || cast<TagDecl>(LookupCtx)->isCompleteDefinition()
// || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
// "Declaration context must already be complete!"),
// function LookupQualifiedName, file SemaLookup.cpp, line 1614.
const clang::TagDecl *tdecl = dyn_cast<TagDecl>(next);
if (tdecl && !(next = tdecl->getDefinition())) {
//fprintf(stderr,"Incomplete (inner) type for %s (part %s).\n",
// declName.str().c_str(),
// declName.substr(last,c-last).str().c_str());
// Incomplete type we will not be able to go on.
// We always require completeness of the scope, if the caller
// want piece-meal instantiation, the calling code will need to
// split the call to findScope.
// if (instantiateTemplate) {
if (dyn_cast<ClassTemplateSpecializationDecl>(tdecl)) {
// Go back to the normal schedule since we need a valid point
// of instantiation:
// Assertion failed: (Loc.isValid() &&
// "point of instantiation must be valid!"),
// function setPointOfInstantiation, file DeclTemplate.h,
// line 1520.
// Which can happen here because the simple name maybe a
// typedef to a template (for example std::string).
return false;
}
next = RequireCompleteDeclContext(S, PP, tdecl, diagOnOff);
// } else {
// return false;
// }
}
sofar = dyn_cast_or_null<DeclContext>(next);
} else {
sofar = 0;
}
if (!sofar) {
// We are looking into something that is not a decl context,
// so we won't find anything.
return true;
}
last = c + 2;
++c; // Consume the second ':'
} else if (c + 1 == declName.size()) {
// End of the line.
next = utils::Lookup::Named(&S, declName.substr(last, c + 1 - last), sofar);
// If there is an ambiguity, we need to go the long route.
if (next == (void *) -1) return false;
if (next) {
resultDecl = next;
}
return true;
}
} // for each characters
// Should be unreacheable.
return false;
}
static QualType findBuiltinType(llvm::StringRef typeName, ASTContext &Context)
{
bool issigned = false;
bool isunsigned = false;
if (typeName.starts_with("signed ")) {
issigned = true;
typeName = StringRef(typeName.data()+7, typeName.size()-7);
}
if (!issigned && typeName.starts_with("unsigned ")) {
isunsigned = true;
typeName = StringRef(typeName.data()+9, typeName.size()-9);
}
if (typeName.equals("char")) {
if (isunsigned) return Context.UnsignedCharTy;
return Context.SignedCharTy;
}
if (typeName.equals("short")) {
if (isunsigned) return Context.UnsignedShortTy;
return Context.ShortTy;
}
if (typeName.equals("int")) {
if (isunsigned) return Context.UnsignedIntTy;
return Context.IntTy;
}
if (typeName.equals("long")) {
if (isunsigned) return Context.UnsignedLongTy;
return Context.LongTy;
}
if (typeName.equals("long long")) {
if (isunsigned) return Context.UnsignedLongLongTy;
return Context.LongLongTy;
}
if (!issigned && !isunsigned) {
if (typeName.equals("bool")) return Context.BoolTy;
if (typeName.equals("float")) return Context.FloatTy;
if (typeName.equals("double")) return Context.DoubleTy;
if (typeName.equals("long double")) return Context.LongDoubleTy;
if (typeName.equals("wchar_t")) return Context.WCharTy;
if (typeName.equals("char16_t")) return Context.Char16Ty;
if (typeName.equals("char32_t")) return Context.Char32Ty;
}
/* Missing
CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
*/
return QualType();
}
///\brief Look for a tag decl based on its name
///
///\param typeName name of the class, enum, uniorn or namespace being
/// looked for
///\param resultType reference to QualType that will be updated with the answer
///\param P Parse to use for the search
///\param diagOnOff whether the error diagnostics are printed or not.
///\return returns true if the answer is authoritative or false if a more
/// detailed search is needed (usually this is for class template
/// instances).
///
static bool quickFindType(llvm::StringRef typeName,
QualType &resultType,
Parser &P,
LookupHelper::DiagSetting diagOnOff) {
resultType = QualType();
llvm::StringRef quickTypeName = typeName.trim();
bool innerConst = false;
bool outerConst = false;
if (quickTypeName.starts_with("const ")) {
// Use this syntax to avoid the redudant tests in substr.
quickTypeName = StringRef(quickTypeName.data()+6,
quickTypeName.size()-6);
innerConst = true;
}
enum PointerType { kPointerType, kLRefType, kRRefType, };
if (quickTypeName.ends_with("const")) {
if (quickTypeName.size() < 6) return true;
auto c = quickTypeName[quickTypeName.size()-6];
if (c==' ' || c=='&' || c=='*') {
outerConst = true;
if (c == ' ')
quickTypeName = StringRef(quickTypeName.data(),
quickTypeName.size() - 6);
else quickTypeName = StringRef(quickTypeName.data(),
quickTypeName.size() - 5);
}
}
std::vector<PointerType> ptrref;
for(auto c = quickTypeName.end()-1; c != quickTypeName.begin(); --c) {
if (*c == '*') ptrref.push_back(kPointerType);
else if (*c == '&') {
if (*(c-1)== '&') {
--c;
ptrref.push_back(kRRefType);
} else
ptrref.push_back(kLRefType);
}
else break;
}
if (!ptrref.empty()) quickTypeName = StringRef(quickTypeName.data(),quickTypeName.size()-ptrref.size());
Sema &S = P.getActions();
ASTContext &Context = S.getASTContext();
QualType quickFind = findBuiltinType(quickTypeName, Context);
const Decl *quickDecl = nullptr;
if (quickFind.isNull() &&
quickFindDecl(quickTypeName, quickDecl, P, diagOnOff)) {
// The result of quickFindDecl was definitive, we don't need
// to check any further.
//const TypeDecl *typedecl = dyn_cast<TypeDecl>(quickDecl);
if (quickDecl) {
const TypeDecl *typedecl = dyn_cast<TypeDecl>(quickDecl);
if (typedecl) {
quickFind = Context.getTypeDeclType(typedecl);
} else {
return true;
}
} else {
return true;
}
}
if (!quickFind.isNull()) {
if (innerConst && !quickFind->isReferenceType()) quickFind.addConst();
for(auto t : ptrref) {
switch (t) {
case kPointerType :
quickFind = Context.getPointerType(quickFind);
break;
case kLRefType :
quickFind = Context.getLValueReferenceType(quickFind);
break;
case kRRefType :
quickFind = Context.getRValueReferenceType(quickFind);
break;
}
}
if (outerConst && !quickFind->isReferenceType()) quickFind.addConst();
resultType = quickFind;
return true;
}
return false;
}
QualType LookupHelper::findType(llvm::StringRef typeName,
DiagSetting diagOnOff) const {
//
// Our return value.
//
QualType TheQT;
if (typeName.empty()) return TheQT;
// Could trigger deserialization of decls.
Interpreter::PushTransactionRAII RAII(m_Interpreter);
// Deal with the most common case.
// Going through this custom finder is both much faster
// (6 times faster, 10.6s to 57.5s for 1 000 000 calls) and consumes
// infinite less memory (0B vs 181 B per call for 'Float_t*').
QualType quickFind;
if (quickFindType(typeName,quickFind, *m_Parser, diagOnOff)) {
// The result of quickFindDecl was definitive, we don't need
// to check any further.
return quickFind;
}
// Use P for shortness
Parser& P = *m_Parser;
StartParsingRAII ParseStarted(const_cast<LookupHelper&>(*this),
typeName,
llvm::StringRef("lookup.type.by.name.file"),
diagOnOff);
//
// Try parsing the type name.
//
clang::ParsedAttributes Attrs(P.getAttrFactory());
// FIXME: All arguments to ParseTypeName are the default arguments. Remove.
TypeResult Res(P.ParseTypeName(0, DeclaratorContext::TypeName,
clang::AS_none, 0, &Attrs));
if (Res.isUsable()) {
// Accept it only if the whole name was parsed.
if (P.NextToken().getKind() == clang::tok::eof) {
TypeSourceInfo* TSI = 0;
TheQT = clang::Sema::GetTypeFromParser(Res.get(), &TSI);
}
}
// if (!quickFind.isNull() && !TheQT.isNull() && TheQT != quickFind) {
// fprintf(stderr,"Different result\n");
// fprintf(stderr,"quickFindType:"); quickFind.dump();
// fprintf(stderr,"TheQT :"); TheQT.dump();
//
// }
return TheQT;
}
const Decl* LookupHelper::findScope(llvm::StringRef className,
DiagSetting diagOnOff,
const Type** resultType /* = nullptr */,
bool instantiateTemplate/*=true*/) const {
//
// Some utilities.
//
// Use P for shortness
Parser &P = *m_Parser;
Sema &S = P.getActions();
Preprocessor &PP = P.getPreprocessor();
ASTContext &Context = S.getASTContext();
// The user wants to see the template instantiation, existing or not.
// Here we might not have an active transaction to handle
// the caused instantiation decl.
// Also quickFindDecl could trigger deserialization of decls.
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
// See if we can find it without a buffer and any clang parsing,
// We need to go scope by scope.
{
const Decl *quickResult = nullptr;
if (quickFindDecl(className, quickResult, *m_Parser, diagOnOff)) {
// The result of quickFindDecl was definitive, we don't need
// to check any further.
if (!quickResult) {
return nullptr;
} else {
const TagDecl *tagdecl = dyn_cast<TagDecl>(quickResult);
const TypedefNameDecl *typedefDecl = dyn_cast<TypedefNameDecl>(quickResult);
if (typedefDecl) {
QualType T = Context.getTypedefType(typedefDecl);
const TagType *TagTy = T->getAs<TagType>();
if (TagTy) tagdecl = TagTy->getDecl();
// NOTE: Should we instantiate here? ... maybe ...
if (tagdecl && resultType) *resultType = T.getTypePtr();
} else if (tagdecl && resultType) {
*resultType = tagdecl->getTypeForDecl();
}
// fprintf(stderr,"Short cut taken for %s.\n",className.str().c_str());
if (tagdecl) {
const TagDecl *defdecl = tagdecl->getDefinition();
if (!defdecl || !defdecl->isCompleteDefinition()) {
// fprintf(stderr,"Incomplete type for %s.\n",className.str().c_str());
if (instantiateTemplate) {
if (dyn_cast<ClassTemplateSpecializationDecl>(tagdecl)) {
// Go back to the normal schedule since we need a valid point
// of instantiation:
// Assertion failed: (Loc.isValid() &&
// "point of instantiation must be valid!"),
// function setPointOfInstantiation, file DeclTemplate.h,
// line 1520.
// Which can happen here because the simple name maybe a
// typedef to a template (for example std::string).
// break;
// the next code executed must be the TransactionRAII below
} else
return RequireCompleteDeclContext(S, PP, tagdecl, diagOnOff);
} else {
return nullptr;
}
} else {
return defdecl; // now pointing to the definition.
}
} else if (isa<NamespaceDecl>(quickResult)) {
return quickResult->getCanonicalDecl();
} else if (auto alias = dyn_cast<NamespaceAliasDecl>(quickResult)) {
return alias->getNamespace()->getCanonicalDecl();
} else {
//fprintf(stderr,"Not a scope decl for %s.\n",className.str().c_str());
// The name exist and does not point to a 'scope' decl.
return nullptr;
}
}
}
}
StartParsingRAII ParseStarted(const_cast<LookupHelper&>(*this),
className.str() + "::",
llvm::StringRef("lookup.class.by.name.file"),
diagOnOff);
//
// Our return values.
//
const Type* TheType = 0;
const Type** setResultType = &TheType;
if (resultType)
setResultType = resultType;
*setResultType = 0;
//
// Prevent failing on an assert in TryAnnotateCXXScopeToken.
//
if (!P.getCurToken().is(clang::tok::identifier)
&& !P.getCurToken().is(clang::tok::coloncolon)
&& !(P.getCurToken().is(clang::tok::annot_template_id)
&& P.NextToken().is(clang::tok::coloncolon))
&& !P.getCurToken().is(clang::tok::kw_decltype)) {
// error path
return 0;
}
//
// Try parsing the name as a nested-name-specifier.
//
if (P.TryAnnotateCXXScopeToken(false)) {
// error path
return 0;
}
Decl* TheDecl = 0;
if (P.getCurToken().getKind() == tok::annot_cxxscope) {
CXXScopeSpec SS;
S.RestoreNestedNameSpecifierAnnotation(P.getCurToken().getAnnotationValue(),
P.getCurToken().getAnnotationRange(),
SS);
if (SS.isValid()) {
NestedNameSpecifier* NNS = SS.getScopeRep();
NestedNameSpecifier::SpecifierKind Kind = NNS->getKind();
// Only accept the parse if we consumed all of the name.
if (P.NextToken().getKind() == clang::tok::eof) {
//
// Be careful, not all nested name specifiers refer to classes
// and namespaces, and those are the only things we want.
//
switch (Kind) {
case NestedNameSpecifier::Identifier: {
// Dependent type.
// We do not accept these.
}
break;
case NestedNameSpecifier::Namespace: {
// Namespace.
NamespaceDecl* NSD = NNS->getAsNamespace();
NSD = NSD->getCanonicalDecl();
TheDecl = NSD;
}
break;
case NestedNameSpecifier::NamespaceAlias: {
// Namespace alias.
// Note: In the future, should we return the alias instead?
NamespaceAliasDecl* NSAD = NNS->getAsNamespaceAlias();
NamespaceDecl* NSD = NSAD->getNamespace();
NSD = NSD->getCanonicalDecl();
TheDecl = NSD;
}
break;
case NestedNameSpecifier::TypeSpec:
// Type name.
// Intentional fall-though
case NestedNameSpecifier::TypeSpecWithTemplate: {
// Type name qualified with "template".
// Note: Do we need to check for a dependent type here?
NestedNameSpecifier *prefix = NNS->getPrefix();
if (prefix) {
QualType temp
= Context.getElaboratedType(ETK_None,prefix,
QualType(NNS->getAsType(),0));
*setResultType = temp.getTypePtr();
} else {
*setResultType = NNS->getAsType();
}
const TagType* TagTy = (*setResultType)->getAs<TagType>();
if (TagTy) {
// It is a class, struct, or union.
TagDecl* TD = TagTy->getDecl();
if (TD) {
TheDecl = TD->getDefinition();
// NOTE: if (TheDecl) ... check for theDecl->isInvalidDecl()
if (TD && TD->isInvalidDecl()) {
printf("Warning: FindScope got an invalid tag decl\n");
}
if (TheDecl && TheDecl->isInvalidDecl()) {
printf("ERROR: FindScope about to return an invalid decl\n");
}
if (!TheDecl && instantiateTemplate) {
// Make sure it is not just forward declared, and
// instantiate any templates.
DeclContext *ctxt = TD;
if (!S.RequireCompleteDeclContext(SS, ctxt)) {
// Success, type is complete, instantiations have
// been done.
TheDecl = TD->getDefinition();
if (TheDecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, TheDecl);
*setResultType = nullptr;
return 0;
}
} else {
// NOTE: We cannot instantiate the scope: not a valid decl.
// Need to unload it if this decl is a definition.
// But do not unload pre-existing fwd decls. Note that this might have failed
// because several other Decls failed to instantiate, leaving several Decls
// in invalid state. We should be unloading all of them, i.e. inload the
// current (possibly nested) transaction.
auto *T = const_cast<Transaction*>(m_Interpreter->getCurrentTransaction());
// Must not unload the Transaction, which might delete
// it: the RAII above still points to it! Instead, just
// mark it as "erroneous" which causes the RAII to
// unload it in due time.
T->setIssuedDiags(Transaction::kErrors);
*setResultType = nullptr;
return 0;
}
}
}
}
}
break;
case clang::NestedNameSpecifier::Global: {
// Name was just "::" and nothing more.
TheDecl = Context.getTranslationUnitDecl();
}
break;
case NestedNameSpecifier::Super:
// Microsoft's __super::
return 0;
}
return TheDecl;
}
}
}
//
// Cleanup after failed parse as a nested-name-specifier.
//
P.SkipUntil(clang::tok::eof);
// Doesn't reset the diagnostic mappings
S.getDiagnostics().Reset(/*soft=*/true);
//
// Setup to reparse as a type.
//
std::unique_ptr<llvm::MemoryBuffer>
SB(llvm::MemoryBuffer::getMemBufferCopy(className.str() + "\n",
"lookup.type.file"));
SourceLocation NewLoc = m_Interpreter->getNextAvailableLoc();
FileID FID = S.getSourceManager().createFileID(std::move(SB),
SrcMgr::C_User,
/*LoadedID*/0,
/*LoadedOffset*/0, NewLoc);
PP.EnterSourceFile(FID, /*DirLookup*/0, NewLoc);
PP.Lex(const_cast<clang::Token&>(P.getCurToken()));
//
// Now try to parse the name as a type.
//
if (P.TryAnnotateTypeOrScopeToken()) {
// error path
return 0;
}
if (P.getCurToken().getKind() == tok::annot_typename) {
TypeResult T = P.getTypeAnnotation(const_cast<Token&>(P.getCurToken()));
// Only accept the parse if we consumed all of the name.
if (P.NextToken().getKind() == clang::tok::eof)
if (!T.get().get().isNull()) {
TypeSourceInfo *TSI = 0;
clang::QualType QT =
clang::Sema::GetTypeFromParser(T.get(), &TSI);
if (const TagType* TT = QT->getAs<TagType>()) {
TheDecl = TT->getDecl()->getDefinition();
*setResultType = QT.getTypePtr();
}
}
}
return TheDecl;
}
const ClassTemplateDecl* LookupHelper::findClassTemplate(llvm::StringRef Name,
DiagSetting diagOnOff) const {
//
// Find a class template decl given its name.
//
if (Name.empty()) return 0;
// Humm ... this seems to do the trick ... or does it? or is there a better way?
// Use P for shortness
Parser& P = *m_Parser;
Sema& S = P.getActions();
ASTContext& Context = S.getASTContext();
StartParsingRAII ParseStarted(const_cast<LookupHelper&>(*this),
Name.str(),
llvm::StringRef("lookup.class.by.name.file"),
diagOnOff);
//
// Prevent failing on an assert in TryAnnotateCXXScopeToken.
//
if (!P.getCurToken().is(clang::tok::identifier)
&& !P.getCurToken().is(clang::tok::coloncolon)
&& !(P.getCurToken().is(clang::tok::annot_template_id)
&& P.NextToken().is(clang::tok::coloncolon))
&& !P.getCurToken().is(clang::tok::kw_decltype)) {
// error path
return 0;
}
//
// Now try to parse the name as a type.
//
if (P.TryAnnotateTypeOrScopeToken()) {
// error path
return 0;
}
DeclContext *where = 0;
if (P.getCurToken().getKind() == tok::annot_cxxscope) {
CXXScopeSpec SS;
S.RestoreNestedNameSpecifierAnnotation(P.getCurToken().getAnnotationValue(),
P.getCurToken().getAnnotationRange(),
SS);
if (SS.isValid()) {
P.ConsumeAnyToken();
if (!P.getCurToken().is(clang::tok::identifier)) {
return 0;
}
NestedNameSpecifier *nested = SS.getScopeRep();
if (!nested) return 0;
switch (nested->getKind()) {
case NestedNameSpecifier::Global:
where = Context.getTranslationUnitDecl();
break;
case NestedNameSpecifier::Namespace:
where = nested->getAsNamespace();
break;
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Identifier:
return 0;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
{
const Type *ntype = nested->getAsType();
where = ntype->getAsCXXRecordDecl();
if (!where) return 0;
break;
}
case NestedNameSpecifier::Super:
// Microsoft's __super::
return 0;
};
}
} else if (P.getCurToken().is(clang::tok::annot_typename)) {
// A deduced template?
// P.getTypeAnnotation() takes a non-const Token& until clang r306291.
//auto ParsedTy = P.getTypeAnnotation(P.getCurToken());
auto ParsedTy
= ParsedType::getFromOpaquePtr(P.getCurToken().getAnnotationValue());
if (ParsedTy) {
QualType QT = ParsedTy.get();
const Type* TyPtr = QT.getTypePtr();
if (const auto *LocInfoTy = dyn_cast<LocInfoType>(TyPtr))
TyPtr = LocInfoTy->getType().getTypePtr();
TyPtr = TyPtr->getUnqualifiedDesugaredType();
if (const auto *DTST
= dyn_cast<DeducedTemplateSpecializationType>(TyPtr)) {
if (auto TD = DTST->getTemplateName().getAsTemplateDecl()) {
if (auto CTD = dyn_cast<ClassTemplateDecl>(TD))
return CTD;
}
}
}
} else if (P.getCurToken().is(clang::tok::identifier)) {
// We have a single indentifier, let's look for it in the
// the global scope.
where = Context.getTranslationUnitDecl();
}
if (where) {
// Great we now have a scope and something to search for,let's go ahead.
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
DeclContext::lookup_result R
= where->lookup(P.getCurToken().getIdentifierInfo());
for (DeclContext::lookup_iterator I = R.begin(), E = R.end();
I != E; ++I) {
ClassTemplateDecl *theDecl = dyn_cast<ClassTemplateDecl>(*I);
if (theDecl)
return theDecl;
}
}
return 0;
}
const ValueDecl* LookupHelper::findDataMember(const clang::Decl* scopeDecl,
llvm::StringRef dataName,
DiagSetting diagOnOff) const {
// Lookup a data member based on its Decl(Context), name.
Parser& P = *m_Parser;
Sema& S = P.getActions();
Preprocessor& PP = S.getPreprocessor();
IdentifierInfo *dataII = &PP.getIdentifierTable().get(dataName);
DeclarationName decl_name( dataII );
const clang::DeclContext *dc = llvm::cast<clang::DeclContext>(scopeDecl);
Interpreter::PushTransactionRAII pushedT(m_Interpreter);
DeclContext::lookup_result lookup = const_cast<clang::DeclContext*>(dc)->lookup(decl_name);
for (DeclContext::lookup_iterator I = lookup.begin(), E = lookup.end();
I != E; ++I) {
const ValueDecl *result = dyn_cast<ValueDecl>(*I);
if (result && !isa<FunctionDecl>(result))
return result;
}
return 0;
}
static
DeclContext* getContextAndSpec(CXXScopeSpec &SS,
const Decl* scopeDecl,
ASTContext& Context, Sema &S) {
//
// Some validity checks on the passed decl.
//
DeclContext* foundDC = dyn_cast<DeclContext>(const_cast<Decl*>(scopeDecl));
if (foundDC->isDependentContext()) {
// Passed decl is a template, we cannot use it.
return 0;
}
if (scopeDecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, const_cast<Decl*>(scopeDecl));
return 0;
}
//
// Convert the passed decl into a nested name specifier,
// a scope spec, and a decl context.
//
NestedNameSpecifier* classNNS = 0;
if (const NamespaceDecl* NSD = dyn_cast<NamespaceDecl>(scopeDecl)) {
classNNS = NestedNameSpecifier::Create(Context, 0,
const_cast<NamespaceDecl*>(NSD));
SS.MakeTrivial(Context, classNNS, scopeDecl->getSourceRange());
return foundDC;
}
else if (const RecordDecl* RD = dyn_cast<RecordDecl>(scopeDecl)) {
const Type* T = Context.getRecordType(RD).getTypePtr();
classNNS = NestedNameSpecifier::Create(Context, 0, false, T);
// We pass a 'random' but valid source range.
SS.MakeTrivial(Context, classNNS, scopeDecl->getSourceRange());
if (S.RequireCompleteDeclContext(SS, foundDC)) {
// Forward decl or instantiation failure, we cannot use it.
return 0;
}
return foundDC;
}
else if (llvm::isa<TranslationUnitDecl>(scopeDecl)) {
// We pass a 'random' but valid source range.
SS.MakeGlobal(Context,scopeDecl->getLocation());
return foundDC;
}
// Not a namespace or class, we cannot use it.
return 0;
}
static
DeclContext* getCompleteContext(const Decl* scopeDecl,
ASTContext& Context, Sema &S) {
//
// Some validity checks on the passed decl.
//
DeclContext* foundDC = dyn_cast<DeclContext>(const_cast<Decl*>(scopeDecl));
if (foundDC->isDependentContext()) {
// Passed decl is a template, we cannot use it.
return 0;
}
if (scopeDecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, const_cast<Decl*>(scopeDecl));
return 0;
}
//
// Convert the passed decl into a nested name specifier,
// a scope spec, and a decl context.
//
if (isa<NamespaceDecl>(scopeDecl)) {
return foundDC;
}
else if (const RecordDecl* RD = dyn_cast<RecordDecl>(scopeDecl)) {
if (RD->getDefinition()) {
// We are already complete, we are done.
return foundDC;
} else {
//const Type* T = Context.getRecordType(RD).getTypePtr();
const Type* T = Context.getTypeDeclType(RD).getTypePtr();
NestedNameSpecifier* classNNS = NestedNameSpecifier::Create(Context, 0, false, T);
// We pass a 'random' but valid source range.
CXXScopeSpec SS;
SS.MakeTrivial(Context, classNNS, scopeDecl->getSourceRange());
if (S.RequireCompleteDeclContext(SS, foundDC)) {
// Forward decl or instantiation failure, we cannot use it.
return 0;
}
}
}
else if (llvm::isa<TranslationUnitDecl>(scopeDecl)) {
return dyn_cast<DeclContext>(const_cast<Decl*>(scopeDecl));
}
else {
// Not a namespace or class, we cannot use it.
return 0;
}
return foundDC;
}
static bool FuncArgTypesMatch(const ASTContext& C,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
const FunctionProtoType* FPT) {
// FIXME: What if FTP->arg_size() != GivenArgTypes.size()?
FunctionProtoType::param_type_iterator ATI = FPT->param_type_begin();
FunctionProtoType::param_type_iterator E = FPT->param_type_end();
llvm::SmallVectorImpl<Expr*>::const_iterator GAI = GivenArgs.begin();
for (; ATI && (ATI != E); ++ATI, ++GAI) {
if ((*GAI)->isLValue()) {
// If the user specified a reference we may have transform it into
// an LValue non reference (See getExprProto) to have it in a form
// useful for the lookup. So we are a bit sloppy per se here (maybe)
const ReferenceType *RefType = (*ATI)->getAs<ReferenceType>();
if (RefType) {
if (!C.hasSameType(RefType->getPointeeType(),(*GAI)->getType()))
return false;
} else if (!C.hasSameType(*ATI,(*GAI)->getType())) {
return false;
}
} else if (!C.hasSameType(*ATI, (*GAI)->getType() )) {
return false;
}
}
return true;
}
static bool IsOverload(const ASTContext& C,
const TemplateArgumentListInfo* FuncTemplateArgs,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
const FunctionDecl* FD) {
//FunctionTemplateDecl* FTD = FD->getDescribedFunctionTemplate();
QualType FQT = C.getCanonicalType(FD->getType());
if (llvm::isa<FunctionNoProtoType>(FQT.getTypePtr())) {
// A K&R-style function (no prototype), is considered to match the args.
return false;
}
const FunctionProtoType* FPT = llvm::cast<FunctionProtoType>(FQT);
if ((GivenArgs.size() != FPT->getNumParams()) ||
//(GivenArgsAreEllipsis != FPT->isVariadic()) ||
!FuncArgTypesMatch(C, GivenArgs, FPT)) {
return true;
}
return false;
}
static
const FunctionDecl* overloadFunctionSelector(DeclContext* foundDC,
bool objectIsConst,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
LookupResult &Result,
DeclarationNameInfo &FuncNameInfo,
const TemplateArgumentListInfo* FuncTemplateArgs,
ASTContext& Context, Parser &P, Sema &S,
LookupHelper::DiagSetting diagOnOff) {
//
// Our return value.
//
FunctionDecl* TheDecl = 0;
//
// If we are looking up a member function, construct
// the implicit object argument.
//
// Note: For now this is always a non-CV qualified lvalue.
//
QualType ClassType;
Expr::Classification ObjExprClassification;
if (CXXRecordDecl* CRD = dyn_cast<CXXRecordDecl>(foundDC)) {
if (objectIsConst)
ClassType = Context.getTypeDeclType(CRD).getCanonicalType().withConst();
else ClassType = Context.getTypeDeclType(CRD).getCanonicalType();
OpaqueValueExpr ObjExpr(SourceLocation(),
ClassType, VK_LValue);
ObjExprClassification = ObjExpr.Classify(Context);
}
//
// Tell the diagnostic engine to ignore all diagnostics.
//
bool OldSuppressAllDiagnostics
= S.getDiagnostics().getSuppressAllDiagnostics();
S.getDiagnostics().setSuppressAllDiagnostics(
diagOnOff == LookupHelper::NoDiagnostics);
struct ResetDiagSuppression {
bool _Old;
Sema& _S;
ResetDiagSuppression(Sema &S, bool Old): _Old(Old), _S(S) {}
~ResetDiagSuppression() {
_S.getDiagnostics().setSuppressAllDiagnostics(_Old);
}
} DiagSuppressionRAII(S, OldSuppressAllDiagnostics);
//
// Construct the overload candidate set.
//
OverloadCandidateSet Candidates(FuncNameInfo.getLoc(),
OverloadCandidateSet::CSK_Normal);
for (LookupResult::iterator I = Result.begin(), E = Result.end();
I != E; ++I) {
NamedDecl* ND = *I;
if (FunctionDecl* FD = dyn_cast<FunctionDecl>(ND)) {
if (isa<CXXMethodDecl>(FD) &&
!cast<CXXMethodDecl>(FD)->isStatic() &&
!isa<CXXConstructorDecl>(FD)) {
// Class method, not static, not a constructor, so has
// an implicit object argument.
CXXMethodDecl* MD = cast<CXXMethodDecl>(FD);
if (FuncTemplateArgs && (FuncTemplateArgs->size() != 0)) {
// Explicit template args were given, cannot use a plain func.
continue;
}
S.AddMethodCandidate(MD, I.getPair(), MD->getParent(),
/*ObjectType=*/ClassType,
/*ObjectClassification=*/ObjExprClassification,
llvm::ArrayRef<Expr*>(GivenArgs.data(),
GivenArgs.size()),
Candidates);
}
else {
const FunctionProtoType* Proto = dyn_cast<FunctionProtoType>(
FD->getType()->getAs<clang::FunctionType>());
if (!Proto) {
// Function has no prototype, cannot do overloading.
continue;
}
if (FuncTemplateArgs && (FuncTemplateArgs->size() != 0)) {
// Explicit template args were given, cannot use a plain func.
continue;
}
S.AddOverloadCandidate(FD, I.getPair(),
llvm::ArrayRef<Expr*>(GivenArgs.data(),
GivenArgs.size()),
Candidates);
}
}
else if (FunctionTemplateDecl* FTD =
dyn_cast<FunctionTemplateDecl>(ND)) {
if (isa<CXXMethodDecl>(FTD->getTemplatedDecl()) &&
!cast<CXXMethodDecl>(FTD->getTemplatedDecl())->isStatic() &&
!isa<CXXConstructorDecl>(FTD->getTemplatedDecl())) {
// Class method template, not static, not a constructor, so has
// an implicit object argument.
S.AddMethodTemplateCandidate(
FTD, I.getPair(), cast<CXXRecordDecl>(FTD->getDeclContext()),
const_cast<TemplateArgumentListInfo*>(FuncTemplateArgs),
/*ObjectType=*/ClassType,
/*ObjectClassification=*/ObjExprClassification,
llvm::ArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
Candidates);
}
else {
S.AddTemplateOverloadCandidate(
FTD, I.getPair(),
const_cast<TemplateArgumentListInfo*>(FuncTemplateArgs),
llvm::ArrayRef<Expr*>(GivenArgs.data(), GivenArgs.size()),
Candidates, /*SuppressUserConversions=*/false);
}
}
else {
// Is there any other cases?
}
}
//
// Find the best viable function from the set.
//
{
OverloadCandidateSet::iterator Best;
OverloadingResult OR = Candidates.BestViableFunction(S,
Result.getNameLoc(),
Best);
if (OR == OR_Success) {
TheDecl = Best->Function;
// We prefer to get the canonical decl for consistency and ease
// of comparison.
TheDecl = TheDecl->getCanonicalDecl();
if (TheDecl->isTemplateInstantiation() && !TheDecl->isDefined()) {
S.InstantiateFunctionDefinition(SourceLocation(), TheDecl,
true /*recursive instantiation*/);
}
if (TheDecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, const_cast<FunctionDecl*>(TheDecl));
return 0;
}
}
}
return TheDecl;
}
static
const FunctionDecl* matchFunctionSelector(DeclContext* foundDC,
bool objectIsConst,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
LookupResult &Result,
DeclarationNameInfo &FuncNameInfo,
const TemplateArgumentListInfo* FuncTemplateArgs,
ASTContext& Context, Parser &P, Sema &S,
LookupHelper::DiagSetting diagOnOff) {
//
// Our return value.
//
const FunctionDecl* TheDecl = overloadFunctionSelector(foundDC, objectIsConst,
GivenArgs, Result,
FuncNameInfo,
FuncTemplateArgs,
Context,P,S,
diagOnOff);
if (TheDecl) {
if ( IsOverload(Context, FuncTemplateArgs, GivenArgs, TheDecl) ) {
return 0;
} else {
// Double check const-ness.
if (const clang::CXXMethodDecl *md =
llvm::dyn_cast<clang::CXXMethodDecl>(TheDecl)) {
if (md->getMethodQualifiers().hasConst()) {
if (!objectIsConst) {
TheDecl = 0;
}
} else { // FIXME: The else should be attached to the if hasConst stmt
if (objectIsConst) {
TheDecl = 0;
}
}
}
}
}
return TheDecl;
}
static bool ParseWithShortcuts(DeclContext* foundDC, ASTContext& Context,
llvm::StringRef funcName,
Interpreter* Interp,
UnqualifiedId &FuncId,
LookupHelper::DiagSetting diagOnOff,
ParserStateRAII &ResetParserState) {
// Use a very simple parse step that dectect whether the name search (which
// is already supposed to be an unqualified name) is a simple identifier,
// a constructor name or a destructor name. In those 3 cases, we can easily
// create the UnqualifiedId object that would have resulted from the 'real'
// parse. By using this direct creation of the UnqualifiedId, we avoid the
// 'permanent' cost associated with creating a memory buffer and the
// associated FileID.
// If the name is a template or an operator, we revert to the regular parse
// (and its associated permanent cost).
// In the operator case, the additional work is in the case of a conversion
// operator where we would need to 'quickly' parse the type itself (if want
// to avoid the permanent cost).
// In the case with the template the problem gets a bit worse as we need to
// handle potentially arbitrary spaces and ordering
// ('const int' vs 'int const', etc.)
Parser &P = const_cast<Parser&>(Interp->getParser());
Sema &S = Interp->getSema();
if (funcName.size() == 0) return false;
Preprocessor& PP = S.getPreprocessor();
// See if we can avoid creating the buffer, for now we just look for
// simple indentifier, constructor and destructor.
if (funcName.size() > 8 && strncmp(funcName.data(),"operator",8) == 0
&&( funcName[8] == ' ' || funcName[8] == '*'
|| funcName[8] == '%' || funcName[8] == '&'
|| funcName[8] == '|' || funcName[8] == '/'
|| funcName[8] == '+' || funcName[8] == '-'
|| funcName[8] == '(' || funcName[8] == '['
|| funcName[8] == '=' || funcName[8] == '!'
|| funcName[8] == '<' || funcName[8] == '>'
|| funcName[8] == '-' || funcName[8] == '^')
) {
// We have called:
// setOperatorFunctionId (SourceLocation OperatorLoc,
// OverloadedOperatorKind Op,
// SourceLocation SymbolLocations[3])
// or
// setConversionFunctionId (SourceLocation OperatorLoc,
// ParsedType Ty, SourceLocation EndLoc)
} else if (funcName.find('<') != StringRef::npos) {
// We might have a template name,
// setTemplateId (TemplateIdAnnotation *TemplateId)
// or
// setConstructorTemplateId (TemplateIdAnnotation *TemplateId)
} else if (funcName[0] == '~') {
// Destructor.
// Let's see if this is our contructor.
TagDecl *decl = llvm::dyn_cast<TagDecl>(foundDC);
if (decl) {
// We have a class or struct or something.
if (funcName.substr(1).equals(decl->getName())) {
ParsedType PT;
QualType QT( decl->getTypeForDecl(), 0 );
PT.set(QT);
FuncId.setDestructorName(SourceLocation(),PT,SourceLocation());
return true;
}
}
// So it starts with ~ but is not followed by the name of
// a class or at least not the one that is the declaration context,
// let's try a real parsing, to see if we can do better.
} else {
// We either have a simple type or a constructor name
TagDecl *decl = llvm::dyn_cast<TagDecl>(foundDC);
if (decl) {
// We have a class or struct or something.
if (funcName.equals(decl->getName())) {
ParsedType PT;
QualType QT( decl->getTypeForDecl(), 0 );
PT.set(QT);
FuncId.setConstructorName(PT,SourceLocation(),SourceLocation());
} else {
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get(funcName);
FuncId.setIdentifier (TypeInfoII, SourceLocation() );
}
return true;
} else {
// We have a namespace like context, it can't be a constructor
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get(funcName);
FuncId.setIdentifier (TypeInfoII, SourceLocation() );
return true;
}
}
//
// Setup to reparse as a type.
//
//
// Create a fake file to parse the function name.
//
// FIXME:, TODO: Cleanup that complete mess.
ResetParserState.SetSkipToEOF(true);
{
PP.getDiagnostics().setSuppressAllDiagnostics(diagOnOff ==
LookupHelper::NoDiagnostics);
std::unique_ptr<llvm::MemoryBuffer>
SB(llvm::MemoryBuffer::getMemBufferCopy(funcName.str() + "\n",
"lookup.funcname.file"));
SourceLocation NewLoc = Interp->getNextAvailableLoc();
FileID FID = S.getSourceManager().createFileID(std::move(SB),
SrcMgr::C_User,
/*LoadedID*/0,
/*LoadedOffset*/0, NewLoc);
PP.EnterSourceFile(FID, /*DirLookup*/0, NewLoc);
PP.Lex(const_cast<clang::Token&>(P.getCurToken()));
}
//
// Parse the function name.
//
SourceLocation TemplateKWLoc;
CXXScopeSpec SS;
{
Decl *decl = llvm::dyn_cast<Decl>(foundDC);
getContextAndSpec(SS,decl,Context,S);
}
if (P.ParseUnqualifiedId(SS, ParsedType(),
/*ObjectHadErrors=*/false,
/*EnteringContext*/false,
/*AllowDestructorName*/true,
/*AllowConstructorName*/true,
/*AllowDeductionGuide*/ false,
&TemplateKWLoc,
FuncId)) {
// Failed parse, cleanup.
return false;
}
return true;
}
template <typename T>
T findFunction(DeclContext* foundDC,
llvm::StringRef funcName,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
bool objectIsConst,
ASTContext& Context, Interpreter* Interp,
T (*functionSelector)(DeclContext* foundDC,
bool objectIsConst,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
LookupResult &Result,
DeclarationNameInfo &FuncNameInfo,
const TemplateArgumentListInfo* FuncTemplateArgs,
ASTContext& Context, Parser &P, Sema &S,
LookupHelper::DiagSetting diagOnOff),
LookupHelper::DiagSetting diagOnOff
) {
// Given the correctly types arguments, etc. find the function itself.
//
// Make the class we are looking up the function
// in the current scope to please the constructor
// name lookup. We do not need to do this otherwise,
// and may be able to remove it in the future if
// the way constructors are looked up changes.
//
Parser &P = const_cast<Parser&>(Interp->getParser());
Sema &S = Interp->getSema();
DeclContext* OldEntity = P.getCurScope()->getEntity();
DeclContext* TUCtx = Context.getTranslationUnitDecl();
P.getCurScope()->setEntity(TUCtx);
P.EnterScope(Scope::DeclScope);
P.getCurScope()->setEntity(foundDC);
P.EnterScope(Scope::DeclScope);
Sema::ContextRAII SemaContext(S, foundDC);
S.EnterDeclaratorContext(P.getCurScope(), foundDC);
UnqualifiedId FuncId;
ParserStateRAII ResetParserState(P, false /*skipToEOF*/);
if (!ParseWithShortcuts(foundDC, Context, funcName, Interp, FuncId,
diagOnOff, ResetParserState)) {
// Failed parse, cleanup.
// Destroy the scope we created first, and
// restore the original.
S.ExitDeclaratorContext(P.getCurScope());
P.ExitScope();
P.ExitScope();
P.getCurScope()->setEntity(OldEntity);
// Then exit.
return 0;
}
//
// Get any template args in the function name.
//
TemplateArgumentListInfo FuncTemplateArgsBuffer;
DeclarationNameInfo FuncNameInfo;
const TemplateArgumentListInfo* FuncTemplateArgs;
S.DecomposeUnqualifiedId(FuncId, FuncTemplateArgsBuffer, FuncNameInfo,
FuncTemplateArgs);
//
// Lookup the function name in the given class now.
//
DeclarationName FuncName = FuncNameInfo.getName();
SourceLocation FuncNameLoc = FuncNameInfo.getLoc();
LookupResult Result(S, FuncName, FuncNameLoc, Sema::LookupMemberName,
Sema::NotForRedeclaration);
Result.suppressDiagnostics();
bool LookupSuccess = true;
if (FuncTemplateArgsBuffer.size()) {
// It's a template. Calculate the NNS and do qualified template lookup.
NestedNameSpecifier* scopeNNS = nullptr;
SourceRange scopeSrcRange;
if (isa<TranslationUnitDecl>(foundDC)) {
scopeNNS = NestedNameSpecifier::GlobalSpecifier(Context);
} else if (const auto *foundNS = dyn_cast<NamespaceDecl>(foundDC)) {
scopeNNS = NestedNameSpecifier::Create(Context, /*NNSPrefix*/ nullptr,
foundNS);
scopeSrcRange = foundNS->getSourceRange();
} else if (const auto *foundRD = dyn_cast<RecordDecl>(foundDC)) {
// a type
const Type* foundTy = Context.getTypeDeclType(foundRD).getTypePtr();
scopeNNS = NestedNameSpecifier::Create(Context, /*NNSPrefix*/ nullptr,
/*Template*/ false, foundTy);
scopeSrcRange = foundRD->getSourceRange();
}
CXXScopeSpec SS;
if (scopeNNS)
SS.MakeTrivial(Context, scopeNNS, scopeSrcRange);
bool MemberOfUnknownSpecialization;
S.LookupTemplateName(Result, P.getCurScope(), SS, QualType(),
/*EnteringContext*/false,
MemberOfUnknownSpecialization);
// "Translation" of the TemplateDecl to the specialization is done
// in findAnyFunctionSelector() given the ExplicitTemplateArgs.
if (Result.empty())
LookupSuccess = false;
} else {
LookupSuccess = S.LookupQualifiedName(Result, foundDC);
}
if (!LookupSuccess) {
// Lookup failed.
// Destroy the scope we created first, and
// restore the original.
S.ExitDeclaratorContext(P.getCurScope());
P.ExitScope();
P.ExitScope();
P.getCurScope()->setEntity(OldEntity);
// Then cleanup and exit.
return 0;
}
//
// Destroy the scope we created, and restore the original.
//
S.ExitDeclaratorContext(P.getCurScope());
P.ExitScope();
P.ExitScope();
P.getCurScope()->setEntity(OldEntity);
//
// Check for lookup failure.
//
if (Result.getResultKind() != LookupResult::Found &&
Result.getResultKind() != LookupResult::FoundOverloaded) {
// Lookup failed.
return 0;
}
return functionSelector(foundDC,objectIsConst,GivenArgs,
Result,
FuncNameInfo,
FuncTemplateArgs,
Context, P, S, diagOnOff);
}
template <typename DigestArgsInput, typename returnType>
returnType execFindFunction(Parser &P,
Interpreter* Interp,
LookupHelper &LH,
const clang::Decl* scopeDecl,
llvm::StringRef funcName,
const typename DigestArgsInput::ArgsInput &funcArgs,
bool objectIsConst,
returnType (*functionSelector)(DeclContext* foundDC,
bool objectIsConst,
const llvm::SmallVectorImpl<Expr*> &GivenArgs,
LookupResult &Result,
DeclarationNameInfo &FuncNameInfo,
const TemplateArgumentListInfo* FuncTemplateArgs,
ASTContext& Context, Parser &P, Sema &S,
LookupHelper::DiagSetting diagOnOff),
LookupHelper::DiagSetting diagOnOff
)
{
assert(scopeDecl && "Decl cannot be null");
//
// Some utilities.
//
Sema& S = P.getActions();
ASTContext& Context = S.getASTContext();
//
// Convert the passed decl into a nested name specifier,
// a scope spec, and a decl context.
//
// Do this 'early' to save on the expansive parser setup,
// in case of failure.
//
DeclContext* foundDC = getCompleteContext(scopeDecl,Context,S);
if (!foundDC) return 0;
DigestArgsInput inputEval;
llvm::SmallVector<Expr*, 4> GivenArgs;
if (!inputEval(GivenArgs,funcArgs,diagOnOff,P,Interp,LH)) return 0;
Interpreter::PushTransactionRAII pushedT(Interp);
return findFunction(foundDC,
funcName, GivenArgs, objectIsConst,
Context, Interp, functionSelector,
diagOnOff);
}
struct NoParse {
typedef const char* ArgsInput;
bool operator()(llvm::SmallVectorImpl<Expr*> & /* GivenArgs */,
const ArgsInput &/* funcArgs */,
LookupHelper::DiagSetting /* diagOnOff */,
Parser & /* P */, const Interpreter* /* Interp */,
const LookupHelper& /* LH */)
{
return true;
}
};
struct ExprFromTypes {
typedef llvm::SmallVectorImpl<QualType> ArgsInput;
llvm::SmallVector<ExprAlloc, 4> ExprMemory;
bool operator()(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const ArgsInput &GivenTypes,
LookupHelper::DiagSetting /* diagOnOff */,
Parser & /* P */, const Interpreter* /* Interp */,
LookupHelper& /* LH */) {
if (GivenTypes.empty()) return true;
else return getExprProto(GivenArgs,GivenTypes);
}
bool getExprProto(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const llvm::SmallVectorImpl<QualType> &GivenTypes) {
//
// Create the array of Expr from the array of Types.
//
assert(!ExprMemory.size() && "Size must be 0");
ExprMemory.resize(GivenTypes.size() + 1);
for(size_t i = 0, e = GivenTypes.size(); i < e; ++i) {
const clang::QualType QT = GivenTypes[i].getCanonicalType();
{
ExprValueKind VK = VK_PRValue;
if (QT->getAs<LValueReferenceType>()) {
VK = VK_LValue;
}
clang::QualType NonRefQT(QT.getNonReferenceType());
Expr* val = new (&ExprMemory[i]) OpaqueValueExpr(SourceLocation(),
NonRefQT, VK);
GivenArgs.push_back(val);
}
}
return true;
}
};
struct ParseProto {
typedef llvm::StringRef ArgsInput;
llvm::SmallVector<ExprAlloc, 4> ExprMemory;
bool operator()(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const ArgsInput &funcProto,
LookupHelper::DiagSetting diagOnOff,
Parser& P, const Interpreter* Interp,
LookupHelper& LH) {
if (funcProto.empty()) return true;
else return Parse(GivenArgs,funcProto,diagOnOff, P, Interp, LH);
}
bool Parse(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const ArgsInput &funcProto,
LookupHelper::DiagSetting diagOnOff,
Parser& P, const Interpreter* Interp,
LookupHelper& LH) {
//
// Parse the prototype now.
//
StartParsingRAII ParseStarted(LH, funcProto,
llvm::StringRef("func.prototype.file"),
diagOnOff);
// ParseTypeName might trigger deserialization.
Interpreter::PushTransactionRAII TforDeser(Interp);
unsigned int nargs = 0;
while (P.getCurToken().isNot(tok::eof)) {
TypeResult Res(P.ParseTypeName());
if (!Res.isUsable()) {
// Bad parse, done.
return false;
}
TypeSourceInfo *TSI = 0;
clang::QualType QT = clang::Sema::GetTypeFromParser(Res.get(), &TSI);
QT = QT.getCanonicalType();
{
ExprValueKind VK = VK_PRValue;
if (QT->getAs<LValueReferenceType>()) {
VK = VK_LValue;
}
// FIXME: This is potentially dangerous because if the capacity exceeds
// the reserved capacity of ExprMemory, it will reallocate and cause
// memory corruption on the OpaqueValueExpr. See ROOT-7749.
clang::QualType NonRefQT(QT.getNonReferenceType());
ExprMemory.resize(++nargs);
new (&ExprMemory[nargs-1]) OpaqueValueExpr(TSI->getTypeLoc().getBeginLoc(),
NonRefQT, VK);
}
// Type names should be comma separated.
// FIXME: Here if we have type followed by name won't work. Eg int f, ...
if (!P.getCurToken().is(clang::tok::comma)) {
break;
}
// Eat the comma.
P.ConsumeToken();
}
for(unsigned int slot = 0; slot < nargs; ++slot) {
Expr* val = (OpaqueValueExpr*)( &ExprMemory[slot] );
GivenArgs.push_back(val);
}
if (P.getCurToken().isNot(tok::eof)) {
// We did not consume all of the prototype, bad parse.
return false;
}
//
// Cleanup after prototype parse.
//
P.SkipUntil(clang::tok::eof);
// Doesn't reset the diagnostic mappings
Sema& S = P.getActions();
S.getDiagnostics().Reset(/*soft=*/true);
return true;
}
};
static
const FunctionTemplateDecl* findFunctionTemplateSelector(DeclContext* ,
bool /* objectIsConst */,
const llvm::SmallVectorImpl<Expr*> &,
LookupResult &Result,
DeclarationNameInfo &,
const TemplateArgumentListInfo* ExplicitTemplateArgs,
ASTContext&, Parser &,
Sema &S,
LookupHelper::DiagSetting diagOnOff) {
//
// Check for lookup failure.
//
if (Result.empty())
return 0;
if (Result.isSingleResult())
return dyn_cast<FunctionTemplateDecl>(Result.getFoundDecl());
else {
for (LookupResult::iterator I = Result.begin(), E = Result.end();
I != E; ++I) {
NamedDecl* ND = *I;
FunctionTemplateDecl *MethodTmpl =dyn_cast<FunctionTemplateDecl>(ND);
if (MethodTmpl) {
return MethodTmpl;
}
}
return 0;
}
}
const FunctionTemplateDecl*
LookupHelper::findFunctionTemplate(const clang::Decl* scopeDecl,
llvm::StringRef templateName,
DiagSetting diagOnOff,
bool objectIsConst) const {
// Lookup a function template based on its Decl(Context), name.
return execFindFunction<NoParse>(*m_Parser, m_Interpreter,
const_cast<LookupHelper&>(*this),
scopeDecl,
templateName, "",
objectIsConst,
findFunctionTemplateSelector,
diagOnOff);
}
static
const FunctionDecl* findAnyFunctionSelector(DeclContext* ,
bool /* objectIsConst */,
const llvm::SmallVectorImpl<Expr*> &,
LookupResult &Result,
DeclarationNameInfo &,
const TemplateArgumentListInfo* ExplicitTemplateArgs,
ASTContext&, Parser &, Sema &S,
LookupHelper::DiagSetting diagOnOff) {
//
// Check for lookup failure.
//
if (Result.empty())
return 0;
if (Result.isSingleResult())
return dyn_cast<FunctionDecl>(Result.getFoundDecl());
else {
NamedDecl *aResult = *(Result.begin());
FunctionDecl *res = dyn_cast<FunctionDecl>(aResult);
if (res) return res;
FunctionTemplateDecl *MethodTmpl =dyn_cast<FunctionTemplateDecl>(aResult);
if (MethodTmpl) {
if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size()==0) {
// Not argument was specified, any instantiation will do.
if (MethodTmpl->spec_begin() != MethodTmpl->spec_end()) {
return *( MethodTmpl->spec_begin() );
}
}
// pick a specialization that result match the given arguments
SourceLocation loc;
sema::TemplateDeductionInfo Info(loc);
FunctionDecl *fdecl = 0;
Sema::TemplateDeductionResult TemplDedResult
= S.DeduceTemplateArguments(MethodTmpl,
const_cast<TemplateArgumentListInfo*>(ExplicitTemplateArgs),
fdecl,
Info);
if (TemplDedResult != Sema::TDK_Success) {
// Deduction failure.
return 0;
} else {
// Instantiate the function if needed.
if (!fdecl->isDefined())
S.InstantiateFunctionDefinition(loc, fdecl,
true /*recursive instantiation*/);
if (fdecl->isInvalidDecl()) {
// if the decl is invalid try to clean up
UnloadDecl(&S, fdecl);
return 0;
}
return fdecl;
}
}
return 0;
}
}
const FunctionDecl* LookupHelper::findAnyFunction(const clang::Decl*scopeDecl,
llvm::StringRef funcName,
DiagSetting diagOnOff,
bool objectIsConst) const {
return execFindFunction<NoParse>(*m_Parser, m_Interpreter,
const_cast<LookupHelper&>(*this),
scopeDecl,
funcName, "",
objectIsConst,
findAnyFunctionSelector,
diagOnOff);
}
const FunctionDecl*
LookupHelper::findFunctionProto(const Decl* scopeDecl,
llvm::StringRef funcName,
const llvm::SmallVectorImpl<QualType>& funcProto,
DiagSetting diagOnOff, bool objectIsConst) const {
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ExprFromTypes>(*m_Parser, m_Interpreter,
const_cast<LookupHelper&>(*this),
scopeDecl,
funcName,
funcProto,
objectIsConst,
overloadFunctionSelector,
diagOnOff);
}
const FunctionDecl* LookupHelper::findFunctionProto(const Decl* scopeDecl,
llvm::StringRef funcName,
llvm::StringRef funcProto,
DiagSetting diagOnOff,
bool objectIsConst) const{
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ParseProto>(*m_Parser, m_Interpreter,
const_cast<LookupHelper&>(*this),
scopeDecl,
funcName,
funcProto,
objectIsConst,
overloadFunctionSelector,
diagOnOff);
}
const FunctionDecl*
LookupHelper::matchFunctionProto(const Decl* scopeDecl,
llvm::StringRef funcName,
llvm::StringRef funcProto,
DiagSetting diagOnOff,
bool objectIsConst) const {
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ParseProto>(*m_Parser, m_Interpreter,
const_cast<LookupHelper&>(*this),
scopeDecl,
funcName,
funcProto,
objectIsConst,
matchFunctionSelector,
diagOnOff);
}
const FunctionDecl*
LookupHelper::matchFunctionProto(const Decl* scopeDecl,
llvm::StringRef funcName,
const llvm::SmallVectorImpl<QualType>& funcProto,
DiagSetting diagOnOff,
bool objectIsConst) const {
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ExprFromTypes>(*m_Parser, m_Interpreter,
const_cast<LookupHelper&>(*this),
scopeDecl,
funcName,
funcProto,
objectIsConst,
matchFunctionSelector,
diagOnOff);
}
struct ParseArgs {
typedef llvm::StringRef ArgsInput;
bool operator()(llvm::SmallVectorImpl<Expr*> &GivenArgs,
const ArgsInput &funcArgs,
LookupHelper::DiagSetting diagOnOff,
Parser &P, const Interpreter* Interp,
LookupHelper& LH) {
if (funcArgs.empty()) return true;
else return Parse(GivenArgs,funcArgs,diagOnOff, P, Interp, LH);
}
bool Parse(llvm::SmallVectorImpl<Expr*> &GivenArgs,
llvm::StringRef funcArgs,
LookupHelper::DiagSetting diagOnOff,
Parser &P, const Interpreter* Interp,
LookupHelper& LH) {
//
// Parse the arguments now.
//
Interpreter::PushTransactionRAII TforDeser(Interp);
StartParsingRAII ParseStarted(LH, funcArgs,
llvm::StringRef("func.args.file"),
diagOnOff);
Sema& S = P.getActions();
ASTContext& Context = S.getASTContext();
PrintingPolicy Policy(Context.getPrintingPolicy());
Policy.SuppressTagKeyword = true;
Policy.SuppressUnwrittenScope = true;
Policy.SuppressInitializers = true;
Policy.AnonymousTagLocations = false;
std::string proto;
{
bool first_time = true;
while (P.getCurToken().isNot(tok::eof)) {
ExprResult Res = P.ParseAssignmentExpression();
if (Res.isUsable()) {
Expr* expr = Res.get();
GivenArgs.push_back(expr);
if (first_time) {
first_time = false;
}
else {
proto += ',';
}
stdstrstream tmp;
expr->printPretty(tmp, /*PrinterHelper=*/0, Policy,
/*Indentation=*/0);
proto += tmp.str();
}
if (!P.getCurToken().is(tok::comma)) {
break;
}
P.ConsumeToken();
}
}
// For backward compatibility with CINT accept (for now?) a trailing close
// parenthesis.
if (P.getCurToken().isNot(tok::eof) && P.getCurToken().isNot(tok::r_paren) ) {
// We did not consume all of the arg list, bad parse.
return false;
}
//
// Cleanup after the arg list parse.
//
P.SkipUntil(clang::tok::eof);
// Doesn't reset the diagnostic mappings
S.getDiagnostics().Reset(/*soft=*/true);
return true;
}
};
const FunctionDecl*
LookupHelper::findFunctionArgs(const Decl* scopeDecl,
llvm::StringRef funcName,
llvm::StringRef funcArgs,
DiagSetting diagOnOff,
bool objectIsConst) const {
assert(scopeDecl && "Decl cannot be null");
return execFindFunction<ParseArgs>(*m_Parser, m_Interpreter,
const_cast<LookupHelper&>(*this),
scopeDecl,
funcName,
funcArgs,
objectIsConst,
overloadFunctionSelector,
diagOnOff);
}
void LookupHelper::findArgList(llvm::StringRef argList,
llvm::SmallVectorImpl<Expr*>& argExprs,
DiagSetting diagOnOff) const {
if (argList.empty()) return;
//
// Some utilities.
//
// Use P for shortness
Parser& P = *m_Parser;
StartParsingRAII ParseStarted(const_cast<LookupHelper&>(*this),
argList,
llvm::StringRef("arg.list.file"),
diagOnOff);
//
// Parse the arguments now.
//
{
bool hasUnusableResult = false;
while (P.getCurToken().isNot(tok::eof)) {
ExprResult Res = P.ParseAssignmentExpression();
if (Res.isUsable()) {
argExprs.push_back(Res.get());
}
else {
hasUnusableResult = true;
break;
}
if (!P.getCurToken().is(tok::comma)) {
break;
}
P.ConsumeToken();
}
if (hasUnusableResult)
// if one of the arguments is not usable return empty.
argExprs.clear();
}
}
static
bool hasFunctionSelector(DeclContext* ,
bool /* objectIsConst */,
const llvm::SmallVectorImpl<Expr*> &,
LookupResult &Result,
DeclarationNameInfo &,
const TemplateArgumentListInfo* ,
ASTContext&, Parser &, Sema &,
LookupHelper::DiagSetting /*diagOnOff*/) {
//
// Check for lookup failure.
//
if (Result.empty())
return false;
if (Result.isSingleResult())
return isa<FunctionDecl>(Result.getFoundDecl());
// We have many - those must be functions.
return true;
}
bool LookupHelper::hasFunction(const clang::Decl* scopeDecl,
llvm::StringRef funcName,
DiagSetting diagOnOff) const {
return execFindFunction<NoParse>(*m_Parser, m_Interpreter,
const_cast<LookupHelper&>(*this),
scopeDecl,
funcName, "",
false /* objectIsConst */,
hasFunctionSelector,
diagOnOff);
}
static const clang::Type* getType(LookupHelper* LH, llvm::StringRef Type) {
QualType Qt = LH->findType(Type, LookupHelper::WithDiagnostics);
assert(!Qt.isNull() && "Type should exist");
return Qt.getTypePtr();
}
LookupHelper::StringType
LookupHelper::getStringType(const clang::Type* Type) {
assert(Type && "Type cannot be null");
const Transaction*& Cache = m_Interpreter->getStdStringTransaction();
if (!Cache || !m_StringTy[kStdString]) {
// getStringType can be called multiple times with Cache being null, and
// the local cache should be discarded when that occurs.
if (!Cache)
m_StringTy = {{}};
QualType Qt = findType("std::string", WithDiagnostics);
m_StringTy[kStdString] = Qt.isNull() ? nullptr : Qt.getTypePtr();
if (!m_StringTy[kStdString]) return kNotAString;
Cache = m_Interpreter->getLatestTransaction();
m_StringTy[kWCharString] = getType(this, "std::wstring");
const clang::LangOptions& LO = m_Interpreter->getCI()->getLangOpts();
if (LO.CPlusPlus11) {
m_StringTy[kUTF16Str] = getType(this, "std::u16string");
m_StringTy[kUTF32Str] = getType(this, "std::u32string");
}
}
ASTContext& Ctx = m_Interpreter->getSema().getASTContext();
for (unsigned I = 0; I < kNumCachedStrings; ++I) {
if (m_StringTy[I] && Ctx.hasSameType(Type, m_StringTy[I]))
return StringType(I);
}
return kNotAString;
}
void LookupHelper::printStats() const {
llvm::errs() << "Cached entries: " << m_ParseBufferCache.size() << "\n";
llvm::errs() << "Total parse requests: " << m_TotalParseRequests << "\n";
llvm::errs() << "Cache hits: " << m_CacheHits << "\n";
}
} // end namespace cling