[IMPORT] import ebtree v5.0 into directory ebtree/
We needed to upgrade ebtree to v5.0 to support string indexing, and it was getting very painful to have it split across 2 dirs and to have to patch it. Now we just have to copy the .c and .h files to the right place.
This commit is contained in:
parent
516ed49964
commit
c218602b1d
217
ebtree/eb32tree.c
Normal file
217
ebtree/eb32tree.c
Normal file
@ -0,0 +1,217 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functions for operations on 32bit nodes.
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult eb32tree.h for more details about those functions */
|
||||
|
||||
#include "eb32tree.h"
|
||||
|
||||
REGPRM2 struct eb32_node *eb32_insert(struct eb_root *root, struct eb32_node *new)
|
||||
{
|
||||
return __eb32_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb32_node *eb32i_insert(struct eb_root *root, struct eb32_node *new)
|
||||
{
|
||||
return __eb32i_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb32_node *eb32_lookup(struct eb_root *root, u32 x)
|
||||
{
|
||||
return __eb32_lookup(root, x);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb32_node *eb32i_lookup(struct eb_root *root, s32 x)
|
||||
{
|
||||
return __eb32i_lookup(root, x);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the last occurrence of the highest key in the tree <root>, which is
|
||||
* equal to or less than <x>. NULL is returned is no key matches.
|
||||
*/
|
||||
REGPRM2 struct eb32_node *eb32_lookup_le(struct eb_root *root, u32 x)
|
||||
{
|
||||
struct eb32_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
/* We reached a leaf, which means that the whole upper
|
||||
* parts were common. We will return either the current
|
||||
* node or its next one if the former is too small.
|
||||
*/
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
if (node->key <= x)
|
||||
return node;
|
||||
/* return prev */
|
||||
troot = node->node.leaf_p;
|
||||
break;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We're at the top of a dup tree. Either we got a
|
||||
* matching value and we return the rightmost node, or
|
||||
* we don't and we skip the whole subtree to return the
|
||||
* prev node before the subtree. Note that since we're
|
||||
* at the top of the dup tree, we can simply return the
|
||||
* prev node without first trying to escape from the
|
||||
* tree.
|
||||
*/
|
||||
if (node->key <= x) {
|
||||
troot = node->node.branches.b[EB_RGHT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_RGHT];
|
||||
return container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
}
|
||||
/* return prev */
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
|
||||
if (((x ^ node->key) >> node->node.bit) >= EB_NODE_BRANCHES) {
|
||||
/* No more common bits at all. Either this node is too
|
||||
* small and we need to get its highest value, or it is
|
||||
* too large, and we need to get the prev value.
|
||||
*/
|
||||
if ((node->key >> node->node.bit) > (x >> node->node.bit)) {
|
||||
troot = node->node.branches.b[EB_RGHT];
|
||||
return eb32_entry(eb_walk_down(troot, EB_RGHT), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Further values will be too high here, so return the prev
|
||||
* unique node (if it exists).
|
||||
*/
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
|
||||
/* If we get here, it means we want to report previous node before the
|
||||
* current one which is not above. <troot> is already initialised to
|
||||
* the parent's branches.
|
||||
*/
|
||||
while (eb_gettag(troot) == EB_LEFT) {
|
||||
/* Walking up from left branch. We must ensure that we never
|
||||
* walk beyond root.
|
||||
*/
|
||||
if (unlikely(eb_clrtag((eb_untag(troot, EB_LEFT))->b[EB_RGHT]) == NULL))
|
||||
return NULL;
|
||||
troot = (eb_root_to_node(eb_untag(troot, EB_LEFT)))->node_p;
|
||||
}
|
||||
/* Note that <troot> cannot be NULL at this stage */
|
||||
troot = (eb_untag(troot, EB_RGHT))->b[EB_LEFT];
|
||||
node = eb32_entry(eb_walk_down(troot, EB_RGHT), struct eb32_node, node);
|
||||
return node;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurrence of the lowest key in the tree <root>, which is
|
||||
* equal to or greater than <x>. NULL is returned is no key matches.
|
||||
*/
|
||||
REGPRM2 struct eb32_node *eb32_lookup_ge(struct eb_root *root, u32 x)
|
||||
{
|
||||
struct eb32_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
/* We reached a leaf, which means that the whole upper
|
||||
* parts were common. We will return either the current
|
||||
* node or its next one if the former is too small.
|
||||
*/
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
if (node->key >= x)
|
||||
return node;
|
||||
/* return next */
|
||||
troot = node->node.leaf_p;
|
||||
break;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We're at the top of a dup tree. Either we got a
|
||||
* matching value and we return the leftmost node, or
|
||||
* we don't and we skip the whole subtree to return the
|
||||
* next node after the subtree. Note that since we're
|
||||
* at the top of the dup tree, we can simply return the
|
||||
* next node without first trying to escape from the
|
||||
* tree.
|
||||
*/
|
||||
if (node->key >= x) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
return container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
}
|
||||
/* return next */
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
|
||||
if (((x ^ node->key) >> node->node.bit) >= EB_NODE_BRANCHES) {
|
||||
/* No more common bits at all. Either this node is too
|
||||
* large and we need to get its lowest value, or it is too
|
||||
* small, and we need to get the next value.
|
||||
*/
|
||||
if ((node->key >> node->node.bit) > (x >> node->node.bit)) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
return eb32_entry(eb_walk_down(troot, EB_LEFT), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Further values will be too low here, so return the next
|
||||
* unique node (if it exists).
|
||||
*/
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
|
||||
/* If we get here, it means we want to report next node after the
|
||||
* current one which is not below. <troot> is already initialised
|
||||
* to the parent's branches.
|
||||
*/
|
||||
while (eb_gettag(troot) != EB_LEFT)
|
||||
/* Walking up from right branch, so we cannot be below root */
|
||||
troot = (eb_root_to_node(eb_untag(troot, EB_RGHT)))->node_p;
|
||||
|
||||
/* Note that <troot> cannot be NULL at this stage */
|
||||
troot = (eb_untag(troot, EB_LEFT))->b[EB_RGHT];
|
||||
if (eb_clrtag(troot) == NULL)
|
||||
return NULL;
|
||||
|
||||
node = eb32_entry(eb_walk_down(troot, EB_LEFT), struct eb32_node, node);
|
||||
return node;
|
||||
}
|
548
ebtree/eb32tree.h
Normal file
548
ebtree/eb32tree.h
Normal file
@ -0,0 +1,548 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros and structures for operations on 32bit nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#ifndef _EB32TREE_H
|
||||
#define _EB32TREE_H
|
||||
|
||||
#include "ebtree.h"
|
||||
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define eb32_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define EB32_ROOT EB_ROOT
|
||||
#define EB32_TREE_HEAD EB_TREE_HEAD
|
||||
|
||||
/* These types may sometimes already be defined */
|
||||
typedef unsigned int u32;
|
||||
typedef signed int s32;
|
||||
|
||||
/* This structure carries a node, a leaf, and a key. It must start with the
|
||||
* eb_node so that it can be cast into an eb_node. We could also have put some
|
||||
* sort of transparent union here to reduce the indirection level, but the fact
|
||||
* is, the end user is not meant to manipulate internals, so this is pointless.
|
||||
*/
|
||||
struct eb32_node {
|
||||
struct eb_node node; /* the tree node, must be at the beginning */
|
||||
u32 key;
|
||||
};
|
||||
|
||||
/*
|
||||
* Exported functions and macros.
|
||||
* Many of them are always inlined because they are extremely small, and
|
||||
* are generally called at most once or twice in a program.
|
||||
*/
|
||||
|
||||
/* Return leftmost node in the tree, or NULL if none */
|
||||
static inline struct eb32_node *eb32_first(struct eb_root *root)
|
||||
{
|
||||
return eb32_entry(eb_first(root), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return rightmost node in the tree, or NULL if none */
|
||||
static inline struct eb32_node *eb32_last(struct eb_root *root)
|
||||
{
|
||||
return eb32_entry(eb_last(root), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, or NULL if none */
|
||||
static inline struct eb32_node *eb32_next(struct eb32_node *eb32)
|
||||
{
|
||||
return eb32_entry(eb_next(&eb32->node), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, or NULL if none */
|
||||
static inline struct eb32_node *eb32_prev(struct eb32_node *eb32)
|
||||
{
|
||||
return eb32_entry(eb_prev(&eb32->node), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct eb32_node *eb32_next_unique(struct eb32_node *eb32)
|
||||
{
|
||||
return eb32_entry(eb_next_unique(&eb32->node), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct eb32_node *eb32_prev_unique(struct eb32_node *eb32)
|
||||
{
|
||||
return eb32_entry(eb_prev_unique(&eb32->node), struct eb32_node, node);
|
||||
}
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. Note
|
||||
* that this function relies on a non-inlined generic function: eb_delete.
|
||||
*/
|
||||
static inline void eb32_delete(struct eb32_node *eb32)
|
||||
{
|
||||
eb_delete(&eb32->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following functions are not inlined by default. They are declared
|
||||
* in eb32tree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM2 struct eb32_node *eb32_lookup(struct eb_root *root, u32 x);
|
||||
REGPRM2 struct eb32_node *eb32i_lookup(struct eb_root *root, s32 x);
|
||||
REGPRM2 struct eb32_node *eb32_lookup_le(struct eb_root *root, u32 x);
|
||||
REGPRM2 struct eb32_node *eb32_lookup_ge(struct eb_root *root, u32 x);
|
||||
REGPRM2 struct eb32_node *eb32_insert(struct eb_root *root, struct eb32_node *new);
|
||||
REGPRM2 struct eb32_node *eb32i_insert(struct eb_root *root, struct eb32_node *new);
|
||||
|
||||
/*
|
||||
* The following functions are less likely to be used directly, because their
|
||||
* code is larger. The non-inlined version is preferred.
|
||||
*/
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. */
|
||||
static forceinline void __eb32_delete(struct eb32_node *eb32)
|
||||
{
|
||||
__eb_delete(&eb32->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a key in the tree <root>. If none can be
|
||||
* found, return NULL.
|
||||
*/
|
||||
static forceinline struct eb32_node *__eb32_lookup(struct eb_root *root, u32 x)
|
||||
{
|
||||
struct eb32_node *node;
|
||||
eb_troot_t *troot;
|
||||
u32 y;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
y = node->key ^ x;
|
||||
if (!y) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
if ((y >> node->node.bit) >= EB_NODE_BRANCHES)
|
||||
return NULL; /* no more common bits */
|
||||
|
||||
troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a signed key in the tree <root>. If none can
|
||||
* be found, return NULL.
|
||||
*/
|
||||
static forceinline struct eb32_node *__eb32i_lookup(struct eb_root *root, s32 x)
|
||||
{
|
||||
struct eb32_node *node;
|
||||
eb_troot_t *troot;
|
||||
u32 key = x ^ 0x80000000;
|
||||
u32 y;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
y = node->key ^ x;
|
||||
if (!y) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
if ((y >> node->node.bit) >= EB_NODE_BRANCHES)
|
||||
return NULL; /* no more common bits */
|
||||
|
||||
troot = node->node.branches.b[(key >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert eb32_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The eb32_node is returned.
|
||||
* If root->b[EB_RGHT]==1, the tree may only contain unique keys.
|
||||
*/
|
||||
static forceinline struct eb32_node *
|
||||
__eb32_insert(struct eb_root *root, struct eb32_node *new) {
|
||||
struct eb32_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
u32 newkey; /* caching the key saves approximately one cycle */
|
||||
eb_troot_t *root_right = root;
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
root_right = root->b[EB_RGHT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries the key being inserted.
|
||||
*/
|
||||
newkey = new->key;
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* we may refuse to duplicate this key if the tree is
|
||||
* tagged as containing only unique keys.
|
||||
*/
|
||||
if ((new->key == old->key) && eb_gettag(root_right))
|
||||
return old;
|
||||
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
(((new->key ^ old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (new->key > old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct eb32_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = (newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
new->node.bit = flsnz(new->key ^ old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
||||
|
||||
/* Insert eb32_node <new> into subtree starting at node root <root>, using
|
||||
* signed keys. Only new->key needs be set with the key. The eb32_node
|
||||
* is returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys.
|
||||
*/
|
||||
static forceinline struct eb32_node *
|
||||
__eb32i_insert(struct eb_root *root, struct eb32_node *new) {
|
||||
struct eb32_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
int newkey; /* caching the key saves approximately one cycle */
|
||||
eb_troot_t *root_right = root;
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
root_right = root->b[EB_RGHT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries a high bit shift of the key being
|
||||
* inserted in order to have negative keys stored before positive
|
||||
* ones.
|
||||
*/
|
||||
newkey = new->key + 0x80000000;
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if ((s32)new->key < (s32)old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* we may refuse to duplicate this key if the tree is
|
||||
* tagged as containing only unique keys.
|
||||
*/
|
||||
if ((new->key == old->key) && eb_gettag(root_right))
|
||||
return old;
|
||||
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb32_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
(((new->key ^ old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if ((s32)new->key < (s32)old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if ((s32)new->key > (s32)old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct eb32_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = (newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
new->node.bit = flsnz(new->key ^ old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
||||
|
||||
#endif /* _EB32_TREE_H */
|
217
ebtree/eb64tree.c
Normal file
217
ebtree/eb64tree.c
Normal file
@ -0,0 +1,217 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functions for operations on 64bit nodes.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult eb64tree.h for more details about those functions */
|
||||
|
||||
#include "eb64tree.h"
|
||||
|
||||
REGPRM2 struct eb64_node *eb64_insert(struct eb_root *root, struct eb64_node *new)
|
||||
{
|
||||
return __eb64_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb64_node *eb64i_insert(struct eb_root *root, struct eb64_node *new)
|
||||
{
|
||||
return __eb64i_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb64_node *eb64_lookup(struct eb_root *root, u64 x)
|
||||
{
|
||||
return __eb64_lookup(root, x);
|
||||
}
|
||||
|
||||
REGPRM2 struct eb64_node *eb64i_lookup(struct eb_root *root, s64 x)
|
||||
{
|
||||
return __eb64i_lookup(root, x);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the last occurrence of the highest key in the tree <root>, which is
|
||||
* equal to or less than <x>. NULL is returned is no key matches.
|
||||
*/
|
||||
REGPRM2 struct eb64_node *eb64_lookup_le(struct eb_root *root, u64 x)
|
||||
{
|
||||
struct eb64_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
/* We reached a leaf, which means that the whole upper
|
||||
* parts were common. We will return either the current
|
||||
* node or its next one if the former is too small.
|
||||
*/
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
if (node->key <= x)
|
||||
return node;
|
||||
/* return prev */
|
||||
troot = node->node.leaf_p;
|
||||
break;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We're at the top of a dup tree. Either we got a
|
||||
* matching value and we return the rightmost node, or
|
||||
* we don't and we skip the whole subtree to return the
|
||||
* prev node before the subtree. Note that since we're
|
||||
* at the top of the dup tree, we can simply return the
|
||||
* prev node without first trying to escape from the
|
||||
* tree.
|
||||
*/
|
||||
if (node->key <= x) {
|
||||
troot = node->node.branches.b[EB_RGHT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_RGHT];
|
||||
return container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
}
|
||||
/* return prev */
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
|
||||
if (((x ^ node->key) >> node->node.bit) >= EB_NODE_BRANCHES) {
|
||||
/* No more common bits at all. Either this node is too
|
||||
* small and we need to get its highest value, or it is
|
||||
* too large, and we need to get the prev value.
|
||||
*/
|
||||
if ((node->key >> node->node.bit) > (x >> node->node.bit)) {
|
||||
troot = node->node.branches.b[EB_RGHT];
|
||||
return eb64_entry(eb_walk_down(troot, EB_RGHT), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Further values will be too high here, so return the prev
|
||||
* unique node (if it exists).
|
||||
*/
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
|
||||
/* If we get here, it means we want to report previous node before the
|
||||
* current one which is not above. <troot> is already initialised to
|
||||
* the parent's branches.
|
||||
*/
|
||||
while (eb_gettag(troot) == EB_LEFT) {
|
||||
/* Walking up from left branch. We must ensure that we never
|
||||
* walk beyond root.
|
||||
*/
|
||||
if (unlikely(eb_clrtag((eb_untag(troot, EB_LEFT))->b[EB_RGHT]) == NULL))
|
||||
return NULL;
|
||||
troot = (eb_root_to_node(eb_untag(troot, EB_LEFT)))->node_p;
|
||||
}
|
||||
/* Note that <troot> cannot be NULL at this stage */
|
||||
troot = (eb_untag(troot, EB_RGHT))->b[EB_LEFT];
|
||||
node = eb64_entry(eb_walk_down(troot, EB_RGHT), struct eb64_node, node);
|
||||
return node;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurrence of the lowest key in the tree <root>, which is
|
||||
* equal to or greater than <x>. NULL is returned is no key matches.
|
||||
*/
|
||||
REGPRM2 struct eb64_node *eb64_lookup_ge(struct eb_root *root, u64 x)
|
||||
{
|
||||
struct eb64_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
/* We reached a leaf, which means that the whole upper
|
||||
* parts were common. We will return either the current
|
||||
* node or its next one if the former is too small.
|
||||
*/
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
if (node->key >= x)
|
||||
return node;
|
||||
/* return next */
|
||||
troot = node->node.leaf_p;
|
||||
break;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We're at the top of a dup tree. Either we got a
|
||||
* matching value and we return the leftmost node, or
|
||||
* we don't and we skip the whole subtree to return the
|
||||
* next node after the subtree. Note that since we're
|
||||
* at the top of the dup tree, we can simply return the
|
||||
* next node without first trying to escape from the
|
||||
* tree.
|
||||
*/
|
||||
if (node->key >= x) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
return container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
}
|
||||
/* return next */
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
|
||||
if (((x ^ node->key) >> node->node.bit) >= EB_NODE_BRANCHES) {
|
||||
/* No more common bits at all. Either this node is too
|
||||
* large and we need to get its lowest value, or it is too
|
||||
* small, and we need to get the next value.
|
||||
*/
|
||||
if ((node->key >> node->node.bit) > (x >> node->node.bit)) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
return eb64_entry(eb_walk_down(troot, EB_LEFT), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Further values will be too low here, so return the next
|
||||
* unique node (if it exists).
|
||||
*/
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
|
||||
/* If we get here, it means we want to report next node after the
|
||||
* current one which is not below. <troot> is already initialised
|
||||
* to the parent's branches.
|
||||
*/
|
||||
while (eb_gettag(troot) != EB_LEFT)
|
||||
/* Walking up from right branch, so we cannot be below root */
|
||||
troot = (eb_root_to_node(eb_untag(troot, EB_RGHT)))->node_p;
|
||||
|
||||
/* Note that <troot> cannot be NULL at this stage */
|
||||
troot = (eb_untag(troot, EB_LEFT))->b[EB_RGHT];
|
||||
if (eb_clrtag(troot) == NULL)
|
||||
return NULL;
|
||||
|
||||
node = eb64_entry(eb_walk_down(troot, EB_LEFT), struct eb64_node, node);
|
||||
return node;
|
||||
}
|
568
ebtree/eb64tree.h
Normal file
568
ebtree/eb64tree.h
Normal file
@ -0,0 +1,568 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros and structures for operations on 64bit nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#ifndef _EB64TREE_H
|
||||
#define _EB64TREE_H
|
||||
|
||||
#include "ebtree.h"
|
||||
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define eb64_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define EB64_ROOT EB_ROOT
|
||||
#define EB64_TREE_HEAD EB_TREE_HEAD
|
||||
|
||||
/* These types may sometimes already be defined */
|
||||
typedef unsigned long long u64;
|
||||
typedef signed long long s64;
|
||||
|
||||
/* This structure carries a node, a leaf, and a key. It must start with the
|
||||
* eb_node so that it can be cast into an eb_node. We could also have put some
|
||||
* sort of transparent union here to reduce the indirection level, but the fact
|
||||
* is, the end user is not meant to manipulate internals, so this is pointless.
|
||||
*/
|
||||
struct eb64_node {
|
||||
struct eb_node node; /* the tree node, must be at the beginning */
|
||||
u64 key;
|
||||
};
|
||||
|
||||
/*
|
||||
* Exported functions and macros.
|
||||
* Many of them are always inlined because they are extremely small, and
|
||||
* are generally called at most once or twice in a program.
|
||||
*/
|
||||
|
||||
/* Return leftmost node in the tree, or NULL if none */
|
||||
static inline struct eb64_node *eb64_first(struct eb_root *root)
|
||||
{
|
||||
return eb64_entry(eb_first(root), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return rightmost node in the tree, or NULL if none */
|
||||
static inline struct eb64_node *eb64_last(struct eb_root *root)
|
||||
{
|
||||
return eb64_entry(eb_last(root), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, or NULL if none */
|
||||
static inline struct eb64_node *eb64_next(struct eb64_node *eb64)
|
||||
{
|
||||
return eb64_entry(eb_next(&eb64->node), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, or NULL if none */
|
||||
static inline struct eb64_node *eb64_prev(struct eb64_node *eb64)
|
||||
{
|
||||
return eb64_entry(eb_prev(&eb64->node), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct eb64_node *eb64_next_unique(struct eb64_node *eb64)
|
||||
{
|
||||
return eb64_entry(eb_next_unique(&eb64->node), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, skipping duplicates, or NULL if none */
|
||||
static inline struct eb64_node *eb64_prev_unique(struct eb64_node *eb64)
|
||||
{
|
||||
return eb64_entry(eb_prev_unique(&eb64->node), struct eb64_node, node);
|
||||
}
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. Note
|
||||
* that this function relies on a non-inlined generic function: eb_delete.
|
||||
*/
|
||||
static inline void eb64_delete(struct eb64_node *eb64)
|
||||
{
|
||||
eb_delete(&eb64->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following functions are not inlined by default. They are declared
|
||||
* in eb64tree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM2 struct eb64_node *eb64_lookup(struct eb_root *root, u64 x);
|
||||
REGPRM2 struct eb64_node *eb64i_lookup(struct eb_root *root, s64 x);
|
||||
REGPRM2 struct eb64_node *eb64_lookup_le(struct eb_root *root, u64 x);
|
||||
REGPRM2 struct eb64_node *eb64_lookup_ge(struct eb_root *root, u64 x);
|
||||
REGPRM2 struct eb64_node *eb64_insert(struct eb_root *root, struct eb64_node *new);
|
||||
REGPRM2 struct eb64_node *eb64i_insert(struct eb_root *root, struct eb64_node *new);
|
||||
|
||||
/*
|
||||
* The following functions are less likely to be used directly, because their
|
||||
* code is larger. The non-inlined version is preferred.
|
||||
*/
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. */
|
||||
static forceinline void __eb64_delete(struct eb64_node *eb64)
|
||||
{
|
||||
__eb_delete(&eb64->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a key in the tree <root>. If none can be
|
||||
* found, return NULL.
|
||||
*/
|
||||
static forceinline struct eb64_node *__eb64_lookup(struct eb_root *root, u64 x)
|
||||
{
|
||||
struct eb64_node *node;
|
||||
eb_troot_t *troot;
|
||||
u64 y;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
y = node->key ^ x;
|
||||
if (!y) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
if ((y >> node->node.bit) >= EB_NODE_BRANCHES)
|
||||
return NULL; /* no more common bits */
|
||||
|
||||
troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurence of a signed key in the tree <root>. If none can
|
||||
* be found, return NULL.
|
||||
*/
|
||||
static forceinline struct eb64_node *__eb64i_lookup(struct eb_root *root, s64 x)
|
||||
{
|
||||
struct eb64_node *node;
|
||||
eb_troot_t *troot;
|
||||
u64 key = x ^ (1ULL << 63);
|
||||
u64 y;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
if (node->key == x)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
y = node->key ^ x;
|
||||
if (!y) {
|
||||
/* Either we found the node which holds the key, or
|
||||
* we have a dup tree. In the later case, we have to
|
||||
* walk it down left to get the first entry.
|
||||
*/
|
||||
if (node->node.bit < 0) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
if ((y >> node->node.bit) >= EB_NODE_BRANCHES)
|
||||
return NULL; /* no more common bits */
|
||||
|
||||
troot = node->node.branches.b[(key >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert eb64_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The eb64_node is returned.
|
||||
* If root->b[EB_RGHT]==1, the tree may only contain unique keys.
|
||||
*/
|
||||
static forceinline struct eb64_node *
|
||||
__eb64_insert(struct eb_root *root, struct eb64_node *new) {
|
||||
struct eb64_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
u64 newkey; /* caching the key saves approximately one cycle */
|
||||
eb_troot_t *root_right = root;
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
root_right = root->b[EB_RGHT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries the key being inserted.
|
||||
*/
|
||||
newkey = new->key;
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* we may refuse to duplicate this key if the tree is
|
||||
* tagged as containing only unique keys.
|
||||
*/
|
||||
if ((new->key == old->key) && eb_gettag(root_right))
|
||||
return old;
|
||||
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
(((new->key ^ old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if (new->key < old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (new->key > old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct eb64_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
#if BITS_PER_LONG >= 64
|
||||
side = (newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
#else
|
||||
side = newkey;
|
||||
side >>= old->node.bit;
|
||||
if (old->node.bit >= 32) {
|
||||
side = newkey >> 32;
|
||||
side >>= old->node.bit & 0x1F;
|
||||
}
|
||||
side &= EB_NODE_BRANCH_MASK;
|
||||
#endif
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
new->node.bit = fls64(new->key ^ old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
||||
|
||||
/* Insert eb64_node <new> into subtree starting at node root <root>, using
|
||||
* signed keys. Only new->key needs be set with the key. The eb64_node
|
||||
* is returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys.
|
||||
*/
|
||||
static forceinline struct eb64_node *
|
||||
__eb64i_insert(struct eb_root *root, struct eb64_node *new) {
|
||||
struct eb64_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
u64 newkey; /* caching the key saves approximately one cycle */
|
||||
eb_troot_t *root_right = root;
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
root_right = root->b[EB_RGHT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached. <newkey> carries a high bit shift of the key being
|
||||
* inserted in order to have negative keys stored before positive
|
||||
* ones.
|
||||
*/
|
||||
newkey = new->key ^ (1ULL << 63);
|
||||
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
- the tree does not contain the key, and we have
|
||||
new->key < old->key. We insert new above old, on
|
||||
the left ;
|
||||
|
||||
- the tree does not contain the key, and we have
|
||||
new->key > old->key. We insert new above old, on
|
||||
the right ;
|
||||
|
||||
- the tree does contain the key, which implies it
|
||||
is alone. We add the new key next to it as a
|
||||
first duplicate.
|
||||
|
||||
The last two cases can easily be partially merged.
|
||||
*/
|
||||
|
||||
if ((s64)new->key < (s64)old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* we may refuse to duplicate this key if the tree is
|
||||
* tagged as containing only unique keys.
|
||||
*/
|
||||
if ((new->key == old->key) && eb_gettag(root_right))
|
||||
return old;
|
||||
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (new->key == old->key) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct eb64_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above.
|
||||
*/
|
||||
|
||||
if ((old->node.bit < 0) || /* we're above a duplicate tree, stop here */
|
||||
(((new->key ^ old->key) >> old->node.bit) >= EB_NODE_BRANCHES)) {
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
if ((s64)new->key < (s64)old->key) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if ((s64)new->key > (s64)old->key) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct eb64_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
#if BITS_PER_LONG >= 64
|
||||
side = (newkey >> old->node.bit) & EB_NODE_BRANCH_MASK;
|
||||
#else
|
||||
side = newkey;
|
||||
side >>= old->node.bit;
|
||||
if (old->node.bit >= 32) {
|
||||
side = newkey >> 32;
|
||||
side >>= old->node.bit & 0x1F;
|
||||
}
|
||||
side &= EB_NODE_BRANCH_MASK;
|
||||
#endif
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* What differences are there between new->key and the node here ?
|
||||
* NOTE that bit(new) is always < bit(root) because highest
|
||||
* bit of new->key and old->key are identical here (otherwise they
|
||||
* would sit on different branches).
|
||||
*/
|
||||
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
|
||||
new->node.bit = fls64(new->key ^ old->key) - EB_NODE_BITS;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
|
||||
return new;
|
||||
}
|
||||
|
||||
#endif /* _EB64_TREE_H */
|
44
ebtree/ebimtree.c
Normal file
44
ebtree/ebimtree.c
Normal file
@ -0,0 +1,44 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functinos for Indirect Multi-Byte data nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult ebimtree.h for more details about those functions */
|
||||
|
||||
#include "ebpttree.h"
|
||||
#include "ebimtree.h"
|
||||
|
||||
/* Find the first occurence of a key of <len> bytes in the tree <root>.
|
||||
* If none can be found, return NULL.
|
||||
*/
|
||||
REGPRM3 struct ebpt_node *
|
||||
ebim_lookup(struct eb_root *root, const void *x, unsigned int len)
|
||||
{
|
||||
return __ebim_lookup(root, x, len);
|
||||
}
|
||||
|
||||
/* Insert ebpt_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The ebpt_node is returned.
|
||||
* If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
|
||||
* len is specified in bytes.
|
||||
*/
|
||||
REGPRM3 struct ebpt_node *
|
||||
ebim_insert(struct eb_root *root, struct ebpt_node *new, unsigned int len)
|
||||
{
|
||||
return __ebim_insert(root, new, len);
|
||||
}
|
263
ebtree/ebimtree.h
Normal file
263
ebtree/ebimtree.h
Normal file
@ -0,0 +1,263 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros for Indirect Multi-Byte data nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "ebtree.h"
|
||||
#include "ebpttree.h"
|
||||
|
||||
/* These functions and macros rely on Pointer nodes and use the <key> entry as
|
||||
* a pointer to an indirect key. Most operations are performed using ebpt_*.
|
||||
*/
|
||||
|
||||
/* The following functions are not inlined by default. They are declared
|
||||
* in ebimtree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM3 struct ebpt_node *ebim_lookup(struct eb_root *root, const void *x, unsigned int len);
|
||||
REGPRM3 struct ebpt_node *ebim_insert(struct eb_root *root, struct ebpt_node *new, unsigned int len);
|
||||
|
||||
/* Find the first occurence of a key of <len> bytes in the tree <root>.
|
||||
* If none can be found, return NULL.
|
||||
*/
|
||||
static forceinline struct ebpt_node *
|
||||
__ebim_lookup(struct eb_root *root, const void *x, unsigned int len)
|
||||
{
|
||||
struct ebpt_node *node;
|
||||
eb_troot_t *troot;
|
||||
unsigned int bit;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
bit = 0;
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
if (memcmp(node->key, x, len) == 0)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We have a dup tree now. Either it's for the same
|
||||
* value, and we walk down left, or it's a different
|
||||
* one and we don't have our key.
|
||||
*/
|
||||
if (memcmp(node->key, x, len) != 0)
|
||||
return NULL;
|
||||
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
return node;
|
||||
}
|
||||
|
||||
/* OK, normal data node, let's walk down */
|
||||
bit = equal_bits(x, node->key, bit, node->node.bit);
|
||||
if (bit < node->node.bit)
|
||||
return NULL; /* no more common bits */
|
||||
|
||||
troot = node->node.branches.b[(((unsigned char*)x)[node->node.bit >> 3] >>
|
||||
(~node->node.bit & 7)) & 1];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert ebpt_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The ebpt_node is returned.
|
||||
* If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
|
||||
* len is specified in bytes.
|
||||
*/
|
||||
static forceinline struct ebpt_node *
|
||||
__ebim_insert(struct eb_root *root, struct ebpt_node *new, unsigned int len)
|
||||
{
|
||||
struct ebpt_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
eb_troot_t *root_right = root;
|
||||
int diff;
|
||||
int bit;
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
root_right = root->b[EB_RGHT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
len <<= 3;
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached.
|
||||
*/
|
||||
|
||||
bit = 0;
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
* - the tree does not contain the key, and we have
|
||||
* new->key < old->key. We insert new above old, on
|
||||
* the left ;
|
||||
*
|
||||
* - the tree does not contain the key, and we have
|
||||
* new->key > old->key. We insert new above old, on
|
||||
* the right ;
|
||||
*
|
||||
* - the tree does contain the key, which implies it
|
||||
* is alone. We add the new key next to it as a
|
||||
* first duplicate.
|
||||
*
|
||||
* The last two cases can easily be partially merged.
|
||||
*/
|
||||
bit = equal_bits(new->key, old->key, bit, len);
|
||||
diff = cmp_bits(new->key, old->key, bit);
|
||||
|
||||
if (diff < 0) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* we may refuse to duplicate this key if the tree is
|
||||
* tagged as containing only unique keys.
|
||||
*/
|
||||
if (diff == 0 && eb_gettag(root_right))
|
||||
return old;
|
||||
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (diff == 0) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above. Note: we can compare more bits than
|
||||
* the current node's because as long as they are identical, we
|
||||
* know we descend along the correct side.
|
||||
*/
|
||||
if (old->node.bit < 0) {
|
||||
/* we're above a duplicate tree, we must compare till the end */
|
||||
bit = equal_bits(new->key, old->key, bit, len);
|
||||
goto dup_tree;
|
||||
}
|
||||
else if (bit < old->node.bit) {
|
||||
bit = equal_bits(new->key, old->key, bit, old->node.bit);
|
||||
}
|
||||
|
||||
if (bit < old->node.bit) { /* we don't have all bits in common */
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
dup_tree:
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
diff = cmp_bits(new->key, old->key, bit);
|
||||
if (diff < 0) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (diff > 0) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct ebpt_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = (((unsigned char *)new->key)[old->node.bit >> 3] >> (~old->node.bit & 7)) & 1;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* This number of bits is already in <bit>.
|
||||
*/
|
||||
new->node.bit = bit;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
42
ebtree/ebistree.c
Normal file
42
ebtree/ebistree.c
Normal file
@ -0,0 +1,42 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functions for Indirect String data nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult ebistree.h for more details about those functions */
|
||||
|
||||
#include "ebistree.h"
|
||||
|
||||
/* Find the first occurence of a zero-terminated string <x> in the tree <root>.
|
||||
* It's the caller's reponsibility to use this function only on trees which
|
||||
* only contain zero-terminated strings. If none can be found, return NULL.
|
||||
*/
|
||||
REGPRM2 struct ebpt_node *ebis_lookup(struct eb_root *root, const char *x)
|
||||
{
|
||||
return __ebis_lookup(root, x);
|
||||
}
|
||||
|
||||
/* Insert ebpt_node <new> into subtree starting at node root <root>. Only
|
||||
* new->key needs be set with the zero-terminated string key. The ebpt_node is
|
||||
* returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
|
||||
* caller is responsible for properly terminating the key with a zero.
|
||||
*/
|
||||
REGPRM2 struct ebpt_node *ebis_insert(struct eb_root *root, struct ebpt_node *new)
|
||||
{
|
||||
return __ebis_insert(root, new);
|
||||
}
|
263
ebtree/ebistree.h
Normal file
263
ebtree/ebistree.h
Normal file
@ -0,0 +1,263 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros to manipulate Indirect String data nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* These functions and macros rely on Multi-Byte nodes */
|
||||
|
||||
#include <string.h>
|
||||
#include "ebtree.h"
|
||||
#include "ebpttree.h"
|
||||
|
||||
/* These functions and macros rely on Pointer nodes and use the <key> entry as
|
||||
* a pointer to an indirect key. Most operations are performed using ebpt_*.
|
||||
*/
|
||||
|
||||
/* The following functions are not inlined by default. They are declared
|
||||
* in ebistree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM2 struct ebpt_node *ebis_lookup(struct eb_root *root, const char *x);
|
||||
REGPRM2 struct ebpt_node *ebis_insert(struct eb_root *root, struct ebpt_node *new);
|
||||
|
||||
/* Find the first occurence of a zero-terminated string <x> in the tree <root>.
|
||||
* It's the caller's reponsibility to use this function only on trees which
|
||||
* only contain zero-terminated strings. If none can be found, return NULL.
|
||||
*/
|
||||
static forceinline struct ebpt_node *__ebis_lookup(struct eb_root *root, const void *x)
|
||||
{
|
||||
struct ebpt_node *node;
|
||||
eb_troot_t *troot;
|
||||
unsigned int bit;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
bit = 0;
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
if (strcmp(node->key, x) == 0)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We have a dup tree now. Either it's for the same
|
||||
* value, and we walk down left, or it's a different
|
||||
* one and we don't have our key.
|
||||
*/
|
||||
if (strcmp(node->key, x) != 0)
|
||||
return NULL;
|
||||
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
return node;
|
||||
}
|
||||
|
||||
/* OK, normal data node, let's walk down */
|
||||
bit = string_equal_bits(x, node->key, bit);
|
||||
if (bit < node->node.bit)
|
||||
return NULL; /* no more common bits */
|
||||
|
||||
troot = node->node.branches.b[(((unsigned char*)x)[node->node.bit >> 3] >>
|
||||
(~node->node.bit & 7)) & 1];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert ebpt_node <new> into subtree starting at node root <root>. Only
|
||||
* new->key needs be set with the zero-terminated string key. The ebpt_node is
|
||||
* returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
|
||||
* caller is responsible for properly terminating the key with a zero.
|
||||
*/
|
||||
static forceinline struct ebpt_node *
|
||||
__ebis_insert(struct eb_root *root, struct ebpt_node *new)
|
||||
{
|
||||
struct ebpt_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
eb_troot_t *root_right = root;
|
||||
int diff;
|
||||
int bit;
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
root_right = root->b[EB_RGHT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached.
|
||||
*/
|
||||
|
||||
bit = 0;
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
* - the tree does not contain the key, and we have
|
||||
* new->key < old->key. We insert new above old, on
|
||||
* the left ;
|
||||
*
|
||||
* - the tree does not contain the key, and we have
|
||||
* new->key > old->key. We insert new above old, on
|
||||
* the right ;
|
||||
*
|
||||
* - the tree does contain the key, which implies it
|
||||
* is alone. We add the new key next to it as a
|
||||
* first duplicate.
|
||||
*
|
||||
* The last two cases can easily be partially merged.
|
||||
*/
|
||||
bit = string_equal_bits(new->key, old->key, bit);
|
||||
diff = cmp_bits(new->key, old->key, bit);
|
||||
|
||||
if (diff < 0) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* we may refuse to duplicate this key if the tree is
|
||||
* tagged as containing only unique keys.
|
||||
*/
|
||||
if (diff == 0 && eb_gettag(root_right))
|
||||
return old;
|
||||
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (diff == 0) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above. Note: we can compare more bits than
|
||||
* the current node's because as long as they are identical, we
|
||||
* know we descend along the correct side.
|
||||
*/
|
||||
if (old->node.bit < 0) {
|
||||
/* we're above a duplicate tree, we must compare till the end */
|
||||
bit = string_equal_bits(new->key, old->key, bit);
|
||||
goto dup_tree;
|
||||
}
|
||||
else if (bit < old->node.bit) {
|
||||
bit = string_equal_bits(new->key, old->key, bit);
|
||||
}
|
||||
|
||||
if (bit < old->node.bit) { /* we don't have all bits in common */
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
dup_tree:
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
diff = cmp_bits(new->key, old->key, bit);
|
||||
if (diff < 0) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (diff > 0) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct ebpt_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = (((unsigned char *)new->key)[old->node.bit >> 3] >> (~old->node.bit & 7)) & 1;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* This number of bits is already in <bit>.
|
||||
*/
|
||||
new->node.bit = bit;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
|
43
ebtree/ebmbtree.c
Normal file
43
ebtree/ebmbtree.c
Normal file
@ -0,0 +1,43 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functinos for Multi-Byte data nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult ebmbtree.h for more details about those functions */
|
||||
|
||||
#include "ebmbtree.h"
|
||||
|
||||
/* Find the first occurence of a key of <len> bytes in the tree <root>.
|
||||
* If none can be found, return NULL.
|
||||
*/
|
||||
REGPRM3 struct ebmb_node *
|
||||
ebmb_lookup(struct eb_root *root, const void *x, unsigned int len)
|
||||
{
|
||||
return __ebmb_lookup(root, x, len);
|
||||
}
|
||||
|
||||
/* Insert ebmb_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The ebmb_node is returned.
|
||||
* If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
|
||||
* len is specified in bytes.
|
||||
*/
|
||||
REGPRM3 struct ebmb_node *
|
||||
ebmb_insert(struct eb_root *root, struct ebmb_node *new, unsigned int len)
|
||||
{
|
||||
return __ebmb_insert(root, new, len);
|
||||
}
|
336
ebtree/ebmbtree.h
Normal file
336
ebtree/ebmbtree.h
Normal file
@ -0,0 +1,336 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros and structures for Multi-Byte data nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "ebtree.h"
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define ebmb_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define EBMB_ROOT EB_ROOT
|
||||
#define EBMB_TREE_HEAD EB_TREE_HEAD
|
||||
|
||||
/* This structure carries a node, a leaf, and a key. It must start with the
|
||||
* eb_node so that it can be cast into an eb_node. We could also have put some
|
||||
* sort of transparent union here to reduce the indirection level, but the fact
|
||||
* is, the end user is not meant to manipulate internals, so this is pointless.
|
||||
* The 'node.bit' value here works differently from scalar types, as it contains
|
||||
* the number of identical bits between the two branches.
|
||||
*/
|
||||
struct ebmb_node {
|
||||
struct eb_node node; /* the tree node, must be at the beginning */
|
||||
unsigned char key[0]; /* the key, its size depends on the application */
|
||||
};
|
||||
|
||||
/*
|
||||
* Exported functions and macros.
|
||||
* Many of them are always inlined because they are extremely small, and
|
||||
* are generally called at most once or twice in a program.
|
||||
*/
|
||||
|
||||
/* Return leftmost node in the tree, or NULL if none */
|
||||
static forceinline struct ebmb_node *ebmb_first(struct eb_root *root)
|
||||
{
|
||||
return ebmb_entry(eb_first(root), struct ebmb_node, node);
|
||||
}
|
||||
|
||||
/* Return rightmost node in the tree, or NULL if none */
|
||||
static forceinline struct ebmb_node *ebmb_last(struct eb_root *root)
|
||||
{
|
||||
return ebmb_entry(eb_last(root), struct ebmb_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, or NULL if none */
|
||||
static forceinline struct ebmb_node *ebmb_next(struct ebmb_node *ebmb)
|
||||
{
|
||||
return ebmb_entry(eb_next(&ebmb->node), struct ebmb_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, or NULL if none */
|
||||
static forceinline struct ebmb_node *ebmb_prev(struct ebmb_node *ebmb)
|
||||
{
|
||||
return ebmb_entry(eb_prev(&ebmb->node), struct ebmb_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, skipping duplicates, or NULL if none */
|
||||
static forceinline struct ebmb_node *ebmb_next_unique(struct ebmb_node *ebmb)
|
||||
{
|
||||
return ebmb_entry(eb_next_unique(&ebmb->node), struct ebmb_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, skipping duplicates, or NULL if none */
|
||||
static forceinline struct ebmb_node *ebmb_prev_unique(struct ebmb_node *ebmb)
|
||||
{
|
||||
return ebmb_entry(eb_prev_unique(&ebmb->node), struct ebmb_node, node);
|
||||
}
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. Note
|
||||
* that this function relies on a non-inlined generic function: eb_delete.
|
||||
*/
|
||||
static forceinline void ebmb_delete(struct ebmb_node *ebmb)
|
||||
{
|
||||
eb_delete(&ebmb->node);
|
||||
}
|
||||
|
||||
/* The following functions are not inlined by default. They are declared
|
||||
* in ebmbtree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM3 struct ebmb_node *ebmb_lookup(struct eb_root *root, const void *x, unsigned int len);
|
||||
REGPRM3 struct ebmb_node *ebmb_insert(struct eb_root *root, struct ebmb_node *new, unsigned int len);
|
||||
|
||||
/* The following functions are less likely to be used directly, because their
|
||||
* code is larger. The non-inlined version is preferred.
|
||||
*/
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. */
|
||||
static forceinline void __ebmb_delete(struct ebmb_node *ebmb)
|
||||
{
|
||||
__eb_delete(&ebmb->node);
|
||||
}
|
||||
|
||||
/* Find the first occurence of a key of <len> bytes in the tree <root>.
|
||||
* If none can be found, return NULL.
|
||||
*/
|
||||
static forceinline struct ebmb_node *__ebmb_lookup(struct eb_root *root, const void *x, unsigned int len)
|
||||
{
|
||||
struct ebmb_node *node;
|
||||
eb_troot_t *troot;
|
||||
unsigned int bit;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
bit = 0;
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebmb_node, node.branches);
|
||||
if (memcmp(node->key, x, len) == 0)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebmb_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We have a dup tree now. Either it's for the same
|
||||
* value, and we walk down left, or it's a different
|
||||
* one and we don't have our key.
|
||||
*/
|
||||
if (memcmp(node->key, x, len) != 0)
|
||||
return NULL;
|
||||
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebmb_node, node.branches);
|
||||
return node;
|
||||
}
|
||||
|
||||
/* OK, normal data node, let's walk down */
|
||||
bit = equal_bits(x, node->key, bit, node->node.bit);
|
||||
if (bit < node->node.bit)
|
||||
return NULL; /* no more common bits */
|
||||
|
||||
troot = node->node.branches.b[(((unsigned char*)x)[node->node.bit >> 3] >>
|
||||
(~node->node.bit & 7)) & 1];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert ebmb_node <new> into subtree starting at node root <root>.
|
||||
* Only new->key needs be set with the key. The ebmb_node is returned.
|
||||
* If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
|
||||
* len is specified in bytes.
|
||||
*/
|
||||
static forceinline struct ebmb_node *
|
||||
__ebmb_insert(struct eb_root *root, struct ebmb_node *new, unsigned int len)
|
||||
{
|
||||
struct ebmb_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
eb_troot_t *root_right = root;
|
||||
int diff;
|
||||
int bit;
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
root_right = root->b[EB_RGHT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
len <<= 3;
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached.
|
||||
*/
|
||||
|
||||
bit = 0;
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebmb_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
* - the tree does not contain the key, and we have
|
||||
* new->key < old->key. We insert new above old, on
|
||||
* the left ;
|
||||
*
|
||||
* - the tree does not contain the key, and we have
|
||||
* new->key > old->key. We insert new above old, on
|
||||
* the right ;
|
||||
*
|
||||
* - the tree does contain the key, which implies it
|
||||
* is alone. We add the new key next to it as a
|
||||
* first duplicate.
|
||||
*
|
||||
* The last two cases can easily be partially merged.
|
||||
*/
|
||||
bit = equal_bits(new->key, old->key, bit, len);
|
||||
diff = cmp_bits(new->key, old->key, bit);
|
||||
|
||||
if (diff < 0) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* we may refuse to duplicate this key if the tree is
|
||||
* tagged as containing only unique keys.
|
||||
*/
|
||||
if (diff == 0 && eb_gettag(root_right))
|
||||
return old;
|
||||
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (diff == 0) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebmb_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above. Note: we can compare more bits than
|
||||
* the current node's because as long as they are identical, we
|
||||
* know we descend along the correct side.
|
||||
*/
|
||||
if (old->node.bit < 0) {
|
||||
/* we're above a duplicate tree, we must compare till the end */
|
||||
bit = equal_bits(new->key, old->key, bit, len);
|
||||
goto dup_tree;
|
||||
}
|
||||
else if (bit < old->node.bit) {
|
||||
bit = equal_bits(new->key, old->key, bit, old->node.bit);
|
||||
}
|
||||
|
||||
if (bit < old->node.bit) { /* we don't have all bits in common */
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
|
||||
dup_tree:
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
diff = cmp_bits(new->key, old->key, bit);
|
||||
if (diff < 0) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (diff > 0) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct ebmb_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = (new->key[old->node.bit >> 3] >> (~old->node.bit & 7)) & 1;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* This number of bits is already in <bit>.
|
||||
*/
|
||||
new->node.bit = bit;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
|
207
ebtree/ebpttree.c
Normal file
207
ebtree/ebpttree.c
Normal file
@ -0,0 +1,207 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functions for operations on pointer nodes.
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult ebpttree.h for more details about those functions */
|
||||
|
||||
#include "ebpttree.h"
|
||||
|
||||
REGPRM2 struct ebpt_node *ebpt_insert(struct eb_root *root, struct ebpt_node *new)
|
||||
{
|
||||
return __ebpt_insert(root, new);
|
||||
}
|
||||
|
||||
REGPRM2 struct ebpt_node *ebpt_lookup(struct eb_root *root, void *x)
|
||||
{
|
||||
return __ebpt_lookup(root, x);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the last occurrence of the highest key in the tree <root>, which is
|
||||
* equal to or less than <x>. NULL is returned is no key matches.
|
||||
*/
|
||||
REGPRM2 struct ebpt_node *ebpt_lookup_le(struct eb_root *root, void *x)
|
||||
{
|
||||
struct ebpt_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
/* We reached a leaf, which means that the whole upper
|
||||
* parts were common. We will return either the current
|
||||
* node or its next one if the former is too small.
|
||||
*/
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
if (node->key <= x)
|
||||
return node;
|
||||
/* return prev */
|
||||
troot = node->node.leaf_p;
|
||||
break;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We're at the top of a dup tree. Either we got a
|
||||
* matching value and we return the rightmost node, or
|
||||
* we don't and we skip the whole subtree to return the
|
||||
* prev node before the subtree. Note that since we're
|
||||
* at the top of the dup tree, we can simply return the
|
||||
* prev node without first trying to escape from the
|
||||
* tree.
|
||||
*/
|
||||
if (node->key <= x) {
|
||||
troot = node->node.branches.b[EB_RGHT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_RGHT];
|
||||
return container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
}
|
||||
/* return prev */
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
|
||||
if ((((ptr_t)x ^ (ptr_t)node->key) >> node->node.bit) >= EB_NODE_BRANCHES) {
|
||||
/* No more common bits at all. Either this node is too
|
||||
* small and we need to get its highest value, or it is
|
||||
* too large, and we need to get the prev value.
|
||||
*/
|
||||
if (((ptr_t)node->key >> node->node.bit) > ((ptr_t)x >> node->node.bit)) {
|
||||
troot = node->node.branches.b[EB_RGHT];
|
||||
return ebpt_entry(eb_walk_down(troot, EB_RGHT), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Further values will be too high here, so return the prev
|
||||
* unique node (if it exists).
|
||||
*/
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
troot = node->node.branches.b[((ptr_t)x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
|
||||
/* If we get here, it means we want to report previous node before the
|
||||
* current one which is not above. <troot> is already initialised to
|
||||
* the parent's branches.
|
||||
*/
|
||||
while (eb_gettag(troot) == EB_LEFT) {
|
||||
/* Walking up from left branch. We must ensure that we never
|
||||
* walk beyond root.
|
||||
*/
|
||||
if (unlikely(eb_clrtag((eb_untag(troot, EB_LEFT))->b[EB_RGHT]) == NULL))
|
||||
return NULL;
|
||||
troot = (eb_root_to_node(eb_untag(troot, EB_LEFT)))->node_p;
|
||||
}
|
||||
/* Note that <troot> cannot be NULL at this stage */
|
||||
troot = (eb_untag(troot, EB_RGHT))->b[EB_LEFT];
|
||||
node = ebpt_entry(eb_walk_down(troot, EB_RGHT), struct ebpt_node, node);
|
||||
return node;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the first occurrence of the lowest key in the tree <root>, which is
|
||||
* equal to or greater than <x>. NULL is returned is no key matches.
|
||||
*/
|
||||
REGPRM2 struct ebpt_node *ebpt_lookup_ge(struct eb_root *root, void *x)
|
||||
{
|
||||
struct ebpt_node *node;
|
||||
eb_troot_t *troot;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
/* We reached a leaf, which means that the whole upper
|
||||
* parts were common. We will return either the current
|
||||
* node or its next one if the former is too small.
|
||||
*/
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
if (node->key >= x)
|
||||
return node;
|
||||
/* return next */
|
||||
troot = node->node.leaf_p;
|
||||
break;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebpt_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We're at the top of a dup tree. Either we got a
|
||||
* matching value and we return the leftmost node, or
|
||||
* we don't and we skip the whole subtree to return the
|
||||
* next node after the subtree. Note that since we're
|
||||
* at the top of the dup tree, we can simply return the
|
||||
* next node without first trying to escape from the
|
||||
* tree.
|
||||
*/
|
||||
if (node->key >= x) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
return container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebpt_node, node.branches);
|
||||
}
|
||||
/* return next */
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
|
||||
if ((((ptr_t)x ^ (ptr_t)node->key) >> node->node.bit) >= EB_NODE_BRANCHES) {
|
||||
/* No more common bits at all. Either this node is too
|
||||
* large and we need to get its lowest value, or it is too
|
||||
* small, and we need to get the next value.
|
||||
*/
|
||||
if (((ptr_t)node->key >> node->node.bit) > ((ptr_t)x >> node->node.bit)) {
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
return ebpt_entry(eb_walk_down(troot, EB_LEFT), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Further values will be too low here, so return the next
|
||||
* unique node (if it exists).
|
||||
*/
|
||||
troot = node->node.node_p;
|
||||
break;
|
||||
}
|
||||
troot = node->node.branches.b[((ptr_t)x >> node->node.bit) & EB_NODE_BRANCH_MASK];
|
||||
}
|
||||
|
||||
/* If we get here, it means we want to report next node after the
|
||||
* current one which is not below. <troot> is already initialised
|
||||
* to the parent's branches.
|
||||
*/
|
||||
while (eb_gettag(troot) != EB_LEFT)
|
||||
/* Walking up from right branch, so we cannot be below root */
|
||||
troot = (eb_root_to_node(eb_untag(troot, EB_RGHT)))->node_p;
|
||||
|
||||
/* Note that <troot> cannot be NULL at this stage */
|
||||
troot = (eb_untag(troot, EB_LEFT))->b[EB_RGHT];
|
||||
if (eb_clrtag(troot) == NULL)
|
||||
return NULL;
|
||||
|
||||
node = ebpt_entry(eb_walk_down(troot, EB_LEFT), struct ebpt_node, node);
|
||||
return node;
|
||||
}
|
165
ebtree/ebpttree.h
Normal file
165
ebtree/ebpttree.h
Normal file
@ -0,0 +1,165 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros and structures for operations on pointer nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#ifndef _EBPTTREE_H
|
||||
#define _EBPTTREE_H
|
||||
|
||||
#include "ebtree.h"
|
||||
#include "eb32tree.h"
|
||||
#include "eb64tree.h"
|
||||
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define ebpt_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
#define EBPT_ROOT EB_ROOT
|
||||
#define EBPT_TREE_HEAD EB_TREE_HEAD
|
||||
|
||||
/* on *almost* all platforms, a pointer can be cast into a size_t which is unsigned */
|
||||
#ifndef PTR_INT_TYPE
|
||||
#define PTR_INT_TYPE size_t
|
||||
#endif
|
||||
|
||||
typedef PTR_INT_TYPE ptr_t;
|
||||
|
||||
/* This structure carries a node, a leaf, and a key. It must start with the
|
||||
* eb_node so that it can be cast into an eb_node. We could also have put some
|
||||
* sort of transparent union here to reduce the indirection level, but the fact
|
||||
* is, the end user is not meant to manipulate internals, so this is pointless.
|
||||
* Internally, it is automatically cast as an eb32_node or eb64_node.
|
||||
*/
|
||||
struct ebpt_node {
|
||||
struct eb_node node; /* the tree node, must be at the beginning */
|
||||
void *key;
|
||||
};
|
||||
|
||||
/*
|
||||
* Exported functions and macros.
|
||||
* Many of them are always inlined because they are extremely small, and
|
||||
* are generally called at most once or twice in a program.
|
||||
*/
|
||||
|
||||
/* Return leftmost node in the tree, or NULL if none */
|
||||
static forceinline struct ebpt_node *ebpt_first(struct eb_root *root)
|
||||
{
|
||||
return ebpt_entry(eb_first(root), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return rightmost node in the tree, or NULL if none */
|
||||
static forceinline struct ebpt_node *ebpt_last(struct eb_root *root)
|
||||
{
|
||||
return ebpt_entry(eb_last(root), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, or NULL if none */
|
||||
static forceinline struct ebpt_node *ebpt_next(struct ebpt_node *ebpt)
|
||||
{
|
||||
return ebpt_entry(eb_next(&ebpt->node), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, or NULL if none */
|
||||
static forceinline struct ebpt_node *ebpt_prev(struct ebpt_node *ebpt)
|
||||
{
|
||||
return ebpt_entry(eb_prev(&ebpt->node), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return next node in the tree, skipping duplicates, or NULL if none */
|
||||
static forceinline struct ebpt_node *ebpt_next_unique(struct ebpt_node *ebpt)
|
||||
{
|
||||
return ebpt_entry(eb_next_unique(&ebpt->node), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Return previous node in the tree, skipping duplicates, or NULL if none */
|
||||
static forceinline struct ebpt_node *ebpt_prev_unique(struct ebpt_node *ebpt)
|
||||
{
|
||||
return ebpt_entry(eb_prev_unique(&ebpt->node), struct ebpt_node, node);
|
||||
}
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. Note
|
||||
* that this function relies on a non-inlined generic function: eb_delete.
|
||||
*/
|
||||
static forceinline void ebpt_delete(struct ebpt_node *ebpt)
|
||||
{
|
||||
eb_delete(&ebpt->node);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following functions are inlined but derived from the integer versions.
|
||||
*/
|
||||
static forceinline struct ebpt_node *ebpt_lookup(struct eb_root *root, void *x)
|
||||
{
|
||||
if (sizeof(void *) == 4)
|
||||
return (struct ebpt_node *)eb32_lookup(root, (u32)(PTR_INT_TYPE)x);
|
||||
else
|
||||
return (struct ebpt_node *)eb64_lookup(root, (u64)(PTR_INT_TYPE)x);
|
||||
}
|
||||
|
||||
static forceinline struct ebpt_node *ebpt_lookup_le(struct eb_root *root, void *x)
|
||||
{
|
||||
if (sizeof(void *) == 4)
|
||||
return (struct ebpt_node *)eb32_lookup_le(root, (u32)(PTR_INT_TYPE)x);
|
||||
else
|
||||
return (struct ebpt_node *)eb64_lookup_le(root, (u64)(PTR_INT_TYPE)x);
|
||||
}
|
||||
|
||||
static forceinline struct ebpt_node *ebpt_lookup_ge(struct eb_root *root, void *x)
|
||||
{
|
||||
if (sizeof(void *) == 4)
|
||||
return (struct ebpt_node *)eb32_lookup_ge(root, (u32)(PTR_INT_TYPE)x);
|
||||
else
|
||||
return (struct ebpt_node *)eb64_lookup_ge(root, (u64)(PTR_INT_TYPE)x);
|
||||
}
|
||||
|
||||
static forceinline struct ebpt_node *ebpt_insert(struct eb_root *root, struct ebpt_node *new)
|
||||
{
|
||||
if (sizeof(void *) == 4)
|
||||
return (struct ebpt_node *)eb32_insert(root, (struct eb32_node *)new);
|
||||
else
|
||||
return (struct ebpt_node *)eb64_insert(root, (struct eb64_node *)new);
|
||||
}
|
||||
|
||||
/*
|
||||
* The following functions are less likely to be used directly, because
|
||||
* their code is larger. The non-inlined version is preferred.
|
||||
*/
|
||||
|
||||
/* Delete node from the tree if it was linked in. Mark the node unused. */
|
||||
static forceinline void __ebpt_delete(struct ebpt_node *ebpt)
|
||||
{
|
||||
__eb_delete(&ebpt->node);
|
||||
}
|
||||
|
||||
static forceinline struct ebpt_node *__ebpt_lookup(struct eb_root *root, void *x)
|
||||
{
|
||||
if (sizeof(void *) == 4)
|
||||
return (struct ebpt_node *)__eb32_lookup(root, (u32)(PTR_INT_TYPE)x);
|
||||
else
|
||||
return (struct ebpt_node *)__eb64_lookup(root, (u64)(PTR_INT_TYPE)x);
|
||||
}
|
||||
|
||||
static forceinline struct ebpt_node *__ebpt_insert(struct eb_root *root, struct ebpt_node *new)
|
||||
{
|
||||
if (sizeof(void *) == 4)
|
||||
return (struct ebpt_node *)__eb32_insert(root, (struct eb32_node *)new);
|
||||
else
|
||||
return (struct ebpt_node *)__eb64_insert(root, (struct eb64_node *)new);
|
||||
}
|
||||
|
||||
#endif /* _EBPT_TREE_H */
|
42
ebtree/ebsttree.c
Normal file
42
ebtree/ebsttree.c
Normal file
@ -0,0 +1,42 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported functions for String data nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* Consult ebsttree.h for more details about those functions */
|
||||
|
||||
#include "ebsttree.h"
|
||||
|
||||
/* Find the first occurence of a zero-terminated string <x> in the tree <root>.
|
||||
* It's the caller's reponsibility to use this function only on trees which
|
||||
* only contain zero-terminated strings. If none can be found, return NULL.
|
||||
*/
|
||||
REGPRM2 struct ebmb_node *ebst_lookup(struct eb_root *root, const char *x)
|
||||
{
|
||||
return __ebst_lookup(root, x);
|
||||
}
|
||||
|
||||
/* Insert ebmb_node <new> into subtree starting at node root <root>. Only
|
||||
* new->key needs be set with the zero-terminated string key. The ebmb_node is
|
||||
* returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
|
||||
* caller is responsible for properly terminating the key with a zero.
|
||||
*/
|
||||
REGPRM2 struct ebmb_node *ebst_insert(struct eb_root *root, struct ebmb_node *new)
|
||||
{
|
||||
return __ebst_insert(root, new);
|
||||
}
|
258
ebtree/ebsttree.h
Normal file
258
ebtree/ebsttree.h
Normal file
@ -0,0 +1,258 @@
|
||||
/*
|
||||
* Elastic Binary Trees - macros to manipulate String data nodes.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/* These functions and macros rely on Multi-Byte nodes */
|
||||
|
||||
#include "ebtree.h"
|
||||
#include "ebmbtree.h"
|
||||
|
||||
/* The following functions are not inlined by default. They are declared
|
||||
* in ebsttree.c, which simply relies on their inline version.
|
||||
*/
|
||||
REGPRM2 struct ebmb_node *ebst_lookup(struct eb_root *root, const char *x);
|
||||
REGPRM2 struct ebmb_node *ebst_insert(struct eb_root *root, struct ebmb_node *new);
|
||||
|
||||
/* Find the first occurence of a zero-terminated string <x> in the tree <root>.
|
||||
* It's the caller's reponsibility to use this function only on trees which
|
||||
* only contain zero-terminated strings. If none can be found, return NULL.
|
||||
*/
|
||||
static forceinline struct ebmb_node *__ebst_lookup(struct eb_root *root, const void *x)
|
||||
{
|
||||
struct ebmb_node *node;
|
||||
eb_troot_t *troot;
|
||||
unsigned int bit;
|
||||
|
||||
troot = root->b[EB_LEFT];
|
||||
if (unlikely(troot == NULL))
|
||||
return NULL;
|
||||
|
||||
bit = 0;
|
||||
while (1) {
|
||||
if ((eb_gettag(troot) == EB_LEAF)) {
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebmb_node, node.branches);
|
||||
if (strcmp(node->key, x) == 0)
|
||||
return node;
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
node = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebmb_node, node.branches);
|
||||
|
||||
if (node->node.bit < 0) {
|
||||
/* We have a dup tree now. Either it's for the same
|
||||
* value, and we walk down left, or it's a different
|
||||
* one and we don't have our key.
|
||||
*/
|
||||
if (strcmp(node->key, x) != 0)
|
||||
return NULL;
|
||||
|
||||
troot = node->node.branches.b[EB_LEFT];
|
||||
while (eb_gettag(troot) != EB_LEAF)
|
||||
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
|
||||
node = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebmb_node, node.branches);
|
||||
return node;
|
||||
}
|
||||
|
||||
/* OK, normal data node, let's walk down */
|
||||
bit = string_equal_bits(x, node->key, bit);
|
||||
if (bit < node->node.bit)
|
||||
return NULL; /* no more common bits */
|
||||
|
||||
troot = node->node.branches.b[(((unsigned char*)x)[node->node.bit >> 3] >>
|
||||
(~node->node.bit & 7)) & 1];
|
||||
}
|
||||
}
|
||||
|
||||
/* Insert ebmb_node <new> into subtree starting at node root <root>. Only
|
||||
* new->key needs be set with the zero-terminated string key. The ebmb_node is
|
||||
* returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
|
||||
* caller is responsible for properly terminating the key with a zero.
|
||||
*/
|
||||
static forceinline struct ebmb_node *
|
||||
__ebst_insert(struct eb_root *root, struct ebmb_node *new)
|
||||
{
|
||||
struct ebmb_node *old;
|
||||
unsigned int side;
|
||||
eb_troot_t *troot;
|
||||
eb_troot_t *root_right = root;
|
||||
int diff;
|
||||
int bit;
|
||||
|
||||
side = EB_LEFT;
|
||||
troot = root->b[EB_LEFT];
|
||||
root_right = root->b[EB_RGHT];
|
||||
if (unlikely(troot == NULL)) {
|
||||
/* Tree is empty, insert the leaf part below the left branch */
|
||||
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
new->node.leaf_p = eb_dotag(root, EB_LEFT);
|
||||
new->node.node_p = NULL; /* node part unused */
|
||||
return new;
|
||||
}
|
||||
|
||||
/* The tree descent is fairly easy :
|
||||
* - first, check if we have reached a leaf node
|
||||
* - second, check if we have gone too far
|
||||
* - third, reiterate
|
||||
* Everywhere, we use <new> for the node node we are inserting, <root>
|
||||
* for the node we attach it to, and <old> for the node we are
|
||||
* displacing below <new>. <troot> will always point to the future node
|
||||
* (tagged with its type). <side> carries the side the node <new> is
|
||||
* attached to below its parent, which is also where previous node
|
||||
* was attached.
|
||||
*/
|
||||
|
||||
bit = 0;
|
||||
while (1) {
|
||||
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_leaf;
|
||||
|
||||
old = container_of(eb_untag(troot, EB_LEAF),
|
||||
struct ebmb_node, node.branches);
|
||||
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
|
||||
|
||||
new->node.node_p = old->node.leaf_p;
|
||||
|
||||
/* Right here, we have 3 possibilities :
|
||||
* - the tree does not contain the key, and we have
|
||||
* new->key < old->key. We insert new above old, on
|
||||
* the left ;
|
||||
*
|
||||
* - the tree does not contain the key, and we have
|
||||
* new->key > old->key. We insert new above old, on
|
||||
* the right ;
|
||||
*
|
||||
* - the tree does contain the key, which implies it
|
||||
* is alone. We add the new key next to it as a
|
||||
* first duplicate.
|
||||
*
|
||||
* The last two cases can easily be partially merged.
|
||||
*/
|
||||
bit = string_equal_bits(new->key, old->key, bit);
|
||||
diff = cmp_bits(new->key, old->key, bit);
|
||||
|
||||
if (diff < 0) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_leaf;
|
||||
} else {
|
||||
/* we may refuse to duplicate this key if the tree is
|
||||
* tagged as containing only unique keys.
|
||||
*/
|
||||
if (diff == 0 && eb_gettag(root_right))
|
||||
return old;
|
||||
|
||||
/* new->key >= old->key, new goes the right */
|
||||
old->node.leaf_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_leaf;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
|
||||
if (diff == 0) {
|
||||
new->node.bit = -1;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK we're walking down this link */
|
||||
old = container_of(eb_untag(troot, EB_NODE),
|
||||
struct ebmb_node, node.branches);
|
||||
|
||||
/* Stop going down when we don't have common bits anymore. We
|
||||
* also stop in front of a duplicates tree because it means we
|
||||
* have to insert above. Note: we can compare more bits than
|
||||
* the current node's because as long as they are identical, we
|
||||
* know we descend along the correct side.
|
||||
*/
|
||||
if (old->node.bit < 0) {
|
||||
/* we're above a duplicate tree, we must compare till the end */
|
||||
bit = string_equal_bits(new->key, old->key, bit);
|
||||
goto dup_tree;
|
||||
}
|
||||
else if (bit < old->node.bit) {
|
||||
bit = string_equal_bits(new->key, old->key, bit);
|
||||
}
|
||||
|
||||
if (bit < old->node.bit) { /* we don't have all bits in common */
|
||||
/* The tree did not contain the key, so we insert <new> before the node
|
||||
* <old>, and set ->bit to designate the lowest bit position in <new>
|
||||
* which applies to ->branches.b[].
|
||||
*/
|
||||
eb_troot_t *new_left, *new_rght;
|
||||
eb_troot_t *new_leaf, *old_node;
|
||||
dup_tree:
|
||||
new_left = eb_dotag(&new->node.branches, EB_LEFT);
|
||||
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
|
||||
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
|
||||
old_node = eb_dotag(&old->node.branches, EB_NODE);
|
||||
|
||||
new->node.node_p = old->node.node_p;
|
||||
|
||||
diff = cmp_bits(new->key, old->key, bit);
|
||||
if (diff < 0) {
|
||||
new->node.leaf_p = new_left;
|
||||
old->node.node_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = new_leaf;
|
||||
new->node.branches.b[EB_RGHT] = old_node;
|
||||
}
|
||||
else if (diff > 0) {
|
||||
old->node.node_p = new_left;
|
||||
new->node.leaf_p = new_rght;
|
||||
new->node.branches.b[EB_LEFT] = old_node;
|
||||
new->node.branches.b[EB_RGHT] = new_leaf;
|
||||
}
|
||||
else {
|
||||
struct eb_node *ret;
|
||||
ret = eb_insert_dup(&old->node, &new->node);
|
||||
return container_of(ret, struct ebmb_node, node);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* walk down */
|
||||
root = &old->node.branches;
|
||||
side = (new->key[old->node.bit >> 3] >> (~old->node.bit & 7)) & 1;
|
||||
troot = root->b[side];
|
||||
}
|
||||
|
||||
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
|
||||
* parent is already set to <new>, and the <root>'s branch is still in
|
||||
* <side>. Update the root's leaf till we have it. Note that we can also
|
||||
* find the side by checking the side of new->node.node_p.
|
||||
*/
|
||||
|
||||
/* We need the common higher bits between new->key and old->key.
|
||||
* This number of bits is already in <bit>.
|
||||
*/
|
||||
new->node.bit = bit;
|
||||
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
|
||||
return new;
|
||||
}
|
||||
|
31
ebtree/ebtree.c
Normal file
31
ebtree/ebtree.c
Normal file
@ -0,0 +1,31 @@
|
||||
/*
|
||||
* Elastic Binary Trees - exported generic functions
|
||||
* (C) 2002-2007 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include "ebtree.h"
|
||||
|
||||
void eb_delete(struct eb_node *node)
|
||||
{
|
||||
__eb_delete(node);
|
||||
}
|
||||
|
||||
/* used by insertion primitives */
|
||||
REGPRM1 struct eb_node *eb_insert_dup(struct eb_node *sub, struct eb_node *new)
|
||||
{
|
||||
return __eb_insert_dup(sub, new);
|
||||
}
|
885
ebtree/ebtree.h
Normal file
885
ebtree/ebtree.h
Normal file
@ -0,0 +1,885 @@
|
||||
/*
|
||||
* Elastic Binary Trees - generic macros and structures.
|
||||
* Version 5.0
|
||||
* (C) 2002-2009 - Willy Tarreau <w@1wt.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*
|
||||
*
|
||||
* Short history :
|
||||
*
|
||||
* 2007/09/28: full support for the duplicates tree => v3
|
||||
* 2007/07/08: merge back cleanups from kernel version.
|
||||
* 2007/07/01: merge into Linux Kernel (try 1).
|
||||
* 2007/05/27: version 2: compact everything into one single struct
|
||||
* 2007/05/18: adapted the structure to support embedded nodes
|
||||
* 2007/05/13: adapted to mempools v2.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
General idea:
|
||||
-------------
|
||||
In a radix binary tree, we may have up to 2N-1 nodes for N keys if all of
|
||||
them are leaves. If we find a way to differentiate intermediate nodes (later
|
||||
called "nodes") and final nodes (later called "leaves"), and we associate
|
||||
them by two, it is possible to build sort of a self-contained radix tree with
|
||||
intermediate nodes always present. It will not be as cheap as the ultree for
|
||||
optimal cases as shown below, but the optimal case almost never happens :
|
||||
|
||||
Eg, to store 8, 10, 12, 13, 14 :
|
||||
|
||||
ultree this theorical tree
|
||||
|
||||
8 8
|
||||
/ \ / \
|
||||
10 12 10 12
|
||||
/ \ / \
|
||||
13 14 12 14
|
||||
/ \
|
||||
12 13
|
||||
|
||||
Note that on real-world tests (with a scheduler), is was verified that the
|
||||
case with data on an intermediate node never happens. This is because the
|
||||
data spectrum is too large for such coincidences to happen. It would require
|
||||
for instance that a task has its expiration time at an exact second, with
|
||||
other tasks sharing that second. This is too rare to try to optimize for it.
|
||||
|
||||
What is interesting is that the node will only be added above the leaf when
|
||||
necessary, which implies that it will always remain somewhere above it. So
|
||||
both the leaf and the node can share the exact value of the leaf, because
|
||||
when going down the node, the bit mask will be applied to comparisons. So we
|
||||
are tempted to have one single key shared between the node and the leaf.
|
||||
|
||||
The bit only serves the nodes, and the dups only serve the leaves. So we can
|
||||
put a lot of information in common. This results in one single entity with
|
||||
two branch pointers and two parent pointers, one for the node part, and one
|
||||
for the leaf part :
|
||||
|
||||
node's leaf's
|
||||
parent parent
|
||||
| |
|
||||
[node] [leaf]
|
||||
/ \
|
||||
left right
|
||||
branch branch
|
||||
|
||||
The node may very well refer to its leaf counterpart in one of its branches,
|
||||
indicating that its own leaf is just below it :
|
||||
|
||||
node's
|
||||
parent
|
||||
|
|
||||
[node]
|
||||
/ \
|
||||
left [leaf]
|
||||
branch
|
||||
|
||||
Adding keys in such a tree simply consists in inserting nodes between
|
||||
other nodes and/or leaves :
|
||||
|
||||
[root]
|
||||
|
|
||||
[node2]
|
||||
/ \
|
||||
[leaf1] [node3]
|
||||
/ \
|
||||
[leaf2] [leaf3]
|
||||
|
||||
On this diagram, we notice that [node2] and [leaf2] have been pulled away
|
||||
from each other due to the insertion of [node3], just as if there would be
|
||||
an elastic between both parts. This elastic-like behaviour gave its name to
|
||||
the tree : "Elastic Binary Tree", or "EBtree". The entity which associates a
|
||||
node part and a leaf part will be called an "EB node".
|
||||
|
||||
We also notice on the diagram that there is a root entity required to attach
|
||||
the tree. It only contains two branches and there is nothing above it. This
|
||||
is an "EB root". Some will note that [leaf1] has no [node1]. One property of
|
||||
the EBtree is that all nodes have their branches filled, and that if a node
|
||||
has only one branch, it does not need to exist. Here, [leaf1] was added
|
||||
below [root] and did not need any node.
|
||||
|
||||
An EB node contains :
|
||||
- a pointer to the node's parent (node_p)
|
||||
- a pointer to the leaf's parent (leaf_p)
|
||||
- two branches pointing to lower nodes or leaves (branches)
|
||||
- a bit position (bit)
|
||||
- an optional key.
|
||||
|
||||
The key here is optional because it's used only during insertion, in order
|
||||
to classify the nodes. Nothing else in the tree structure requires knowledge
|
||||
of the key. This makes it possible to write type-agnostic primitives for
|
||||
everything, and type-specific insertion primitives. This has led to consider
|
||||
two types of EB nodes. The type-agnostic ones will serve as a header for the
|
||||
other ones, and will simply be called "struct eb_node". The other ones will
|
||||
have their type indicated in the structure name. Eg: "struct eb32_node" for
|
||||
nodes carrying 32 bit keys.
|
||||
|
||||
We will also node that the two branches in a node serve exactly the same
|
||||
purpose as an EB root. For this reason, a "struct eb_root" will be used as
|
||||
well inside the struct eb_node. In order to ease pointer manipulation and
|
||||
ROOT detection when walking upwards, all the pointers inside an eb_node will
|
||||
point to the eb_root part of the referenced EB nodes, relying on the same
|
||||
principle as the linked lists in Linux.
|
||||
|
||||
Another important point to note, is that when walking inside a tree, it is
|
||||
very convenient to know where a node is attached in its parent, and what
|
||||
type of branch it has below it (leaf or node). In order to simplify the
|
||||
operations and to speed up the processing, it was decided in this specific
|
||||
implementation to use the lowest bit from the pointer to designate the side
|
||||
of the upper pointers (left/right) and the type of a branch (leaf/node).
|
||||
This practise is not mandatory by design, but an implementation-specific
|
||||
optimisation permitted on all platforms on which data must be aligned. All
|
||||
known 32 bit platforms align their integers and pointers to 32 bits, leaving
|
||||
the two lower bits unused. So, we say that the pointers are "tagged". And
|
||||
since they designate pointers to root parts, we simply call them
|
||||
"tagged root pointers", or "eb_troot" in the code.
|
||||
|
||||
Duplicate keys are stored in a special manner. When inserting a key, if
|
||||
the same one is found, then an incremental binary tree is built at this
|
||||
place from these keys. This ensures that no special case has to be written
|
||||
to handle duplicates when walking through the tree or when deleting entries.
|
||||
It also guarantees that duplicates will be walked in the exact same order
|
||||
they were inserted. This is very important when trying to achieve fair
|
||||
processing distribution for instance.
|
||||
|
||||
Algorithmic complexity can be derived from 3 variables :
|
||||
- the number of possible different keys in the tree : P
|
||||
- the number of entries in the tree : N
|
||||
- the number of duplicates for one key : D
|
||||
|
||||
Note that this tree is deliberately NOT balanced. For this reason, the worst
|
||||
case may happen with a small tree (eg: 32 distinct keys of one bit). BUT,
|
||||
the operations required to manage such data are so much cheap that they make
|
||||
it worth using it even under such conditions. For instance, a balanced tree
|
||||
may require only 6 levels to store those 32 keys when this tree will
|
||||
require 32. But if per-level operations are 5 times cheaper, it wins.
|
||||
|
||||
Minimal, Maximal and Average times are specified in number of operations.
|
||||
Minimal is given for best condition, Maximal for worst condition, and the
|
||||
average is reported for a tree containing random keys. An operation
|
||||
generally consists in jumping from one node to the other.
|
||||
|
||||
Complexity :
|
||||
- lookup : min=1, max=log(P), avg=log(N)
|
||||
- insertion from root : min=1, max=log(P), avg=log(N)
|
||||
- insertion of dups : min=1, max=log(D), avg=log(D)/2 after lookup
|
||||
- deletion : min=1, max=1, avg=1
|
||||
- prev/next : min=1, max=log(P), avg=2 :
|
||||
N/2 nodes need 1 hop => 1*N/2
|
||||
N/4 nodes need 2 hops => 2*N/4
|
||||
N/8 nodes need 3 hops => 3*N/8
|
||||
...
|
||||
N/x nodes need log(x) hops => log2(x)*N/x
|
||||
Total cost for all N nodes : sum[i=1..N](log2(i)*N/i) = N*sum[i=1..N](log2(i)/i)
|
||||
Average cost across N nodes = total / N = sum[i=1..N](log2(i)/i) = 2
|
||||
|
||||
This design is currently limited to only two branches per node. Most of the
|
||||
tree descent algorithm would be compatible with more branches (eg: 4, to cut
|
||||
the height in half), but this would probably require more complex operations
|
||||
and the deletion algorithm would be problematic.
|
||||
|
||||
Useful properties :
|
||||
- a node is always added above the leaf it is tied to, and never can get
|
||||
below nor in another branch. This implies that leaves directly attached
|
||||
to the root do not use their node part, which is indicated by a NULL
|
||||
value in node_p. This also enhances the cache efficiency when walking
|
||||
down the tree, because when the leaf is reached, its node part will
|
||||
already have been visited (unless it's the first leaf in the tree).
|
||||
|
||||
- pointers to lower nodes or leaves are stored in "branch" pointers. Only
|
||||
the root node may have a NULL in either branch, it is not possible for
|
||||
other branches. Since the nodes are attached to the left branch of the
|
||||
root, it is not possible to see a NULL left branch when walking up a
|
||||
tree. Thus, an empty tree is immediately identified by a NULL left
|
||||
branch at the root. Conversely, the one and only way to identify the
|
||||
root node is to check that it right branch is NULL. Note that the
|
||||
NULL pointer may have a few low-order bits set.
|
||||
|
||||
- a node connected to its own leaf will have branch[0|1] pointing to
|
||||
itself, and leaf_p pointing to itself.
|
||||
|
||||
- a node can never have node_p pointing to itself.
|
||||
|
||||
- a node is linked in a tree if and only if it has a non-null leaf_p.
|
||||
|
||||
- a node can never have both branches equal, except for the root which can
|
||||
have them both NULL.
|
||||
|
||||
- deletion only applies to leaves. When a leaf is deleted, its parent must
|
||||
be released too (unless it's the root), and its sibling must attach to
|
||||
the grand-parent, replacing the parent. Also, when a leaf is deleted,
|
||||
the node tied to this leaf will be removed and must be released too. If
|
||||
this node is different from the leaf's parent, the freshly released
|
||||
leaf's parent will be used to replace the node which must go. A released
|
||||
node will never be used anymore, so there's no point in tracking it.
|
||||
|
||||
- the bit index in a node indicates the bit position in the key which is
|
||||
represented by the branches. That means that a node with (bit == 0) is
|
||||
just above two leaves. Negative bit values are used to build a duplicate
|
||||
tree. The first node above two identical leaves gets (bit == -1). This
|
||||
value logarithmically decreases as the duplicate tree grows. During
|
||||
duplicate insertion, a node is inserted above the highest bit value (the
|
||||
lowest absolute value) in the tree during the right-sided walk. If bit
|
||||
-1 is not encountered (highest < -1), we insert above last leaf.
|
||||
Otherwise, we insert above the node with the highest value which was not
|
||||
equal to the one of its parent + 1.
|
||||
|
||||
- the "eb_next" primitive walks from left to right, which means from lower
|
||||
to higher keys. It returns duplicates in the order they were inserted.
|
||||
The "eb_first" primitive returns the left-most entry.
|
||||
|
||||
- the "eb_prev" primitive walks from right to left, which means from
|
||||
higher to lower keys. It returns duplicates in the opposite order they
|
||||
were inserted. The "eb_last" primitive returns the right-most entry.
|
||||
|
||||
- a tree which has 1 in the lower bit of its root's right branch is a
|
||||
tree with unique nodes. This means that when a node is inserted with
|
||||
a key which already exists will not be inserted, and the previous
|
||||
entry will be returned.
|
||||
|
||||
*/
|
||||
|
||||
#ifndef _EBTREE_H
|
||||
#define _EBTREE_H
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Note: we never need to run fls on null keys, so we can optimize the fls
|
||||
* function by removing a conditional jump.
|
||||
*/
|
||||
#if defined(__i386__)
|
||||
static inline int flsnz(int x)
|
||||
{
|
||||
int r;
|
||||
__asm__("bsrl %1,%0\n"
|
||||
: "=r" (r) : "rm" (x));
|
||||
return r+1;
|
||||
}
|
||||
#else
|
||||
// returns 1 to 32 for 1<<0 to 1<<31. Undefined for 0.
|
||||
#define flsnz(___a) ({ \
|
||||
register int ___x, ___bits = 0; \
|
||||
___x = (___a); \
|
||||
if (___x & 0xffff0000) { ___x &= 0xffff0000; ___bits += 16;} \
|
||||
if (___x & 0xff00ff00) { ___x &= 0xff00ff00; ___bits += 8;} \
|
||||
if (___x & 0xf0f0f0f0) { ___x &= 0xf0f0f0f0; ___bits += 4;} \
|
||||
if (___x & 0xcccccccc) { ___x &= 0xcccccccc; ___bits += 2;} \
|
||||
if (___x & 0xaaaaaaaa) { ___x &= 0xaaaaaaaa; ___bits += 1;} \
|
||||
___bits + 1; \
|
||||
})
|
||||
#endif
|
||||
|
||||
static inline int fls64(unsigned long long x)
|
||||
{
|
||||
unsigned int h;
|
||||
unsigned int bits = 32;
|
||||
|
||||
h = x >> 32;
|
||||
if (!h) {
|
||||
h = x;
|
||||
bits = 0;
|
||||
}
|
||||
return flsnz(h) + bits;
|
||||
}
|
||||
|
||||
#define fls_auto(x) ((sizeof(x) > 4) ? fls64(x) : flsnz(x))
|
||||
|
||||
/* Linux-like "container_of". It returns a pointer to the structure of type
|
||||
* <type> which has its member <name> stored at address <ptr>.
|
||||
*/
|
||||
#ifndef container_of
|
||||
#define container_of(ptr, type, name) ((type *)(((void *)(ptr)) - ((long)&((type *)0)->name)))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Gcc >= 3 provides the ability for the program to give hints to the compiler
|
||||
* about what branch of an if is most likely to be taken. This helps the
|
||||
* compiler produce the most compact critical paths, which is generally better
|
||||
* for the cache and to reduce the number of jumps. Be very careful not to use
|
||||
* this in inline functions, because the code reordering it causes very often
|
||||
* has a negative impact on the calling functions.
|
||||
*/
|
||||
#if !defined(likely)
|
||||
#if __GNUC__ < 3
|
||||
#define __builtin_expect(x,y) (x)
|
||||
#define likely(x) (x)
|
||||
#define unlikely(x) (x)
|
||||
#elif __GNUC__ < 4
|
||||
/* gcc 3.x does the best job at this */
|
||||
#define likely(x) (__builtin_expect((x) != 0, 1))
|
||||
#define unlikely(x) (__builtin_expect((x) != 0, 0))
|
||||
#else
|
||||
/* GCC 4.x is stupid, it performs the comparison then compares it to 1,
|
||||
* so we cheat in a dirty way to prevent it from doing this. This will
|
||||
* only work with ints and booleans though.
|
||||
*/
|
||||
#define likely(x) (x)
|
||||
#define unlikely(x) (__builtin_expect((unsigned long)(x), 0))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* By default, gcc does not inline large chunks of code, but we want it to
|
||||
* respect our choices.
|
||||
*/
|
||||
#if !defined(forceinline)
|
||||
#if __GNUC__ < 3
|
||||
#define forceinline inline
|
||||
#else
|
||||
#define forceinline inline __attribute__((always_inline))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Support passing function parameters in registers. For this, the
|
||||
* CONFIG_EBTREE_REGPARM macro has to be set to the maximal number of registers
|
||||
* allowed. Some functions have intentionally received a regparm lower than
|
||||
* their parameter count, it is in order to avoid register clobbering where
|
||||
* they are called.
|
||||
*/
|
||||
#ifndef REGPRM1
|
||||
#if CONFIG_EBTREE_REGPARM >= 1
|
||||
#define REGPRM1 __attribute__((regparm(1)))
|
||||
#else
|
||||
#define REGPRM1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef REGPRM2
|
||||
#if CONFIG_EBTREE_REGPARM >= 2
|
||||
#define REGPRM2 __attribute__((regparm(2)))
|
||||
#else
|
||||
#define REGPRM2 REGPRM1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef REGPRM3
|
||||
#if CONFIG_EBTREE_REGPARM >= 3
|
||||
#define REGPRM3 __attribute__((regparm(3)))
|
||||
#else
|
||||
#define REGPRM3 REGPRM2
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Number of bits per node, and number of leaves per node */
|
||||
#define EB_NODE_BITS 1
|
||||
#define EB_NODE_BRANCHES (1 << EB_NODE_BITS)
|
||||
#define EB_NODE_BRANCH_MASK (EB_NODE_BRANCHES - 1)
|
||||
|
||||
/* Be careful not to tweak those values. The walking code is optimized for NULL
|
||||
* detection on the assumption that the following values are intact.
|
||||
*/
|
||||
#define EB_LEFT 0
|
||||
#define EB_RGHT 1
|
||||
#define EB_LEAF 0
|
||||
#define EB_NODE 1
|
||||
|
||||
/* Tags to set in root->b[EB_RGHT] :
|
||||
* - EB_NORMAL is a normal tree which stores duplicate keys.
|
||||
* - EB_UNIQUE is a tree which stores unique keys.
|
||||
*/
|
||||
#define EB_NORMAL 0
|
||||
#define EB_UNIQUE 1
|
||||
|
||||
/* This is the same as an eb_node pointer, except that the lower bit embeds
|
||||
* a tag. See eb_dotag()/eb_untag()/eb_gettag(). This tag has two meanings :
|
||||
* - 0=left, 1=right to designate the parent's branch for leaf_p/node_p
|
||||
* - 0=link, 1=leaf to designate the branch's type for branch[]
|
||||
*/
|
||||
typedef void eb_troot_t;
|
||||
|
||||
/* The eb_root connects the node which contains it, to two nodes below it, one
|
||||
* of which may be the same node. At the top of the tree, we use an eb_root
|
||||
* too, which always has its right branch NULL (+/1 low-order bits).
|
||||
*/
|
||||
struct eb_root {
|
||||
eb_troot_t *b[EB_NODE_BRANCHES]; /* left and right branches */
|
||||
};
|
||||
|
||||
/* The eb_node contains the two parts, one for the leaf, which always exists,
|
||||
* and one for the node, which remains unused in the very first node inserted
|
||||
* into the tree. This structure is 20 bytes per node on 32-bit machines. Do
|
||||
* not change the order, benchmarks have shown that it's optimal this way.
|
||||
*/
|
||||
struct eb_node {
|
||||
struct eb_root branches; /* branches, must be at the beginning */
|
||||
eb_troot_t *node_p; /* link node's parent */
|
||||
eb_troot_t *leaf_p; /* leaf node's parent */
|
||||
int bit; /* link's bit position. */
|
||||
};
|
||||
|
||||
/* Return the structure of type <type> whose member <member> points to <ptr> */
|
||||
#define eb_entry(ptr, type, member) container_of(ptr, type, member)
|
||||
|
||||
/* The root of a tree is an eb_root initialized with both pointers NULL.
|
||||
* During its life, only the left pointer will change. The right one will
|
||||
* always remain NULL, which is the way we detect it.
|
||||
*/
|
||||
#define EB_ROOT \
|
||||
(struct eb_root) { \
|
||||
.b = {[0] = NULL, [1] = NULL }, \
|
||||
}
|
||||
|
||||
#define EB_ROOT_UNIQUE \
|
||||
(struct eb_root) { \
|
||||
.b = {[0] = NULL, [1] = (void *)1 }, \
|
||||
}
|
||||
|
||||
#define EB_TREE_HEAD(name) \
|
||||
struct eb_root name = EB_ROOT
|
||||
|
||||
|
||||
/***************************************\
|
||||
* Private functions. Not for end-user *
|
||||
\***************************************/
|
||||
|
||||
/* Converts a root pointer to its equivalent eb_troot_t pointer,
|
||||
* ready to be stored in ->branch[], leaf_p or node_p. NULL is not
|
||||
* conserved. To be used with EB_LEAF, EB_NODE, EB_LEFT or EB_RGHT in <tag>.
|
||||
*/
|
||||
static inline eb_troot_t *eb_dotag(const struct eb_root *root, const int tag)
|
||||
{
|
||||
return (eb_troot_t *)((void *)root + tag);
|
||||
}
|
||||
|
||||
/* Converts an eb_troot_t pointer pointer to its equivalent eb_root pointer,
|
||||
* for use with pointers from ->branch[], leaf_p or node_p. NULL is conserved
|
||||
* as long as the tree is not corrupted. To be used with EB_LEAF, EB_NODE,
|
||||
* EB_LEFT or EB_RGHT in <tag>.
|
||||
*/
|
||||
static inline struct eb_root *eb_untag(const eb_troot_t *troot, const int tag)
|
||||
{
|
||||
return (struct eb_root *)((void *)troot - tag);
|
||||
}
|
||||
|
||||
/* returns the tag associated with an eb_troot_t pointer */
|
||||
static inline int eb_gettag(eb_troot_t *troot)
|
||||
{
|
||||
return (unsigned long)troot & 1;
|
||||
}
|
||||
|
||||
/* Converts a root pointer to its equivalent eb_troot_t pointer and clears the
|
||||
* tag, no matter what its value was.
|
||||
*/
|
||||
static inline struct eb_root *eb_clrtag(const eb_troot_t *troot)
|
||||
{
|
||||
return (struct eb_root *)((unsigned long)troot & ~1UL);
|
||||
}
|
||||
|
||||
/* Returns a pointer to the eb_node holding <root> */
|
||||
static inline struct eb_node *eb_root_to_node(struct eb_root *root)
|
||||
{
|
||||
return container_of(root, struct eb_node, branches);
|
||||
}
|
||||
|
||||
/* Walks down starting at root pointer <start>, and always walking on side
|
||||
* <side>. It either returns the node hosting the first leaf on that side,
|
||||
* or NULL if no leaf is found. <start> may either be NULL or a branch pointer.
|
||||
* The pointer to the leaf (or NULL) is returned.
|
||||
*/
|
||||
static inline struct eb_node *eb_walk_down(eb_troot_t *start, unsigned int side)
|
||||
{
|
||||
/* A NULL pointer on an empty tree root will be returned as-is */
|
||||
while (eb_gettag(start) == EB_NODE)
|
||||
start = (eb_untag(start, EB_NODE))->b[side];
|
||||
/* NULL is left untouched (root==eb_node, EB_LEAF==0) */
|
||||
return eb_root_to_node(eb_untag(start, EB_LEAF));
|
||||
}
|
||||
|
||||
/* This function is used to build a tree of duplicates by adding a new node to
|
||||
* a subtree of at least 2 entries. It will probably never be needed inlined,
|
||||
* and it is not for end-user.
|
||||
*/
|
||||
static forceinline struct eb_node *
|
||||
__eb_insert_dup(struct eb_node *sub, struct eb_node *new)
|
||||
{
|
||||
struct eb_node *head = sub;
|
||||
|
||||
struct eb_troot *new_left = eb_dotag(&new->branches, EB_LEFT);
|
||||
struct eb_troot *new_rght = eb_dotag(&new->branches, EB_RGHT);
|
||||
struct eb_troot *new_leaf = eb_dotag(&new->branches, EB_LEAF);
|
||||
|
||||
/* first, identify the deepest hole on the right branch */
|
||||
while (eb_gettag(head->branches.b[EB_RGHT]) != EB_LEAF) {
|
||||
struct eb_node *last = head;
|
||||
head = container_of(eb_untag(head->branches.b[EB_RGHT], EB_NODE),
|
||||
struct eb_node, branches);
|
||||
if (head->bit > last->bit + 1)
|
||||
sub = head; /* there's a hole here */
|
||||
}
|
||||
|
||||
/* Here we have a leaf attached to (head)->b[EB_RGHT] */
|
||||
if (head->bit < -1) {
|
||||
/* A hole exists just before the leaf, we insert there */
|
||||
new->bit = -1;
|
||||
sub = container_of(eb_untag(head->branches.b[EB_RGHT], EB_LEAF),
|
||||
struct eb_node, branches);
|
||||
head->branches.b[EB_RGHT] = eb_dotag(&new->branches, EB_NODE);
|
||||
|
||||
new->node_p = sub->leaf_p;
|
||||
new->leaf_p = new_rght;
|
||||
sub->leaf_p = new_left;
|
||||
new->branches.b[EB_LEFT] = eb_dotag(&sub->branches, EB_LEAF);
|
||||
new->branches.b[EB_RGHT] = new_leaf;
|
||||
return new;
|
||||
} else {
|
||||
int side;
|
||||
/* No hole was found before a leaf. We have to insert above
|
||||
* <sub>. Note that we cannot be certain that <sub> is attached
|
||||
* to the right of its parent, as this is only true if <sub>
|
||||
* is inside the dup tree, not at the head.
|
||||
*/
|
||||
new->bit = sub->bit - 1; /* install at the lowest level */
|
||||
side = eb_gettag(sub->node_p);
|
||||
head = container_of(eb_untag(sub->node_p, side), struct eb_node, branches);
|
||||
head->branches.b[side] = eb_dotag(&new->branches, EB_NODE);
|
||||
|
||||
new->node_p = sub->node_p;
|
||||
new->leaf_p = new_rght;
|
||||
sub->node_p = new_left;
|
||||
new->branches.b[EB_LEFT] = eb_dotag(&sub->branches, EB_NODE);
|
||||
new->branches.b[EB_RGHT] = new_leaf;
|
||||
return new;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**************************************\
|
||||
* Public functions, for the end-user *
|
||||
\**************************************/
|
||||
|
||||
/* Return the first leaf in the tree starting at <root>, or NULL if none */
|
||||
static inline struct eb_node *eb_first(struct eb_root *root)
|
||||
{
|
||||
return eb_walk_down(root->b[0], EB_LEFT);
|
||||
}
|
||||
|
||||
/* Return the last leaf in the tree starting at <root>, or NULL if none */
|
||||
static inline struct eb_node *eb_last(struct eb_root *root)
|
||||
{
|
||||
return eb_walk_down(root->b[0], EB_RGHT);
|
||||
}
|
||||
|
||||
/* Return previous leaf node before an existing leaf node, or NULL if none. */
|
||||
static inline struct eb_node *eb_prev(struct eb_node *node)
|
||||
{
|
||||
eb_troot_t *t = node->leaf_p;
|
||||
|
||||
while (eb_gettag(t) == EB_LEFT) {
|
||||
/* Walking up from left branch. We must ensure that we never
|
||||
* walk beyond root.
|
||||
*/
|
||||
if (unlikely(eb_clrtag((eb_untag(t, EB_LEFT))->b[EB_RGHT]) == NULL))
|
||||
return NULL;
|
||||
t = (eb_root_to_node(eb_untag(t, EB_LEFT)))->node_p;
|
||||
}
|
||||
/* Note that <t> cannot be NULL at this stage */
|
||||
t = (eb_untag(t, EB_RGHT))->b[EB_LEFT];
|
||||
return eb_walk_down(t, EB_RGHT);
|
||||
}
|
||||
|
||||
/* Return next leaf node after an existing leaf node, or NULL if none. */
|
||||
static inline struct eb_node *eb_next(struct eb_node *node)
|
||||
{
|
||||
eb_troot_t *t = node->leaf_p;
|
||||
|
||||
while (eb_gettag(t) != EB_LEFT)
|
||||
/* Walking up from right branch, so we cannot be below root */
|
||||
t = (eb_root_to_node(eb_untag(t, EB_RGHT)))->node_p;
|
||||
|
||||
/* Note that <t> cannot be NULL at this stage */
|
||||
t = (eb_untag(t, EB_LEFT))->b[EB_RGHT];
|
||||
if (eb_clrtag(t) == NULL)
|
||||
return NULL;
|
||||
return eb_walk_down(t, EB_LEFT);
|
||||
}
|
||||
|
||||
/* Return previous leaf node before an existing leaf node, skipping duplicates,
|
||||
* or NULL if none. */
|
||||
static inline struct eb_node *eb_prev_unique(struct eb_node *node)
|
||||
{
|
||||
eb_troot_t *t = node->leaf_p;
|
||||
|
||||
while (1) {
|
||||
if (eb_gettag(t) != EB_LEFT) {
|
||||
node = eb_root_to_node(eb_untag(t, EB_RGHT));
|
||||
/* if we're right and not in duplicates, stop here */
|
||||
if (node->bit >= 0)
|
||||
break;
|
||||
t = node->node_p;
|
||||
}
|
||||
else {
|
||||
/* Walking up from left branch. We must ensure that we never
|
||||
* walk beyond root.
|
||||
*/
|
||||
if (unlikely(eb_clrtag((eb_untag(t, EB_LEFT))->b[EB_RGHT]) == NULL))
|
||||
return NULL;
|
||||
t = (eb_root_to_node(eb_untag(t, EB_LEFT)))->node_p;
|
||||
}
|
||||
}
|
||||
/* Note that <t> cannot be NULL at this stage */
|
||||
t = (eb_untag(t, EB_RGHT))->b[EB_LEFT];
|
||||
return eb_walk_down(t, EB_RGHT);
|
||||
}
|
||||
|
||||
/* Return next leaf node after an existing leaf node, skipping duplicates, or
|
||||
* NULL if none.
|
||||
*/
|
||||
static inline struct eb_node *eb_next_unique(struct eb_node *node)
|
||||
{
|
||||
eb_troot_t *t = node->leaf_p;
|
||||
|
||||
while (1) {
|
||||
if (eb_gettag(t) == EB_LEFT) {
|
||||
if (unlikely(eb_clrtag((eb_untag(t, EB_LEFT))->b[EB_RGHT]) == NULL))
|
||||
return NULL; /* we reached root */
|
||||
node = eb_root_to_node(eb_untag(t, EB_LEFT));
|
||||
/* if we're left and not in duplicates, stop here */
|
||||
if (node->bit >= 0)
|
||||
break;
|
||||
t = node->node_p;
|
||||
}
|
||||
else {
|
||||
/* Walking up from right branch, so we cannot be below root */
|
||||
t = (eb_root_to_node(eb_untag(t, EB_RGHT)))->node_p;
|
||||
}
|
||||
}
|
||||
|
||||
/* Note that <t> cannot be NULL at this stage */
|
||||
t = (eb_untag(t, EB_LEFT))->b[EB_RGHT];
|
||||
if (eb_clrtag(t) == NULL)
|
||||
return NULL;
|
||||
return eb_walk_down(t, EB_LEFT);
|
||||
}
|
||||
|
||||
|
||||
/* Removes a leaf node from the tree if it was still in it. Marks the node
|
||||
* as unlinked.
|
||||
*/
|
||||
static forceinline void __eb_delete(struct eb_node *node)
|
||||
{
|
||||
__label__ delete_unlink;
|
||||
unsigned int pside, gpside, sibtype;
|
||||
struct eb_node *parent;
|
||||
struct eb_root *gparent;
|
||||
|
||||
if (!node->leaf_p)
|
||||
return;
|
||||
|
||||
/* we need the parent, our side, and the grand parent */
|
||||
pside = eb_gettag(node->leaf_p);
|
||||
parent = eb_root_to_node(eb_untag(node->leaf_p, pside));
|
||||
|
||||
/* We likely have to release the parent link, unless it's the root,
|
||||
* in which case we only set our branch to NULL. Note that we can
|
||||
* only be attached to the root by its left branch.
|
||||
*/
|
||||
|
||||
if (eb_clrtag(parent->branches.b[EB_RGHT]) == NULL) {
|
||||
/* we're just below the root, it's trivial. */
|
||||
parent->branches.b[EB_LEFT] = NULL;
|
||||
goto delete_unlink;
|
||||
}
|
||||
|
||||
/* To release our parent, we have to identify our sibling, and reparent
|
||||
* it directly to/from the grand parent. Note that the sibling can
|
||||
* either be a link or a leaf.
|
||||
*/
|
||||
|
||||
gpside = eb_gettag(parent->node_p);
|
||||
gparent = eb_untag(parent->node_p, gpside);
|
||||
|
||||
gparent->b[gpside] = parent->branches.b[!pside];
|
||||
sibtype = eb_gettag(gparent->b[gpside]);
|
||||
|
||||
if (sibtype == EB_LEAF) {
|
||||
eb_root_to_node(eb_untag(gparent->b[gpside], EB_LEAF))->leaf_p =
|
||||
eb_dotag(gparent, gpside);
|
||||
} else {
|
||||
eb_root_to_node(eb_untag(gparent->b[gpside], EB_NODE))->node_p =
|
||||
eb_dotag(gparent, gpside);
|
||||
}
|
||||
/* Mark the parent unused. Note that we do not check if the parent is
|
||||
* our own node, but that's not a problem because if it is, it will be
|
||||
* marked unused at the same time, which we'll use below to know we can
|
||||
* safely remove it.
|
||||
*/
|
||||
parent->node_p = NULL;
|
||||
|
||||
/* The parent node has been detached, and is currently unused. It may
|
||||
* belong to another node, so we cannot remove it that way. Also, our
|
||||
* own node part might still be used. so we can use this spare node
|
||||
* to replace ours if needed.
|
||||
*/
|
||||
|
||||
/* If our link part is unused, we can safely exit now */
|
||||
if (!node->node_p)
|
||||
goto delete_unlink;
|
||||
|
||||
/* From now on, <node> and <parent> are necessarily different, and the
|
||||
* <node>'s node part is in use. By definition, <parent> is at least
|
||||
* below <node>, so keeping its key for the bit string is OK.
|
||||
*/
|
||||
|
||||
parent->node_p = node->node_p;
|
||||
parent->branches = node->branches;
|
||||
parent->bit = node->bit;
|
||||
|
||||
/* We must now update the new node's parent... */
|
||||
gpside = eb_gettag(parent->node_p);
|
||||
gparent = eb_untag(parent->node_p, gpside);
|
||||
gparent->b[gpside] = eb_dotag(&parent->branches, EB_NODE);
|
||||
|
||||
/* ... and its branches */
|
||||
for (pside = 0; pside <= 1; pside++) {
|
||||
if (eb_gettag(parent->branches.b[pside]) == EB_NODE) {
|
||||
eb_root_to_node(eb_untag(parent->branches.b[pside], EB_NODE))->node_p =
|
||||
eb_dotag(&parent->branches, pside);
|
||||
} else {
|
||||
eb_root_to_node(eb_untag(parent->branches.b[pside], EB_LEAF))->leaf_p =
|
||||
eb_dotag(&parent->branches, pside);
|
||||
}
|
||||
}
|
||||
delete_unlink:
|
||||
/* Now the node has been completely unlinked */
|
||||
node->leaf_p = NULL;
|
||||
return; /* tree is not empty yet */
|
||||
}
|
||||
|
||||
/* Compare blocks <a> and <b> byte-to-byte, from bit <ignore> to bit <len-1>.
|
||||
* Return the number of equal bits between strings, assuming that the first
|
||||
* <ignore> bits are already identical. It is possible to return slightly more
|
||||
* than <len> bits if <len> does not stop on a byte boundary and we find exact
|
||||
* bytes. Note that parts or all of <ignore> bits may be rechecked. It is only
|
||||
* passed here as a hint to speed up the check.
|
||||
*/
|
||||
static forceinline unsigned int equal_bits(const unsigned char *a,
|
||||
const unsigned char *b,
|
||||
unsigned int ignore, unsigned int len)
|
||||
{
|
||||
unsigned int beg;
|
||||
unsigned int end;
|
||||
unsigned int ret;
|
||||
unsigned char c;
|
||||
|
||||
beg = ignore >> 3;
|
||||
end = (len + 7) >> 3;
|
||||
ret = end << 3;
|
||||
|
||||
do {
|
||||
if (beg >= end)
|
||||
goto out;
|
||||
beg++;
|
||||
c = a[beg-1] ^ b[beg-1];
|
||||
} while (!c);
|
||||
|
||||
/* OK now we know that a and b differ at byte <beg> and that <c> holds
|
||||
* the bit differences. We have to find what bit is differing and report
|
||||
* it as the number of identical bits. Note that low bit numbers are
|
||||
* assigned to high positions in the byte, as we compare them as strings.
|
||||
*/
|
||||
ret = beg << 3;
|
||||
if (c & 0xf0) { c >>= 4; ret -= 4; }
|
||||
if (c & 0x0c) { c >>= 2; ret -= 2; }
|
||||
ret -= (c >> 1);
|
||||
ret--;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Compare strings <a> and <b> byte-to-byte, from bit <ignore> to the last 0.
|
||||
* Return the number of equal bits between strings, assuming that the first
|
||||
* <ignore> bits are already identical. Note that parts or all of <ignore> bits
|
||||
* may be rechecked. It is only passed here as a hint to speed up the check.
|
||||
* The caller is responsible for not passing an <ignore> value larger than any
|
||||
* of the two strings. However, referencing any bit from the trailing zero is
|
||||
* permitted.
|
||||
*/
|
||||
static forceinline unsigned int string_equal_bits(const unsigned char *a,
|
||||
const unsigned char *b,
|
||||
unsigned int ignore)
|
||||
{
|
||||
unsigned int beg;
|
||||
unsigned char c;
|
||||
|
||||
beg = ignore >> 3;
|
||||
|
||||
/* skip known and identical bits. We stop at the first different byte
|
||||
* or at the first zero we encounter on either side.
|
||||
*/
|
||||
while (1) {
|
||||
unsigned char d;
|
||||
|
||||
c = a[beg];
|
||||
d = b[beg];
|
||||
beg++;
|
||||
|
||||
c ^= d;
|
||||
if (c)
|
||||
break;
|
||||
if (!d)
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK now we know that a and b differ at byte <beg>, or that both are zero.
|
||||
* We have to find what bit is differing and report it as the number of
|
||||
* identical bits. Note that low bit numbers are assigned to high positions
|
||||
* in the byte, as we compare them as strings.
|
||||
*/
|
||||
beg <<= 3;
|
||||
if (c & 0xf0) { c >>= 4; beg -= 4; }
|
||||
if (c & 0x0c) { c >>= 2; beg -= 2; }
|
||||
beg -= (c >> 1);
|
||||
if (c)
|
||||
beg--;
|
||||
|
||||
return beg;
|
||||
}
|
||||
|
||||
static forceinline int cmp_bits(const unsigned char *a, const unsigned char *b, unsigned int pos)
|
||||
{
|
||||
unsigned int ofs;
|
||||
unsigned char bit_a, bit_b;
|
||||
|
||||
ofs = pos >> 3;
|
||||
pos = ~pos & 7;
|
||||
|
||||
bit_a = (a[ofs] >> pos) & 1;
|
||||
bit_b = (b[ofs] >> pos) & 1;
|
||||
|
||||
return bit_a - bit_b; /* -1: a<b; 0: a=b; 1: a>b */
|
||||
}
|
||||
|
||||
static forceinline int get_bit(const unsigned char *a, unsigned int pos)
|
||||
{
|
||||
unsigned int ofs;
|
||||
|
||||
ofs = pos >> 3;
|
||||
pos = ~pos & 7;
|
||||
return (a[ofs] >> pos) & 1;
|
||||
}
|
||||
|
||||
/* These functions are declared in ebtree.c */
|
||||
void eb_delete(struct eb_node *node);
|
||||
REGPRM1 struct eb_node *eb_insert_dup(struct eb_node *sub, struct eb_node *new);
|
||||
|
||||
#endif /* _EB_TREE_H */
|
||||
|
||||
/*
|
||||
* Local variables:
|
||||
* c-indent-level: 8
|
||||
* c-basic-offset: 8
|
||||
* End:
|
||||
*/
|
Loading…
Reference in New Issue
Block a user