/* * Copyright (c) 1991, 1992 Paul Kranenburg * Copyright (c) 1993 Branko Lankester * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey * Copyright (c) 1996-1999 Wichert Akkerman * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Linux for s390 port by D.J. Barrow * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $Id$ */ #include "defs.h" #include #include #include #include #include #include #include #if HAVE_ASM_REG_H # if defined (SPARC) || defined (SPARC64) # define fpq kernel_fpq # define fq kernel_fq # define fpu kernel_fpu # endif # include # if defined (SPARC) || defined (SPARC64) # undef fpq # undef fq # undef fpu # endif #endif #ifdef HAVE_SYS_REG_H # include # ifndef PTRACE_PEEKUSR # define PTRACE_PEEKUSR PTRACE_PEEKUSER # endif #elif defined(HAVE_LINUX_PTRACE_H) # undef PTRACE_SYSCALL # ifdef HAVE_STRUCT_IA64_FPREG # define ia64_fpreg XXX_ia64_fpreg # endif # ifdef HAVE_STRUCT_PT_ALL_USER_REGS # define pt_all_user_regs XXX_pt_all_user_regs # endif # include # undef ia64_fpreg # undef pt_all_user_regs #endif #if defined (LINUX) && defined (SPARC64) # define r_pc r_tpc # undef PTRACE_GETREGS # define PTRACE_GETREGS PTRACE_GETREGS64 # undef PTRACE_SETREGS # define PTRACE_SETREGS PTRACE_SETREGS64 #endif /* LINUX && SPARC64 */ #if defined(LINUX) && defined(IA64) # include # include #endif #define NR_SYSCALL_BASE 0 #ifdef LINUX #ifndef ERESTARTSYS #define ERESTARTSYS 512 #endif #ifndef ERESTARTNOINTR #define ERESTARTNOINTR 513 #endif #ifndef ERESTARTNOHAND #define ERESTARTNOHAND 514 /* restart if no handler.. */ #endif #ifndef ENOIOCTLCMD #define ENOIOCTLCMD 515 /* No ioctl command */ #endif #ifndef ERESTART_RESTARTBLOCK #define ERESTART_RESTARTBLOCK 516 /* restart by calling sys_restart_syscall */ #endif #ifndef NSIG #define NSIG 32 #endif #ifdef ARM #undef NSIG #define NSIG 32 #undef NR_SYSCALL_BASE #define NR_SYSCALL_BASE __NR_SYSCALL_BASE #endif #endif /* LINUX */ #include "syscall.h" /* Define these shorthand notations to simplify the syscallent files. */ #define TD TRACE_DESC #define TF TRACE_FILE #define TI TRACE_IPC #define TN TRACE_NETWORK #define TP TRACE_PROCESS #define TS TRACE_SIGNAL static const struct sysent sysent0[] = { #include "syscallent.h" }; static const int nsyscalls0 = sizeof sysent0 / sizeof sysent0[0]; int qual_flags0[MAX_QUALS]; #if SUPPORTED_PERSONALITIES >= 2 static const struct sysent sysent1[] = { #include "syscallent1.h" }; static const int nsyscalls1 = sizeof sysent1 / sizeof sysent1[0]; int qual_flags1[MAX_QUALS]; #endif /* SUPPORTED_PERSONALITIES >= 2 */ #if SUPPORTED_PERSONALITIES >= 3 static const struct sysent sysent2[] = { #include "syscallent2.h" }; static const int nsyscalls2 = sizeof sysent2 / sizeof sysent2[0]; int qual_flags2[MAX_QUALS]; #endif /* SUPPORTED_PERSONALITIES >= 3 */ const struct sysent *sysent; int *qual_flags; int nsyscalls; /* Now undef them since short defines cause wicked namespace pollution. */ #undef TD #undef TF #undef TI #undef TN #undef TP #undef TS static const char *const errnoent0[] = { #include "errnoent.h" }; static const int nerrnos0 = sizeof errnoent0 / sizeof errnoent0[0]; #if SUPPORTED_PERSONALITIES >= 2 static const char *const errnoent1[] = { #include "errnoent1.h" }; static const int nerrnos1 = sizeof errnoent1 / sizeof errnoent1[0]; #endif /* SUPPORTED_PERSONALITIES >= 2 */ #if SUPPORTED_PERSONALITIES >= 3 static const char *const errnoent2[] = { #include "errnoent2.h" }; static const int nerrnos2 = sizeof errnoent2 / sizeof errnoent2[0]; #endif /* SUPPORTED_PERSONALITIES >= 3 */ const char *const *errnoent; int nerrnos; int current_personality; #ifndef PERSONALITY0_WORDSIZE # define PERSONALITY0_WORDSIZE sizeof(long) #endif const int personality_wordsize[SUPPORTED_PERSONALITIES] = { PERSONALITY0_WORDSIZE, #if SUPPORTED_PERSONALITIES > 1 PERSONALITY1_WORDSIZE, #endif #if SUPPORTED_PERSONALITIES > 2 PERSONALITY2_WORDSIZE, #endif };; int set_personality(int personality) { switch (personality) { case 0: errnoent = errnoent0; nerrnos = nerrnos0; sysent = sysent0; nsyscalls = nsyscalls0; ioctlent = ioctlent0; nioctlents = nioctlents0; signalent = signalent0; nsignals = nsignals0; qual_flags = qual_flags0; break; #if SUPPORTED_PERSONALITIES >= 2 case 1: errnoent = errnoent1; nerrnos = nerrnos1; sysent = sysent1; nsyscalls = nsyscalls1; ioctlent = ioctlent1; nioctlents = nioctlents1; signalent = signalent1; nsignals = nsignals1; qual_flags = qual_flags1; break; #endif /* SUPPORTED_PERSONALITIES >= 2 */ #if SUPPORTED_PERSONALITIES >= 3 case 2: errnoent = errnoent2; nerrnos = nerrnos2; sysent = sysent2; nsyscalls = nsyscalls2; ioctlent = ioctlent2; nioctlents = nioctlents2; signalent = signalent2; nsignals = nsignals2; qual_flags = qual_flags2; break; #endif /* SUPPORTED_PERSONALITIES >= 3 */ default: return -1; } current_personality = personality; return 0; } static int qual_syscall(), qual_signal(), qual_fault(), qual_desc(); static const struct qual_options { int bitflag; char *option_name; int (*qualify)(); char *argument_name; } qual_options[] = { { QUAL_TRACE, "trace", qual_syscall, "system call" }, { QUAL_TRACE, "t", qual_syscall, "system call" }, { QUAL_ABBREV, "abbrev", qual_syscall, "system call" }, { QUAL_ABBREV, "a", qual_syscall, "system call" }, { QUAL_VERBOSE, "verbose", qual_syscall, "system call" }, { QUAL_VERBOSE, "v", qual_syscall, "system call" }, { QUAL_RAW, "raw", qual_syscall, "system call" }, { QUAL_RAW, "x", qual_syscall, "system call" }, { QUAL_SIGNAL, "signal", qual_signal, "signal" }, { QUAL_SIGNAL, "signals", qual_signal, "signal" }, { QUAL_SIGNAL, "s", qual_signal, "signal" }, { QUAL_FAULT, "fault", qual_fault, "fault" }, { QUAL_FAULT, "faults", qual_fault, "fault" }, { QUAL_FAULT, "m", qual_fault, "fault" }, { QUAL_READ, "read", qual_desc, "descriptor" }, { QUAL_READ, "reads", qual_desc, "descriptor" }, { QUAL_READ, "r", qual_desc, "descriptor" }, { QUAL_WRITE, "write", qual_desc, "descriptor" }, { QUAL_WRITE, "writes", qual_desc, "descriptor" }, { QUAL_WRITE, "w", qual_desc, "descriptor" }, { 0, NULL, NULL, NULL }, }; static void qualify_one(n, opt, not, pers) int n; const struct qual_options *opt; int not; int pers; { if (pers == 0 || pers < 0) { if (not) qual_flags0[n] &= ~opt->bitflag; else qual_flags0[n] |= opt->bitflag; } #if SUPPORTED_PERSONALITIES >= 2 if (pers == 1 || pers < 0) { if (not) qual_flags1[n] &= ~opt->bitflag; else qual_flags1[n] |= opt->bitflag; } #endif /* SUPPORTED_PERSONALITIES >= 2 */ #if SUPPORTED_PERSONALITIES >= 3 if (pers == 2 || pers < 0) { if (not) qual_flags2[n] &= ~opt->bitflag; else qual_flags2[n] |= opt->bitflag; } #endif /* SUPPORTED_PERSONALITIES >= 3 */ } static int qual_syscall(s, opt, not) char *s; const struct qual_options *opt; int not; { int i; int rc = -1; if (isdigit((unsigned char)*s)) { int i = atoi(s); if (i < 0 || i >= MAX_QUALS) return -1; qualify_one(i, opt, not, -1); return 0; } for (i = 0; i < nsyscalls0; i++) if (strcmp(s, sysent0[i].sys_name) == 0) { qualify_one(i, opt, not, 0); rc = 0; } #if SUPPORTED_PERSONALITIES >= 2 for (i = 0; i < nsyscalls1; i++) if (strcmp(s, sysent1[i].sys_name) == 0) { qualify_one(i, opt, not, 1); rc = 0; } #endif /* SUPPORTED_PERSONALITIES >= 2 */ #if SUPPORTED_PERSONALITIES >= 3 for (i = 0; i < nsyscalls2; i++) if (strcmp(s, sysent2[i].sys_name) == 0) { qualify_one(i, opt, not, 2); rc = 0; } #endif /* SUPPORTED_PERSONALITIES >= 3 */ return rc; } static int qual_signal(s, opt, not) char *s; const struct qual_options *opt; int not; { int i; char buf[32]; if (isdigit((unsigned char)*s)) { int signo = atoi(s); if (signo < 0 || signo >= MAX_QUALS) return -1; qualify_one(signo, opt, not, -1); return 0; } if (strlen(s) >= sizeof buf) return -1; strcpy(buf, s); s = buf; for (i = 0; s[i]; i++) s[i] = toupper((unsigned char)(s[i])); if (strncmp(s, "SIG", 3) == 0) s += 3; for (i = 0; i <= NSIG; i++) if (strcmp(s, signame(i) + 3) == 0) { qualify_one(i, opt, not, -1); return 0; } return -1; } static int qual_fault(s, opt, not) char *s; const struct qual_options *opt; int not; { return -1; } static int qual_desc(s, opt, not) char *s; const struct qual_options *opt; int not; { if (isdigit((unsigned char)*s)) { int desc = atoi(s); if (desc < 0 || desc >= MAX_QUALS) return -1; qualify_one(desc, opt, not, -1); return 0; } return -1; } static int lookup_class(s) char *s; { if (strcmp(s, "file") == 0) return TRACE_FILE; if (strcmp(s, "ipc") == 0) return TRACE_IPC; if (strcmp(s, "network") == 0) return TRACE_NETWORK; if (strcmp(s, "process") == 0) return TRACE_PROCESS; if (strcmp(s, "signal") == 0) return TRACE_SIGNAL; if (strcmp(s, "desc") == 0) return TRACE_DESC; return -1; } void qualify(s) char *s; { const struct qual_options *opt; int not; char *p; int i, n; opt = &qual_options[0]; for (i = 0; (p = qual_options[i].option_name); i++) { n = strlen(p); if (strncmp(s, p, n) == 0 && s[n] == '=') { opt = &qual_options[i]; s += n + 1; break; } } not = 0; if (*s == '!') { not = 1; s++; } if (strcmp(s, "none") == 0) { not = 1 - not; s = "all"; } if (strcmp(s, "all") == 0) { for (i = 0; i < MAX_QUALS; i++) { qualify_one(i, opt, not, -1); } return; } for (i = 0; i < MAX_QUALS; i++) { qualify_one(i, opt, !not, -1); } for (p = strtok(s, ","); p; p = strtok(NULL, ",")) { if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) { for (i = 0; i < nsyscalls0; i++) if (sysent0[i].sys_flags & n) qualify_one(i, opt, not, 0); #if SUPPORTED_PERSONALITIES >= 2 for (i = 0; i < nsyscalls1; i++) if (sysent1[i].sys_flags & n) qualify_one(i, opt, not, 1); #endif /* SUPPORTED_PERSONALITIES >= 2 */ #if SUPPORTED_PERSONALITIES >= 3 for (i = 0; i < nsyscalls2; i++) if (sysent2[i].sys_flags & n) qualify_one(i, opt, not, 2); #endif /* SUPPORTED_PERSONALITIES >= 3 */ continue; } if (opt->qualify(p, opt, not)) { fprintf(stderr, "strace: invalid %s `%s'\n", opt->argument_name, p); exit(1); } } return; } static void dumpio(tcp) struct tcb *tcp; { if (syserror(tcp)) return; if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= MAX_QUALS) return; switch (known_scno(tcp)) { case SYS_read: #ifdef SYS_pread64 case SYS_pread64: #endif #if defined SYS_pread && SYS_pread64 != SYS_pread case SYS_pread: #endif #ifdef SYS_recv case SYS_recv: #elif defined SYS_sub_recv case SYS_sub_recv: #endif #ifdef SYS_recvfrom case SYS_recvfrom: #elif defined SYS_sub_recvfrom case SYS_sub_recvfrom: #endif if (qual_flags[tcp->u_arg[0]] & QUAL_READ) dumpstr(tcp, tcp->u_arg[1], tcp->u_rval); break; case SYS_write: #ifdef SYS_pwrite64 case SYS_pwrite64: #endif #if defined SYS_pwrite && SYS_pwrite64 != SYS_pwrite case SYS_pwrite: #endif #ifdef SYS_send case SYS_send: #elif defined SYS_sub_send case SYS_sub_send: #endif #ifdef SYS_sendto case SYS_sendto: #elif defined SYS_sub_sendto case SYS_sub_sendto: #endif if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]); break; #ifdef SYS_readv case SYS_readv: if (qual_flags[tcp->u_arg[0]] & QUAL_READ) dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); break; #endif #ifdef SYS_writev case SYS_writev: if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); break; #endif } } #ifndef FREEBSD enum subcall_style { shift_style, deref_style, mask_style, door_style }; #else /* FREEBSD */ enum subcall_style { shift_style, deref_style, mask_style, door_style, table_style }; struct subcall { int call; int nsubcalls; int subcalls[5]; }; static const struct subcall subcalls_table[] = { { SYS_shmsys, 5, { SYS_shmat, SYS_shmctl, SYS_shmdt, SYS_shmget, SYS_shmctl } }, #ifdef SYS_semconfig { SYS_semsys, 4, { SYS___semctl, SYS_semget, SYS_semop, SYS_semconfig } }, #else { SYS_semsys, 3, { SYS___semctl, SYS_semget, SYS_semop } }, #endif { SYS_msgsys, 4, { SYS_msgctl, SYS_msgget, SYS_msgsnd, SYS_msgrcv } }, }; #endif /* FREEBSD */ #if !(defined(LINUX) && ( defined(ALPHA) || defined(MIPS) || defined(__ARM_EABI__) )) static void decode_subcall(tcp, subcall, nsubcalls, style) struct tcb *tcp; int subcall; int nsubcalls; enum subcall_style style; { unsigned long addr, mask; int i; int size = personality_wordsize[current_personality]; switch (style) { case shift_style: if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= nsubcalls) return; tcp->scno = subcall + tcp->u_arg[0]; if (sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs--; for (i = 0; i < tcp->u_nargs; i++) tcp->u_arg[i] = tcp->u_arg[i + 1]; break; case deref_style: if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= nsubcalls) return; tcp->scno = subcall + tcp->u_arg[0]; addr = tcp->u_arg[1]; for (i = 0; i < sysent[tcp->scno].nargs; i++) { if (size == sizeof(int)) { unsigned int arg; if (umove(tcp, addr, &arg) < 0) arg = 0; tcp->u_arg[i] = arg; } else if (size == sizeof(long)) { unsigned long arg; if (umove(tcp, addr, &arg) < 0) arg = 0; tcp->u_arg[i] = arg; } else abort(); addr += size; } tcp->u_nargs = sysent[tcp->scno].nargs; break; case mask_style: mask = (tcp->u_arg[0] >> 8) & 0xff; for (i = 0; mask; i++) mask >>= 1; if (i >= nsubcalls) return; tcp->u_arg[0] &= 0xff; tcp->scno = subcall + i; if (sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; break; case door_style: /* * Oh, yuck. The call code is the *sixth* argument. * (don't you mean the *last* argument? - JH) */ if (tcp->u_arg[5] < 0 || tcp->u_arg[5] >= nsubcalls) return; tcp->scno = subcall + tcp->u_arg[5]; if (sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs--; break; #ifdef FREEBSD case table_style: for (i = 0; i < sizeof(subcalls_table) / sizeof(struct subcall); i++) if (subcalls_table[i].call == tcp->scno) break; if (i < sizeof(subcalls_table) / sizeof(struct subcall) && tcp->u_arg[0] >= 0 && tcp->u_arg[0] < subcalls_table[i].nsubcalls) { tcp->scno = subcalls_table[i].subcalls[tcp->u_arg[0]]; for (i = 0; i < tcp->u_nargs; i++) tcp->u_arg[i] = tcp->u_arg[i + 1]; } break; #endif /* FREEBSD */ } } #endif struct tcb *tcp_last = NULL; static int internal_syscall(struct tcb *tcp) { /* * We must always trace a few critical system calls in order to * correctly support following forks in the presence of tracing * qualifiers. */ int (*func)(); if (tcp->scno < 0 || tcp->scno >= nsyscalls) return 0; func = sysent[tcp->scno].sys_func; if (sys_exit == func) return internal_exit(tcp); if ( sys_fork == func #if defined(FREEBSD) || defined(LINUX) || defined(SUNOS4) || sys_vfork == func #endif #if UNIXWARE > 2 || sys_rfork == func #endif ) return internal_fork(tcp); #if defined(LINUX) && (defined SYS_clone || defined SYS_clone2) if (sys_clone == func) return internal_clone(tcp); #endif if ( sys_execve == func #if defined(SPARC) || defined(SPARC64) || defined(SUNOS4) || sys_execv == func #endif #if UNIXWARE > 2 || sys_rexecve == func #endif ) return internal_exec(tcp); if ( sys_waitpid == func || sys_wait4 == func #if defined(SVR4) || defined(FREEBSD) || defined(SUNOS4) || sys_wait == func #endif #ifdef ALPHA || sys_osf_wait4 == func #endif ) return internal_wait(tcp, 2); #if defined(LINUX) || defined(SVR4) if (sys_waitid == func) return internal_wait(tcp, 3); #endif return 0; } #ifdef LINUX #if defined (I386) static long eax; #elif defined (IA64) long r8, r10, psr; long ia32 = 0; #elif defined (POWERPC) static long result,flags; #elif defined (M68K) static int d0; #elif defined(BFIN) static long r0; #elif defined (ARM) static struct pt_regs regs; #elif defined (ALPHA) static long r0; static long a3; #elif defined(AVR32) static struct pt_regs regs; #elif defined (SPARC) || defined (SPARC64) static struct regs regs; static unsigned long trap; #elif defined(LINUX_MIPSN32) static long long a3; static long long r2; #elif defined(MIPS) static long a3; static long r2; #elif defined(S390) || defined(S390X) static long gpr2; static long pc; static long syscall_mode; #elif defined(HPPA) static long r28; #elif defined(SH) static long r0; #elif defined(SH64) static long r9; #elif defined(X86_64) static long rax; #elif defined(CRISV10) || defined(CRISV32) static long r10; #endif #endif /* LINUX */ #ifdef FREEBSD struct reg regs; #endif /* FREEBSD */ int get_scno(struct tcb *tcp) { long scno = 0; #ifdef LINUX # if defined(S390) || defined(S390X) if (tcp->flags & TCB_WAITEXECVE) { /* * When the execve system call completes successfully, the * new process still has -ENOSYS (old style) or __NR_execve * (new style) in gpr2. We cannot recover the scno again * by disassembly, because the image that executed the * syscall is gone now. Fortunately, we don't want it. We * leave the flag set so that syscall_fixup can fake the * result. */ if (tcp->flags & TCB_INSYSCALL) return 1; /* * This is the SIGTRAP after execve. We cannot try to read * the system call here either. */ tcp->flags &= ~TCB_WAITEXECVE; return 0; } if (upeek(tcp, PT_GPR2, &syscall_mode) < 0) return -1; if (syscall_mode != -ENOSYS) { /* * Since kernel version 2.5.44 the scno gets passed in gpr2. */ scno = syscall_mode; } else { /* * Old style of "passing" the scno via the SVC instruction. */ long opcode, offset_reg, tmp; void * svc_addr; int gpr_offset[16] = {PT_GPR0, PT_GPR1, PT_ORIGGPR2, PT_GPR3, PT_GPR4, PT_GPR5, PT_GPR6, PT_GPR7, PT_GPR8, PT_GPR9, PT_GPR10, PT_GPR11, PT_GPR12, PT_GPR13, PT_GPR14, PT_GPR15}; if (upeek(tcp, PT_PSWADDR, &pc) < 0) return -1; errno = 0; opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(pc-sizeof(long)), 0); if (errno) { perror("peektext(pc-oneword)"); return -1; } /* * We have to check if the SVC got executed directly or via an * EXECUTE instruction. In case of EXECUTE it is necessary to do * instruction decoding to derive the system call number. * Unfortunately the opcode sizes of EXECUTE and SVC are differently, * so that this doesn't work if a SVC opcode is part of an EXECUTE * opcode. Since there is no way to find out the opcode size this * is the best we can do... */ if ((opcode & 0xff00) == 0x0a00) { /* SVC opcode */ scno = opcode & 0xff; } else { /* SVC got executed by EXECUTE instruction */ /* * Do instruction decoding of EXECUTE. If you really want to * understand this, read the Principles of Operations. */ svc_addr = (void *) (opcode & 0xfff); tmp = 0; offset_reg = (opcode & 0x000f0000) >> 16; if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0)) return -1; svc_addr += tmp; tmp = 0; offset_reg = (opcode & 0x0000f000) >> 12; if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0)) return -1; svc_addr += tmp; scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0); if (errno) return -1; # if defined(S390X) scno >>= 48; # else scno >>= 16; # endif tmp = 0; offset_reg = (opcode & 0x00f00000) >> 20; if (offset_reg && (upeek(tcp, gpr_offset[offset_reg], &tmp) < 0)) return -1; scno = (scno | tmp) & 0xff; } } # elif defined (POWERPC) if (upeek(tcp, sizeof(unsigned long)*PT_R0, &scno) < 0) return -1; if (!(tcp->flags & TCB_INSYSCALL)) { /* Check if we return from execve. */ if (scno == 0 && (tcp->flags & TCB_WAITEXECVE)) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } } # elif defined(AVR32) /* * Read complete register set in one go. */ if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, ®s) < 0) return -1; /* * We only need to grab the syscall number on syscall entry. */ if (!(tcp->flags & TCB_INSYSCALL)) { scno = regs.r8; /* Check if we return from execve. */ if (tcp->flags & TCB_WAITEXECVE) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } } # elif defined(BFIN) if (upeek(tcp, PT_ORIG_P0, &scno)) return -1; /* Check if we return from execve. */ if (tcp->flags & TCB_WAITEXECVE && tcp->flags & TCB_INSYSCALL) tcp->flags &= ~(TCB_INSYSCALL | TCB_WAITEXECVE); # elif defined (I386) if (upeek(tcp, 4*ORIG_EAX, &scno) < 0) return -1; # elif defined (X86_64) if (upeek(tcp, 8*ORIG_RAX, &scno) < 0) return -1; if (!(tcp->flags & TCB_INSYSCALL)) { static int currpers = -1; long val; int pid = tcp->pid; /* Check CS register value. On x86-64 linux it is: * 0x33 for long mode (64 bit) * 0x23 for compatibility mode (32 bit) * It takes only one ptrace and thus doesn't need * to be cached. */ if (upeek(tcp, 8*CS, &val) < 0) return -1; switch (val) { case 0x23: currpers = 1; break; case 0x33: currpers = 0; break; default: fprintf(stderr, "Unknown value CS=0x%02X while " "detecting personality of process " "PID=%d\n", (int)val, pid); currpers = current_personality; break; } # if 0 /* This version analyzes the opcode of a syscall instruction. * (int 0x80 on i386 vs. syscall on x86-64) * It works, but is too complicated. */ unsigned long val, rip, i; if (upeek(tcp, 8*RIP, &rip) < 0) perror("upeek(RIP)"); /* sizeof(syscall) == sizeof(int 0x80) == 2 */ rip -= 2; errno = 0; call = ptrace(PTRACE_PEEKTEXT, pid, (char *)rip, (char *)0); if (errno) printf("ptrace_peektext failed: %s\n", strerror(errno)); switch (call & 0xffff) { /* x86-64: syscall = 0x0f 0x05 */ case 0x050f: currpers = 0; break; /* i386: int 0x80 = 0xcd 0x80 */ case 0x80cd: currpers = 1; break; default: currpers = current_personality; fprintf(stderr, "Unknown syscall opcode (0x%04X) while " "detecting personality of process " "PID=%d\n", (int)call, pid); break; } # endif if (currpers != current_personality) { static const char *const names[] = {"64 bit", "32 bit"}; set_personality(currpers); printf("[ Process PID=%d runs in %s mode. ]\n", pid, names[current_personality]); } } # elif defined(IA64) # define IA64_PSR_IS ((long)1 << 34) if (upeek(tcp, PT_CR_IPSR, &psr) >= 0) ia32 = (psr & IA64_PSR_IS) != 0; if (!(tcp->flags & TCB_INSYSCALL)) { if (ia32) { if (upeek(tcp, PT_R1, &scno) < 0) /* orig eax */ return -1; } else { if (upeek(tcp, PT_R15, &scno) < 0) return -1; } /* Check if we return from execve. */ if (tcp->flags & TCB_WAITEXECVE) { # if defined PTRACE_GETSIGINFO siginfo_t si; tcp->flags &= ~TCB_WAITEXECVE; /* If SIGTRAP is masked, execve's magic SIGTRAP * is not delivered. We end up here on a subsequent * ptrace stop instead. Luckily, we can check * for the type of this SIGTRAP. execve's magic one * has 0 (SI_USER) in si.si_code, ptrace stop has 5. * (I don't know why 5). */ si.si_code = SI_USER; /* If PTRACE_GETSIGINFO fails, we assume it's * magic SIGTRAP. Moot anyway, PTRACE_GETSIGINFO * doesn't fail. */ ptrace(PTRACE_GETSIGINFO, tcp->pid, (void*) 0, (void*) &si); if (si.si_code == SI_USER) return 0; # else tcp->flags &= ~TCB_WAITEXECVE; return 0; # endif } } else { /* syscall in progress */ if (upeek(tcp, PT_R8, &r8) < 0) return -1; if (upeek(tcp, PT_R10, &r10) < 0) return -1; } # elif defined (ARM) /* * Read complete register set in one go. */ if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (void *)®s) == -1) return -1; /* * We only need to grab the syscall number on syscall entry. */ if (regs.ARM_ip == 0) { if (!(tcp->flags & TCB_INSYSCALL)) { /* Check if we return from execve. */ if (tcp->flags & TCB_WAITEXECVE) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } } /* * Note: we only deal with only 32-bit CPUs here. */ if (regs.ARM_cpsr & 0x20) { /* * Get the Thumb-mode system call number */ scno = regs.ARM_r7; } else { /* * Get the ARM-mode system call number */ errno = 0; scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(regs.ARM_pc - 4), NULL); if (errno) return -1; if (scno == 0 && (tcp->flags & TCB_WAITEXECVE)) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } /* Handle the EABI syscall convention. We do not bother converting structures between the two ABIs, but basic functionality should work even if strace and the traced program have different ABIs. */ if (scno == 0xef000000) { scno = regs.ARM_r7; } else { if ((scno & 0x0ff00000) != 0x0f900000) { fprintf(stderr, "syscall: unknown syscall trap 0x%08lx\n", scno); return -1; } /* * Fixup the syscall number */ scno &= 0x000fffff; } } if (scno & 0x0f0000) { /* * Handle ARM specific syscall */ set_personality(1); scno &= 0x0000ffff; } else set_personality(0); if (tcp->flags & TCB_INSYSCALL) { fprintf(stderr, "pid %d stray syscall entry\n", tcp->pid); tcp->flags &= ~TCB_INSYSCALL; } } else { if (!(tcp->flags & TCB_INSYSCALL)) { fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid); tcp->flags |= TCB_INSYSCALL; } } # elif defined (M68K) if (upeek(tcp, 4*PT_ORIG_D0, &scno) < 0) return -1; # elif defined (LINUX_MIPSN32) unsigned long long regs[38]; if (do_ptrace(PTRACE_GETREGS, tcp, NULL, (long) ®s) < 0) return -1; a3 = regs[REG_A3]; r2 = regs[REG_V0]; if(!(tcp->flags & TCB_INSYSCALL)) { scno = r2; /* Check if we return from execve. */ if (scno == 0 && tcp->flags & TCB_WAITEXECVE) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } if (scno < 0 || scno > nsyscalls) { if(a3 == 0 || a3 == -1) { if(debug) fprintf (stderr, "stray syscall exit: v0 = %ld\n", scno); return 0; } } } # elif defined (MIPS) if (upeek(tcp, REG_A3, &a3) < 0) return -1; if(!(tcp->flags & TCB_INSYSCALL)) { if (upeek(tcp, REG_V0, &scno) < 0) return -1; /* Check if we return from execve. */ if (scno == 0 && tcp->flags & TCB_WAITEXECVE) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } if (scno < 0 || scno > nsyscalls) { if(a3 == 0 || a3 == -1) { if(debug) fprintf (stderr, "stray syscall exit: v0 = %ld\n", scno); return 0; } } } else { if (upeek(tcp, REG_V0, &r2) < 0) return -1; } # elif defined (ALPHA) if (upeek(tcp, REG_A3, &a3) < 0) return -1; if (!(tcp->flags & TCB_INSYSCALL)) { if (upeek(tcp, REG_R0, &scno) < 0) return -1; /* Check if we return from execve. */ if (scno == 0 && tcp->flags & TCB_WAITEXECVE) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } /* * Do some sanity checks to figure out if it's * really a syscall entry */ if (scno < 0 || scno > nsyscalls) { if (a3 == 0 || a3 == -1) { if (debug) fprintf (stderr, "stray syscall exit: r0 = %ld\n", scno); return 0; } } } else { if (upeek(tcp, REG_R0, &r0) < 0) return -1; } # elif defined (SPARC) || defined (SPARC64) /* Everything we need is in the current register set. */ if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)®s, 0) < 0) return -1; /* If we are entering, then disassemble the syscall trap. */ if (!(tcp->flags & TCB_INSYSCALL)) { /* Retrieve the syscall trap instruction. */ errno = 0; trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)regs.r_pc, 0); # if defined(SPARC64) trap >>= 32; # endif if (errno) return -1; /* Disassemble the trap to see what personality to use. */ switch (trap) { case 0x91d02010: /* Linux/SPARC syscall trap. */ set_personality(0); break; case 0x91d0206d: /* Linux/SPARC64 syscall trap. */ set_personality(2); break; case 0x91d02000: /* SunOS syscall trap. (pers 1) */ fprintf(stderr,"syscall: SunOS no support\n"); return -1; case 0x91d02008: /* Solaris 2.x syscall trap. (per 2) */ set_personality(1); break; case 0x91d02009: /* NetBSD/FreeBSD syscall trap. */ fprintf(stderr,"syscall: NetBSD/FreeBSD not supported\n"); return -1; case 0x91d02027: /* Solaris 2.x gettimeofday */ set_personality(1); break; default: /* Unknown syscall trap. */ if(tcp->flags & TCB_WAITEXECVE) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } # if defined (SPARC64) fprintf(stderr,"syscall: unknown syscall trap %08lx %016lx\n", trap, regs.r_tpc); # else fprintf(stderr,"syscall: unknown syscall trap %08x %08x\n", trap, regs.r_pc); # endif return -1; } /* Extract the system call number from the registers. */ if (trap == 0x91d02027) scno = 156; else scno = regs.r_g1; if (scno == 0) { scno = regs.r_o0; memmove (®s.r_o0, ®s.r_o1, 7*sizeof(regs.r_o0)); } } # elif defined(HPPA) if (upeek(tcp, PT_GR20, &scno) < 0) return -1; if (!(tcp->flags & TCB_INSYSCALL)) { /* Check if we return from execve. */ if ((tcp->flags & TCB_WAITEXECVE)) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } } # elif defined(SH) /* * In the new syscall ABI, the system call number is in R3. */ if (upeek(tcp, 4*(REG_REG0+3), &scno) < 0) return -1; if (scno < 0) { /* Odd as it may seem, a glibc bug has been known to cause glibc to issue bogus negative syscall numbers. So for our purposes, make strace print what it *should* have been */ long correct_scno = (scno & 0xff); if (debug) fprintf(stderr, "Detected glibc bug: bogus system call" " number = %ld, correcting to %ld\n", scno, correct_scno); scno = correct_scno; } if (!(tcp->flags & TCB_INSYSCALL)) { /* Check if we return from execve. */ if (scno == 0 && tcp->flags & TCB_WAITEXECVE) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } } # elif defined(SH64) if (upeek(tcp, REG_SYSCALL, &scno) < 0) return -1; scno &= 0xFFFF; if (!(tcp->flags & TCB_INSYSCALL)) { /* Check if we return from execve. */ if (tcp->flags & TCB_WAITEXECVE) { tcp->flags &= ~TCB_WAITEXECVE; return 0; } } # elif defined(CRISV10) || defined(CRISV32) if (upeek(tcp, 4*PT_R9, &scno) < 0) return -1; # endif #endif /* LINUX */ #ifdef SUNOS4 if (upeek(tcp, uoff(u_arg[7]), &scno) < 0) return -1; #elif defined(SH) /* new syscall ABI returns result in R0 */ if (upeek(tcp, 4*REG_REG0, (long *)&r0) < 0) return -1; #elif defined(SH64) /* ABI defines result returned in r9 */ if (upeek(tcp, REG_GENERAL(9), (long *)&r9) < 0) return -1; #endif #ifdef USE_PROCFS # ifdef HAVE_PR_SYSCALL scno = tcp->status.PR_SYSCALL; # else # ifndef FREEBSD scno = tcp->status.PR_WHAT; # else if (pread(tcp->pfd_reg, ®s, sizeof(regs), 0) < 0) { perror("pread"); return -1; } switch (regs.r_eax) { case SYS_syscall: case SYS___syscall: pread(tcp->pfd, &scno, sizeof(scno), regs.r_esp + sizeof(int)); break; default: scno = regs.r_eax; break; } # endif /* FREEBSD */ # endif /* !HAVE_PR_SYSCALL */ #endif /* USE_PROCFS */ if (!(tcp->flags & TCB_INSYSCALL)) tcp->scno = scno; return 1; } long known_scno(tcp) struct tcb *tcp; { long scno = tcp->scno; if (scno >= 0 && scno < nsyscalls && sysent[scno].native_scno != 0) scno = sysent[scno].native_scno; else scno += NR_SYSCALL_BASE; return scno; } /* Called in trace_syscall at each syscall entry and exit. * Returns: * 0: "ignore this syscall", bail out of trace_syscall silently. * 1: ok, continue in trace_syscall. * other: error, trace_syscall should print error indicator * ("????" etc) and bail out. */ static int syscall_fixup(struct tcb *tcp) { #ifdef USE_PROCFS int scno = known_scno(tcp); if (!(tcp->flags & TCB_INSYSCALL)) { if (tcp->status.PR_WHY != PR_SYSENTRY) { if ( scno == SYS_fork #ifdef SYS_vfork || scno == SYS_vfork #endif /* SYS_vfork */ #ifdef SYS_fork1 || scno == SYS_fork1 #endif /* SYS_fork1 */ #ifdef SYS_forkall || scno == SYS_forkall #endif /* SYS_forkall */ #ifdef SYS_rfork1 || scno == SYS_rfork1 #endif /* SYS_fork1 */ #ifdef SYS_rforkall || scno == SYS_rforkall #endif /* SYS_rforkall */ ) { /* We are returning in the child, fake it. */ tcp->status.PR_WHY = PR_SYSENTRY; trace_syscall(tcp); tcp->status.PR_WHY = PR_SYSEXIT; } else { fprintf(stderr, "syscall: missing entry\n"); tcp->flags |= TCB_INSYSCALL; } } } else { if (tcp->status.PR_WHY != PR_SYSEXIT) { fprintf(stderr, "syscall: missing exit\n"); tcp->flags &= ~TCB_INSYSCALL; } } #endif /* USE_PROCFS */ #ifdef SUNOS4 if (!(tcp->flags & TCB_INSYSCALL)) { if (scno == 0) { fprintf(stderr, "syscall: missing entry\n"); tcp->flags |= TCB_INSYSCALL; } } else { if (scno != 0) { if (debug) { /* * This happens when a signal handler * for a signal which interrupted a * a system call makes another system call. */ fprintf(stderr, "syscall: missing exit\n"); } tcp->flags &= ~TCB_INSYSCALL; } } #endif /* SUNOS4 */ #ifdef LINUX #if defined (I386) if (upeek(tcp, 4*EAX, &eax) < 0) return -1; if (eax != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) { if (debug) fprintf(stderr, "stray syscall exit: eax = %ld\n", eax); return 0; } #elif defined (X86_64) if (upeek(tcp, 8*RAX, &rax) < 0) return -1; if (current_personality == 1) rax = (long int)(int)rax; /* sign extend from 32 bits */ if (rax != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) { if (debug) fprintf(stderr, "stray syscall exit: rax = %ld\n", rax); return 0; } #elif defined (S390) || defined (S390X) if (upeek(tcp, PT_GPR2, &gpr2) < 0) return -1; if (syscall_mode != -ENOSYS) syscall_mode = tcp->scno; if (gpr2 != syscall_mode && !(tcp->flags & TCB_INSYSCALL)) { if (debug) fprintf(stderr, "stray syscall exit: gpr2 = %ld\n", gpr2); return 0; } else if (((tcp->flags & (TCB_INSYSCALL|TCB_WAITEXECVE)) == (TCB_INSYSCALL|TCB_WAITEXECVE)) && (gpr2 == -ENOSYS || gpr2 == tcp->scno)) { /* * Fake a return value of zero. We leave the TCB_WAITEXECVE * flag set for the post-execve SIGTRAP to see and reset. */ gpr2 = 0; } #elif defined (POWERPC) # define SO_MASK 0x10000000 if (upeek(tcp, sizeof(unsigned long)*PT_CCR, &flags) < 0) return -1; if (upeek(tcp, sizeof(unsigned long)*PT_R3, &result) < 0) return -1; if (flags & SO_MASK) result = -result; #elif defined (M68K) if (upeek(tcp, 4*PT_D0, &d0) < 0) return -1; if (d0 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) { if (debug) fprintf(stderr, "stray syscall exit: d0 = %ld\n", d0); return 0; } #elif defined (ARM) /* * Nothing required */ #elif defined(BFIN) if (upeek(tcp, PT_R0, &r0) < 0) return -1; #elif defined (HPPA) if (upeek(tcp, PT_GR28, &r28) < 0) return -1; #elif defined(IA64) if (upeek(tcp, PT_R10, &r10) < 0) return -1; if (upeek(tcp, PT_R8, &r8) < 0) return -1; if (ia32 && r8 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) { if (debug) fprintf(stderr, "stray syscall exit: r8 = %ld\n", r8); return 0; } #elif defined(CRISV10) || defined(CRISV32) if (upeek(tcp->pid, 4*PT_R10, &r10) < 0) return -1; if (r10 != -ENOSYS && !(tcp->flags & TCB_INSYSCALL)) { if (debug) fprintf(stderr, "stray syscall exit: r10 = %ld\n", r10); return 0; } #endif #endif /* LINUX */ return 1; } #ifdef LINUX /* * Check the syscall return value register value for whether it is * a negated errno code indicating an error, or a success return value. */ static inline int is_negated_errno(unsigned long int val) { unsigned long int max = -(long int) nerrnos; if (personality_wordsize[current_personality] < sizeof(val)) { val = (unsigned int) val; max = (unsigned int) max; } return val > max; } #endif static int get_error(struct tcb *tcp) { int u_error = 0; #ifdef LINUX # if defined(S390) || defined(S390X) if (is_negated_errno(gpr2)) { tcp->u_rval = -1; u_error = -gpr2; } else { tcp->u_rval = gpr2; u_error = 0; } # elif defined(I386) if (is_negated_errno(eax)) { tcp->u_rval = -1; u_error = -eax; } else { tcp->u_rval = eax; u_error = 0; } # elif defined(X86_64) if (is_negated_errno(rax)) { tcp->u_rval = -1; u_error = -rax; } else { tcp->u_rval = rax; u_error = 0; } # elif defined(IA64) if (ia32) { int err; err = (int)r8; if (is_negated_errno(err)) { tcp->u_rval = -1; u_error = -err; } else { tcp->u_rval = err; u_error = 0; } } else { if (r10) { tcp->u_rval = -1; u_error = r8; } else { tcp->u_rval = r8; u_error = 0; } } # elif defined(MIPS) if (a3) { tcp->u_rval = -1; u_error = r2; } else { tcp->u_rval = r2; u_error = 0; } # elif defined(POWERPC) if (is_negated_errno(result)) { tcp->u_rval = -1; u_error = -result; } else { tcp->u_rval = result; u_error = 0; } # elif defined(M68K) if (is_negated_errno(d0)) { tcp->u_rval = -1; u_error = -d0; } else { tcp->u_rval = d0; u_error = 0; } # elif defined(ARM) if (is_negated_errno(regs.ARM_r0)) { tcp->u_rval = -1; u_error = -regs.ARM_r0; } else { tcp->u_rval = regs.ARM_r0; u_error = 0; } # elif defined(AVR32) if (regs.r12 && (unsigned) -regs.r12 < nerrnos) { tcp->u_rval = -1; u_error = -regs.r12; } else { tcp->u_rval = regs.r12; u_error = 0; } # elif defined(BFIN) if (is_negated_errno(r0)) { tcp->u_rval = -1; u_error = -r0; } else { tcp->u_rval = r0; u_error = 0; } # elif defined(ALPHA) if (a3) { tcp->u_rval = -1; u_error = r0; } else { tcp->u_rval = r0; u_error = 0; } # elif defined(SPARC) if (regs.r_psr & PSR_C) { tcp->u_rval = -1; u_error = regs.r_o0; } else { tcp->u_rval = regs.r_o0; u_error = 0; } # elif defined(SPARC64) if (regs.r_tstate & 0x1100000000UL) { tcp->u_rval = -1; u_error = regs.r_o0; } else { tcp->u_rval = regs.r_o0; u_error = 0; } # elif defined(HPPA) if (is_negated_errno(r28)) { tcp->u_rval = -1; u_error = -r28; } else { tcp->u_rval = r28; u_error = 0; } # elif defined(SH) /* interpret R0 as return value or error number */ if (is_negated_errno(r0)) { tcp->u_rval = -1; u_error = -r0; } else { tcp->u_rval = r0; u_error = 0; } # elif defined(SH64) /* interpret result as return value or error number */ if (is_negated_errno(r9)) { tcp->u_rval = -1; u_error = -r9; } else { tcp->u_rval = r9; u_error = 0; } # elif defined(CRISV10) || defined(CRISV32) if (r10 && (unsigned) -r10 < nerrnos) { tcp->u_rval = -1; u_error = -r10; } else { tcp->u_rval = r10; u_error = 0; } # endif #endif /* LINUX */ #ifdef SUNOS4 /* get error code from user struct */ if (upeek(tcp, uoff(u_error), &u_error) < 0) return -1; u_error >>= 24; /* u_error is a char */ /* get system call return value */ if (upeek(tcp, uoff(u_rval1), &tcp->u_rval) < 0) return -1; #endif /* SUNOS4 */ #ifdef SVR4 #ifdef SPARC /* Judicious guessing goes a long way. */ if (tcp->status.pr_reg[R_PSR] & 0x100000) { tcp->u_rval = -1; u_error = tcp->status.pr_reg[R_O0]; } else { tcp->u_rval = tcp->status.pr_reg[R_O0]; u_error = 0; } #endif /* SPARC */ #ifdef I386 /* Wanna know how to kill an hour single-stepping? */ if (tcp->status.PR_REG[EFL] & 0x1) { tcp->u_rval = -1; u_error = tcp->status.PR_REG[EAX]; } else { tcp->u_rval = tcp->status.PR_REG[EAX]; #ifdef HAVE_LONG_LONG tcp->u_lrval = ((unsigned long long) tcp->status.PR_REG[EDX] << 32) + tcp->status.PR_REG[EAX]; #endif u_error = 0; } #endif /* I386 */ #ifdef X86_64 /* Wanna know how to kill an hour single-stepping? */ if (tcp->status.PR_REG[EFLAGS] & 0x1) { tcp->u_rval = -1; u_error = tcp->status.PR_REG[RAX]; } else { tcp->u_rval = tcp->status.PR_REG[RAX]; u_error = 0; } #endif /* X86_64 */ #ifdef MIPS if (tcp->status.pr_reg[CTX_A3]) { tcp->u_rval = -1; u_error = tcp->status.pr_reg[CTX_V0]; } else { tcp->u_rval = tcp->status.pr_reg[CTX_V0]; u_error = 0; } #endif /* MIPS */ #endif /* SVR4 */ #ifdef FREEBSD if (regs.r_eflags & PSL_C) { tcp->u_rval = -1; u_error = regs.r_eax; } else { tcp->u_rval = regs.r_eax; tcp->u_lrval = ((unsigned long long) regs.r_edx << 32) + regs.r_eax; u_error = 0; } #endif /* FREEBSD */ tcp->u_error = u_error; return 1; } int force_result(tcp, error, rval) struct tcb *tcp; int error; long rval; { #ifdef LINUX # if defined(S390) || defined(S390X) gpr2 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)PT_GPR2, gpr2) < 0) return -1; # elif defined(I386) eax = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(EAX * 4), eax) < 0) return -1; # elif defined(X86_64) rax = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(RAX * 8), rax) < 0) return -1; # elif defined(IA64) if (ia32) { r8 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R8), r8) < 0) return -1; } else { if (error) { r8 = error; r10 = -1; } else { r8 = rval; r10 = 0; } if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R8), r8) < 0 || ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R10), r10) < 0) return -1; } # elif defined(BFIN) r0 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)PT_R0, r0) < 0) return -1; # elif defined(MIPS) if (error) { r2 = error; a3 = -1; } else { r2 = rval; a3 = 0; } /* PTRACE_POKEUSER is OK even for n32 since rval is only a long. */ if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_A3), a3) < 0 || ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_V0), r2) < 0) return -1; # elif defined(POWERPC) if (upeek(tcp, sizeof(unsigned long)*PT_CCR, &flags) < 0) return -1; if (error) { flags |= SO_MASK; result = error; } else { flags &= ~SO_MASK; result = rval; } if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(sizeof(unsigned long)*PT_CCR), flags) < 0 || ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(sizeof(unsigned long)*PT_R3), result) < 0) return -1; # elif defined(M68K) d0 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*PT_D0), d0) < 0) return -1; # elif defined(ARM) regs.ARM_r0 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*0), regs.ARM_r0) < 0) return -1; # elif defined(AVR32) regs.r12 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)REG_R12, regs.r12) < 0) return -1; # elif defined(ALPHA) if (error) { a3 = -1; r0 = error; } else { a3 = 0; r0 = rval; } if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_A3), a3) < 0 || ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_R0), r0) < 0) return -1; # elif defined(SPARC) if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)®s, 0) < 0) return -1; if (error) { regs.r_psr |= PSR_C; regs.r_o0 = error; } else { regs.r_psr &= ~PSR_C; regs.r_o0 = rval; } if (ptrace(PTRACE_SETREGS, tcp->pid, (char *)®s, 0) < 0) return -1; # elif defined(SPARC64) if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)®s, 0) < 0) return -1; if (error) { regs.r_tstate |= 0x1100000000UL; regs.r_o0 = error; } else { regs.r_tstate &= ~0x1100000000UL; regs.r_o0 = rval; } if (ptrace(PTRACE_SETREGS, tcp->pid, (char *)®s, 0) < 0) return -1; # elif defined(HPPA) r28 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_GR28), r28) < 0) return -1; # elif defined(SH) r0 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*REG_REG0), r0) < 0) return -1; # elif defined(SH64) r9 = error ? -error : rval; if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)REG_GENERAL(9), r9) < 0) return -1; # endif #endif /* LINUX */ #ifdef SUNOS4 if (do_ptrace(PTRACE_POKEUSER, tcp->pid, (char*)uoff(u_error), error << 24) < 0 || do_ptrace(PTRACE_POKEUSER, tcp->pid, (char*)uoff(u_rval1), rval) < 0 ) { return -1; } #endif /* SUNOS4 */ #ifdef SVR4 /* XXX no clue */ return -1; #endif /* SVR4 */ #ifdef FREEBSD if (pread(tcp->pfd_reg, ®s, sizeof(regs), 0) < 0) { perror("pread"); return -1; } if (error) { regs.r_eflags |= PSL_C; regs.r_eax = error; } else { regs.r_eflags &= ~PSL_C; regs.r_eax = rval; } if (pwrite(tcp->pfd_reg, ®s, sizeof(regs), 0) < 0) { perror("pwrite"); return -1; } #endif /* FREEBSD */ /* All branches reach here on success (only). */ tcp->u_error = error; tcp->u_rval = rval; return 0; } static int syscall_enter(struct tcb *tcp) { #ifdef LINUX #if defined(S390) || defined(S390X) { int i; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) { if (upeek(tcp,i==0 ? PT_ORIGGPR2:PT_GPR2+i*sizeof(long), &tcp->u_arg[i]) < 0) return -1; } } #elif defined (ALPHA) { int i; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) { /* WTA: if scno is out-of-bounds this will bomb. Add range-check * for scno somewhere above here! */ if (upeek(tcp, REG_A0+i, &tcp->u_arg[i]) < 0) return -1; } } #elif defined (IA64) { if (!ia32) { unsigned long *out0, cfm, sof, sol, i; long rbs_end; /* be backwards compatible with kernel < 2.4.4... */ # ifndef PT_RBS_END # define PT_RBS_END PT_AR_BSP # endif if (upeek(tcp, PT_RBS_END, &rbs_end) < 0) return -1; if (upeek(tcp, PT_CFM, (long *) &cfm) < 0) return -1; sof = (cfm >> 0) & 0x7f; sol = (cfm >> 7) & 0x7f; out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol); if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; ++i) { if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i), sizeof(long), (char *) &tcp->u_arg[i]) < 0) return -1; } } else { int i; if (/* EBX = out0 */ upeek(tcp, PT_R11, (long *) &tcp->u_arg[0]) < 0 /* ECX = out1 */ || upeek(tcp, PT_R9, (long *) &tcp->u_arg[1]) < 0 /* EDX = out2 */ || upeek(tcp, PT_R10, (long *) &tcp->u_arg[2]) < 0 /* ESI = out3 */ || upeek(tcp, PT_R14, (long *) &tcp->u_arg[3]) < 0 /* EDI = out4 */ || upeek(tcp, PT_R15, (long *) &tcp->u_arg[4]) < 0 /* EBP = out5 */ || upeek(tcp, PT_R13, (long *) &tcp->u_arg[5]) < 0) return -1; for (i = 0; i < 6; ++i) /* truncate away IVE sign-extension */ tcp->u_arg[i] &= 0xffffffff; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = 5; } } #elif defined (LINUX_MIPSN32) || defined (LINUX_MIPSN64) /* N32 and N64 both use up to six registers. */ { unsigned long long regs[38]; int i, nargs; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) nargs = tcp->u_nargs = sysent[tcp->scno].nargs; else nargs = tcp->u_nargs = MAX_ARGS; if (do_ptrace(PTRACE_GETREGS, tcp, NULL, (long) ®s) < 0) return -1; for (i = 0; i < nargs; i++) { tcp->u_arg[i] = regs[REG_A0 + i]; # if defined (LINUX_MIPSN32) tcp->ext_arg[i] = regs[REG_A0 + i]; # endif } } #elif defined (MIPS) { long sp; int i, nargs; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) nargs = tcp->u_nargs = sysent[tcp->scno].nargs; else nargs = tcp->u_nargs = MAX_ARGS; if (nargs > 4) { if (upeek(tcp, REG_SP, &sp) < 0) return -1; for (i = 0; i < 4; i++) { if (upeek(tcp, REG_A0 + i, &tcp->u_arg[i])<0) return -1; } umoven(tcp, sp+16, (nargs-4) * sizeof(tcp->u_arg[0]), (char *)(tcp->u_arg + 4)); } else { for (i = 0; i < nargs; i++) { if (upeek(tcp, REG_A0 + i, &tcp->u_arg[i]) < 0) return -1; } } } #elif defined (POWERPC) # ifndef PT_ORIG_R3 # define PT_ORIG_R3 34 # endif { int i; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) { if (upeek(tcp, (i==0) ? (sizeof(unsigned long)*PT_ORIG_R3) : ((i+PT_R3)*sizeof(unsigned long)), &tcp->u_arg[i]) < 0) return -1; } } #elif defined (SPARC) || defined (SPARC64) { int i; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) tcp->u_arg[i] = *((®s.r_o0) + i); } #elif defined (HPPA) { int i; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) { if (upeek(tcp, PT_GR26-4*i, &tcp->u_arg[i]) < 0) return -1; } } #elif defined(ARM) { int i; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) tcp->u_arg[i] = regs.uregs[i]; } #elif defined(AVR32) tcp->u_nargs = sysent[tcp->scno].nargs; tcp->u_arg[0] = regs.r12; tcp->u_arg[1] = regs.r11; tcp->u_arg[2] = regs.r10; tcp->u_arg[3] = regs.r9; tcp->u_arg[4] = regs.r5; tcp->u_arg[5] = regs.r3; #elif defined(BFIN) { int i; int argreg[] = {PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5}; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = sizeof(argreg) / sizeof(argreg[0]); for (i = 0; i < tcp->u_nargs; ++i) if (upeek(tcp, argreg[i], &tcp->u_arg[i]) < 0) return -1; } #elif defined(SH) { int i; static int syscall_regs[] = { REG_REG0+4, REG_REG0+5, REG_REG0+6, REG_REG0+7, REG_REG0, REG_REG0+1, REG_REG0+2 }; tcp->u_nargs = sysent[tcp->scno].nargs; for (i = 0; i < tcp->u_nargs; i++) { if (upeek(tcp, 4*syscall_regs[i], &tcp->u_arg[i]) < 0) return -1; } } #elif defined(SH64) { int i; /* Registers used by SH5 Linux system calls for parameters */ static int syscall_regs[] = { 2, 3, 4, 5, 6, 7 }; /* * TODO: should also check that the number of arguments encoded * in the trap number matches the number strace expects. */ /* assert(sysent[tcp->scno].nargs < sizeof(syscall_regs)/sizeof(syscall_regs[0])); */ tcp->u_nargs = sysent[tcp->scno].nargs; for (i = 0; i < tcp->u_nargs; i++) { if (upeek(tcp, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0) return -1; } } #elif defined(X86_64) { int i; static int argreg[SUPPORTED_PERSONALITIES][MAX_ARGS] = { {RDI,RSI,RDX,R10,R8,R9}, /* x86-64 ABI */ {RBX,RCX,RDX,RSI,RDI,RBP} /* i386 ABI */ }; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) { if (upeek(tcp, argreg[current_personality][i]*8, &tcp->u_arg[i]) < 0) return -1; } } #elif defined(CRISV10) || defined(CRISV32) { int i; static const int crisregs[] = { 4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12, 4*PT_R13, 4*PT_MOF, 4*PT_SRP }; if (tcp->scno >= 0 && tcp->scno < nsyscalls) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = 0; for (i = 0; i < tcp->u_nargs; i++) { if (upeek(tcp->pid, crisregs[i], &tcp->u_arg[i]) < 0) return -1; } } #else /* Other architecture (like i386) (32bits specific) */ { int i; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) { if (upeek(tcp, i*4, &tcp->u_arg[i]) < 0) return -1; } } #endif #endif /* LINUX */ #ifdef SUNOS4 { int i; if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = MAX_ARGS; for (i = 0; i < tcp->u_nargs; i++) { struct user *u; if (upeek(tcp, uoff(u_arg[0]) + (i*sizeof(u->u_arg[0])), &tcp->u_arg[i]) < 0) return -1; } } #endif /* SUNOS4 */ #ifdef SVR4 #ifdef MIPS /* * SGI is broken: even though it has pr_sysarg, it doesn't * set them on system call entry. Get a clue. */ if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = tcp->status.pr_nsysarg; if (tcp->u_nargs > 4) { memcpy(tcp->u_arg, &tcp->status.pr_reg[CTX_A0], 4*sizeof(tcp->u_arg[0])); umoven(tcp, tcp->status.pr_reg[CTX_SP] + 16, (tcp->u_nargs - 4)*sizeof(tcp->u_arg[0]), (char *) (tcp->u_arg + 4)); } else { memcpy(tcp->u_arg, &tcp->status.pr_reg[CTX_A0], tcp->u_nargs*sizeof(tcp->u_arg[0])); } #elif UNIXWARE >= 2 /* * Like SGI, UnixWare doesn't set pr_sysarg until system call exit */ if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = tcp->status.pr_lwp.pr_nsysarg; umoven(tcp, tcp->status.PR_REG[UESP] + 4, tcp->u_nargs*sizeof(tcp->u_arg[0]), (char *) tcp->u_arg); #elif defined (HAVE_PR_SYSCALL) if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = tcp->status.pr_nsysarg; { int i; for (i = 0; i < tcp->u_nargs; i++) tcp->u_arg[i] = tcp->status.pr_sysarg[i]; } #elif defined (I386) if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs != -1) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = 5; umoven(tcp, tcp->status.PR_REG[UESP] + 4, tcp->u_nargs*sizeof(tcp->u_arg[0]), (char *) tcp->u_arg); #else I DONT KNOW WHAT TO DO #endif /* !HAVE_PR_SYSCALL */ #endif /* SVR4 */ #ifdef FREEBSD if (tcp->scno >= 0 && tcp->scno < nsyscalls && sysent[tcp->scno].nargs > tcp->status.val) tcp->u_nargs = sysent[tcp->scno].nargs; else tcp->u_nargs = tcp->status.val; if (tcp->u_nargs < 0) tcp->u_nargs = 0; if (tcp->u_nargs > MAX_ARGS) tcp->u_nargs = MAX_ARGS; switch(regs.r_eax) { case SYS___syscall: pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long), regs.r_esp + sizeof(int) + sizeof(quad_t)); break; case SYS_syscall: pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long), regs.r_esp + 2 * sizeof(int)); break; default: pread(tcp->pfd, &tcp->u_arg, tcp->u_nargs * sizeof(unsigned long), regs.r_esp + sizeof(int)); break; } #endif /* FREEBSD */ return 1; } int trace_syscall(struct tcb *tcp) { int sys_res; struct timeval tv; int res, scno_good; if (tcp->flags & TCB_INSYSCALL) { long u_error; /* Measure the exit time as early as possible to avoid errors. */ if (dtime) gettimeofday(&tv, NULL); /* In code below, * res = 1: no error, continue * res = 0: return 0 at once (not an error) * any other value: error, complain and return the value * * BTW, why we don't just memorize syscall no. on entry * in tcp->something? */ scno_good = res = get_scno(tcp); if (res == 0) return res; if (res == 1) res = syscall_fixup(tcp); if (res == 0) return res; if (res == 1) res = get_error(tcp); if (res == 0) return res; if (res == 1) internal_syscall(tcp); if (res == 1 && tcp->scno >= 0 && tcp->scno < nsyscalls && !(qual_flags[tcp->scno] & QUAL_TRACE)) { tcp->flags &= ~TCB_INSYSCALL; return 0; } if (tcp->flags & TCB_REPRINT) { printleader(tcp); if (scno_good != 1) { tprintf("<... syscall_?? resumed> "); } else { if (tcp->scno >= nsyscalls || tcp->scno < 0) tprintf("<... syscall_%lu resumed> ", tcp->scno); else tprintf("<... %s resumed> ", sysent[tcp->scno].sys_name); } /* [do we need to clear TCB_REPRINT?...] */ } if (cflag) return count_syscall(tcp, &tv); if (res != 1) { tprintf(") "); tabto(acolumn); tprintf("= ?"); /* line will be finished by error handling code */ tcp->flags &= ~TCB_INSYSCALL; return res; } if (tcp->scno >= nsyscalls || tcp->scno < 0 || (qual_flags[tcp->scno] & QUAL_RAW)) sys_res = printargs(tcp); else { if (not_failing_only && tcp->u_error) return 0; /* ignore failed syscalls */ sys_res = (*sysent[tcp->scno].sys_func)(tcp); } u_error = tcp->u_error; tprintf(") "); tabto(acolumn); if (tcp->scno >= nsyscalls || tcp->scno < 0 || qual_flags[tcp->scno] & QUAL_RAW) { if (u_error) tprintf("= -1 (errno %ld)", u_error); else tprintf("= %#lx", tcp->u_rval); } else if (!(sys_res & RVAL_NONE) && u_error) { switch (u_error) { #ifdef LINUX case ERESTARTSYS: tprintf("= ? ERESTARTSYS (To be restarted)"); break; case ERESTARTNOINTR: tprintf("= ? ERESTARTNOINTR (To be restarted)"); break; case ERESTARTNOHAND: tprintf("= ? ERESTARTNOHAND (To be restarted)"); break; case ERESTART_RESTARTBLOCK: tprintf("= ? ERESTART_RESTARTBLOCK (To be restarted)"); break; #endif /* LINUX */ default: tprintf("= -1 "); if (u_error < 0) tprintf("E??? (errno %ld)", u_error); else if (u_error < nerrnos) tprintf("%s (%s)", errnoent[u_error], strerror(u_error)); else tprintf("ERRNO_%ld (%s)", u_error, strerror(u_error)); break; } if ((sys_res & RVAL_STR) && tcp->auxstr) tprintf(" (%s)", tcp->auxstr); } else { if (sys_res & RVAL_NONE) tprintf("= ?"); else { switch (sys_res & RVAL_MASK) { case RVAL_HEX: tprintf("= %#lx", tcp->u_rval); break; case RVAL_OCTAL: tprintf("= %#lo", tcp->u_rval); break; case RVAL_UDECIMAL: tprintf("= %lu", tcp->u_rval); break; case RVAL_DECIMAL: tprintf("= %ld", tcp->u_rval); break; #ifdef HAVE_LONG_LONG case RVAL_LHEX: tprintf("= %#llx", tcp->u_lrval); break; case RVAL_LOCTAL: tprintf("= %#llo", tcp->u_lrval); break; case RVAL_LUDECIMAL: tprintf("= %llu", tcp->u_lrval); break; case RVAL_LDECIMAL: tprintf("= %lld", tcp->u_lrval); break; #endif default: fprintf(stderr, "invalid rval format\n"); break; } } if ((sys_res & RVAL_STR) && tcp->auxstr) tprintf(" (%s)", tcp->auxstr); } if (dtime) { tv_sub(&tv, &tv, &tcp->etime); tprintf(" <%ld.%06ld>", (long) tv.tv_sec, (long) tv.tv_usec); } printtrailer(); dumpio(tcp); if (fflush(tcp->outf) == EOF) return -1; tcp->flags &= ~TCB_INSYSCALL; return 0; } /* Entering system call */ scno_good = res = get_scno(tcp); if (res == 0) return res; if (res == 1) res = syscall_fixup(tcp); if (res == 0) return res; if (res == 1) res = syscall_enter(tcp); if (res == 0) return res; if (res != 1) { printleader(tcp); tcp->flags &= ~TCB_REPRINT; /* why? */ tcp_last = tcp; if (scno_good != 1) tprintf("syscall_??" /* anti-trigraph gap */ "("); else if (tcp->scno >= nsyscalls || tcp->scno < 0) tprintf("syscall_%lu(", tcp->scno); else tprintf("%s(", sysent[tcp->scno].sys_name); /* Line will be finished by error handling code. */ tcp->flags |= TCB_INSYSCALL; return res; } switch (known_scno(tcp)) { #ifdef SYS_socket_subcall case SYS_socketcall: decode_subcall(tcp, SYS_socket_subcall, SYS_socket_nsubcalls, deref_style); break; #endif #ifdef SYS_ipc_subcall case SYS_ipc: decode_subcall(tcp, SYS_ipc_subcall, SYS_ipc_nsubcalls, shift_style); break; #endif #ifdef SVR4 #ifdef SYS_pgrpsys_subcall case SYS_pgrpsys: decode_subcall(tcp, SYS_pgrpsys_subcall, SYS_pgrpsys_nsubcalls, shift_style); break; #endif /* SYS_pgrpsys_subcall */ #ifdef SYS_sigcall_subcall case SYS_sigcall: decode_subcall(tcp, SYS_sigcall_subcall, SYS_sigcall_nsubcalls, mask_style); break; #endif /* SYS_sigcall_subcall */ case SYS_msgsys: decode_subcall(tcp, SYS_msgsys_subcall, SYS_msgsys_nsubcalls, shift_style); break; case SYS_shmsys: decode_subcall(tcp, SYS_shmsys_subcall, SYS_shmsys_nsubcalls, shift_style); break; case SYS_semsys: decode_subcall(tcp, SYS_semsys_subcall, SYS_semsys_nsubcalls, shift_style); break; #if 0 /* broken */ case SYS_utssys: decode_subcall(tcp, SYS_utssys_subcall, SYS_utssys_nsubcalls, shift_style); break; #endif case SYS_sysfs: decode_subcall(tcp, SYS_sysfs_subcall, SYS_sysfs_nsubcalls, shift_style); break; case SYS_spcall: decode_subcall(tcp, SYS_spcall_subcall, SYS_spcall_nsubcalls, shift_style); break; #ifdef SYS_context_subcall case SYS_context: decode_subcall(tcp, SYS_context_subcall, SYS_context_nsubcalls, shift_style); break; #endif /* SYS_context_subcall */ #ifdef SYS_door_subcall case SYS_door: decode_subcall(tcp, SYS_door_subcall, SYS_door_nsubcalls, door_style); break; #endif /* SYS_door_subcall */ #ifdef SYS_kaio_subcall case SYS_kaio: decode_subcall(tcp, SYS_kaio_subcall, SYS_kaio_nsubcalls, shift_style); break; #endif #endif /* SVR4 */ #ifdef FREEBSD case SYS_msgsys: case SYS_shmsys: case SYS_semsys: decode_subcall(tcp, 0, 0, table_style); break; #endif #ifdef SUNOS4 case SYS_semsys: decode_subcall(tcp, SYS_semsys_subcall, SYS_semsys_nsubcalls, shift_style); break; case SYS_msgsys: decode_subcall(tcp, SYS_msgsys_subcall, SYS_msgsys_nsubcalls, shift_style); break; case SYS_shmsys: decode_subcall(tcp, SYS_shmsys_subcall, SYS_shmsys_nsubcalls, shift_style); break; #endif } internal_syscall(tcp); if (tcp->scno >=0 && tcp->scno < nsyscalls && !(qual_flags[tcp->scno] & QUAL_TRACE)) { tcp->flags |= TCB_INSYSCALL; return 0; } if (cflag) { gettimeofday(&tcp->etime, NULL); tcp->flags |= TCB_INSYSCALL; return 0; } printleader(tcp); tcp->flags &= ~TCB_REPRINT; tcp_last = tcp; if (tcp->scno >= nsyscalls || tcp->scno < 0) tprintf("syscall_%lu(", tcp->scno); else tprintf("%s(", sysent[tcp->scno].sys_name); if (tcp->scno >= nsyscalls || tcp->scno < 0 || ((qual_flags[tcp->scno] & QUAL_RAW) && tcp->scno != SYS_exit)) sys_res = printargs(tcp); else sys_res = (*sysent[tcp->scno].sys_func)(tcp); if (fflush(tcp->outf) == EOF) return -1; tcp->flags |= TCB_INSYSCALL; /* Measure the entrance time as late as possible to avoid errors. */ if (dtime) gettimeofday(&tcp->etime, NULL); return sys_res; } int printargs(tcp) struct tcb *tcp; { if (entering(tcp)) { int i; for (i = 0; i < tcp->u_nargs; i++) tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]); } return 0; } long getrval2(tcp) struct tcb *tcp; { long val = -1; #ifdef LINUX #if defined (SPARC) || defined (SPARC64) struct regs regs; if (do_ptrace(PTRACE_GETREGS, tcp, (char *)®s, 0) < 0) return -1; val = regs.r_o1; #elif defined(SH) if (upeek(tcp, 4*(REG_REG0+1), &val) < 0) return -1; #elif defined(IA64) if (upeek(tcp, PT_R9, &val) < 0) return -1; #endif #endif /* LINUX */ #ifdef SUNOS4 if (upeek(tcp, uoff(u_rval2), &val) < 0) return -1; #endif /* SUNOS4 */ #ifdef SVR4 #ifdef SPARC val = tcp->status.PR_REG[R_O1]; #endif /* SPARC */ #ifdef I386 val = tcp->status.PR_REG[EDX]; #endif /* I386 */ #ifdef X86_64 val = tcp->status.PR_REG[RDX]; #endif /* X86_64 */ #ifdef MIPS val = tcp->status.PR_REG[CTX_V1]; #endif /* MIPS */ #endif /* SVR4 */ #ifdef FREEBSD struct reg regs; pread(tcp->pfd_reg, ®s, sizeof(regs), 0); val = regs.r_edx; #endif return val; } #ifdef SUNOS4 /* * Apparently, indirect system calls have already be converted by ptrace(2), * so if you see "indir" this program has gone astray. */ int sys_indir(tcp) struct tcb *tcp; { int i, scno, nargs; if (entering(tcp)) { if ((scno = tcp->u_arg[0]) > nsyscalls) { fprintf(stderr, "Bogus syscall: %u\n", scno); return 0; } nargs = sysent[scno].nargs; tprintf("%s", sysent[scno].sys_name); for (i = 0; i < nargs; i++) tprintf(", %#lx", tcp->u_arg[i+1]); } return 0; } #endif /* SUNOS4 */ int is_restart_error(struct tcb *tcp) { #ifdef LINUX if (!syserror(tcp)) return 0; switch (tcp->u_error) { case ERESTARTSYS: case ERESTARTNOINTR: case ERESTARTNOHAND: case ERESTART_RESTARTBLOCK: return 1; default: break; } #endif /* LINUX */ return 0; }