/* * Copyright (c) 1991, 1992 Paul Kranenburg * Copyright (c) 1993 Branko Lankester * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey * Copyright (c) 1996-1999 Wichert Akkerman * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Linux for s390 port by D.J. Barrow * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "defs.h" #include "native_defs.h" #include #include /* for struct iovec */ #include #include "regs.h" #include "ptrace.h" #if defined(SPARC64) # undef PTRACE_GETREGS # define PTRACE_GETREGS PTRACE_GETREGS64 # undef PTRACE_SETREGS # define PTRACE_SETREGS PTRACE_SETREGS64 #endif #if defined SPARC64 # include #elif defined SPARC # include #endif #ifdef IA64 # include #endif #ifndef NT_PRSTATUS # define NT_PRSTATUS 1 #endif #ifndef NSIG # warning: NSIG is not defined, using 32 # define NSIG 32 #endif #include "syscall.h" /* Define these shorthand notations to simplify the syscallent files. */ #define TD TRACE_DESC #define TF TRACE_FILE #define TI TRACE_IPC #define TN TRACE_NETWORK #define TP TRACE_PROCESS #define TS TRACE_SIGNAL #define TM TRACE_MEMORY #define NF SYSCALL_NEVER_FAILS #define MA MAX_ARGS #define SI STACKTRACE_INVALIDATE_CACHE #define SE STACKTRACE_CAPTURE_ON_ENTER #define SEN(syscall_name) SEN_ ## syscall_name, SYS_FUNC_NAME(sys_ ## syscall_name) const struct_sysent sysent0[] = { #include "syscallent.h" }; #if SUPPORTED_PERSONALITIES > 1 # include PERSONALITY1_INCLUDE_FUNCS static const struct_sysent sysent1[] = { # include "syscallent1.h" }; #endif #if SUPPORTED_PERSONALITIES > 2 # include PERSONALITY2_INCLUDE_FUNCS static const struct_sysent sysent2[] = { # include "syscallent2.h" }; #endif /* Now undef them since short defines cause wicked namespace pollution. */ #undef SEN #undef TD #undef TF #undef TI #undef TN #undef TP #undef TS #undef TM #undef NF #undef MA #undef SI #undef SE /* * `ioctlent[012].h' files are automatically generated by the auxiliary * program `ioctlsort', such that the list is sorted by the `code' field. * This has the side-effect of resolving the _IO.. macros into * plain integers, eliminating the need to include here everything * in "/usr/include". */ const char *const errnoent0[] = { #include "errnoent.h" }; const char *const signalent0[] = { #include "signalent.h" }; const struct_ioctlent ioctlent0[] = { #include "ioctlent0.h" }; #if SUPPORTED_PERSONALITIES > 1 static const char *const errnoent1[] = { # include "errnoent1.h" }; static const char *const signalent1[] = { # include "signalent1.h" }; static const struct_ioctlent ioctlent1[] = { # include "ioctlent1.h" }; # include PERSONALITY0_INCLUDE_PRINTERS_DECLS static const struct_printers printers0 = { # include PERSONALITY0_INCLUDE_PRINTERS_DEFS }; # include PERSONALITY1_INCLUDE_PRINTERS_DECLS static const struct_printers printers1 = { # include PERSONALITY1_INCLUDE_PRINTERS_DEFS }; #endif #if SUPPORTED_PERSONALITIES > 2 static const char *const errnoent2[] = { # include "errnoent2.h" }; static const char *const signalent2[] = { # include "signalent2.h" }; static const struct_ioctlent ioctlent2[] = { # include "ioctlent2.h" }; # include PERSONALITY2_INCLUDE_PRINTERS_DECLS static const struct_printers printers2 = { # include PERSONALITY2_INCLUDE_PRINTERS_DEFS }; #endif enum { nsyscalls0 = ARRAY_SIZE(sysent0) #if SUPPORTED_PERSONALITIES > 1 , nsyscalls1 = ARRAY_SIZE(sysent1) # if SUPPORTED_PERSONALITIES > 2 , nsyscalls2 = ARRAY_SIZE(sysent2) # endif #endif }; enum { nerrnos0 = ARRAY_SIZE(errnoent0) #if SUPPORTED_PERSONALITIES > 1 , nerrnos1 = ARRAY_SIZE(errnoent1) # if SUPPORTED_PERSONALITIES > 2 , nerrnos2 = ARRAY_SIZE(errnoent2) # endif #endif }; enum { nsignals0 = ARRAY_SIZE(signalent0) #if SUPPORTED_PERSONALITIES > 1 , nsignals1 = ARRAY_SIZE(signalent1) # if SUPPORTED_PERSONALITIES > 2 , nsignals2 = ARRAY_SIZE(signalent2) # endif #endif }; enum { nioctlents0 = ARRAY_SIZE(ioctlent0) #if SUPPORTED_PERSONALITIES > 1 , nioctlents1 = ARRAY_SIZE(ioctlent1) # if SUPPORTED_PERSONALITIES > 2 , nioctlents2 = ARRAY_SIZE(ioctlent2) # endif #endif }; #if SUPPORTED_PERSONALITIES > 1 const struct_sysent *sysent = sysent0; const char *const *errnoent = errnoent0; const char *const *signalent = signalent0; const struct_ioctlent *ioctlent = ioctlent0; const struct_printers *printers = &printers0; #endif unsigned nsyscalls = nsyscalls0; unsigned nerrnos = nerrnos0; unsigned nsignals = nsignals0; unsigned nioctlents = nioctlents0; unsigned num_quals; qualbits_t *qual_vec[SUPPORTED_PERSONALITIES]; static const unsigned nsyscall_vec[SUPPORTED_PERSONALITIES] = { nsyscalls0, #if SUPPORTED_PERSONALITIES > 1 nsyscalls1, #endif #if SUPPORTED_PERSONALITIES > 2 nsyscalls2, #endif }; static const struct_sysent *const sysent_vec[SUPPORTED_PERSONALITIES] = { sysent0, #if SUPPORTED_PERSONALITIES > 1 sysent1, #endif #if SUPPORTED_PERSONALITIES > 2 sysent2, #endif }; enum { MAX_NSYSCALLS1 = (nsyscalls0 #if SUPPORTED_PERSONALITIES > 1 > nsyscalls1 ? nsyscalls0 : nsyscalls1 #endif ), MAX_NSYSCALLS2 = (MAX_NSYSCALLS1 #if SUPPORTED_PERSONALITIES > 2 > nsyscalls2 ? MAX_NSYSCALLS1 : nsyscalls2 #endif ), MAX_NSYSCALLS = MAX_NSYSCALLS2, /* We are ready for arches with up to 255 signals, * even though the largest known signo is on MIPS and it is 128. * The number of existing syscalls on all arches is * larger that 255 anyway, so it is just a pedantic matter. */ MIN_QUALS = MAX_NSYSCALLS > 255 ? MAX_NSYSCALLS : 255 }; #if SUPPORTED_PERSONALITIES > 1 unsigned current_personality; # ifndef current_wordsize unsigned current_wordsize; static const int personality_wordsize[SUPPORTED_PERSONALITIES] = { PERSONALITY0_WORDSIZE, PERSONALITY1_WORDSIZE, # if SUPPORTED_PERSONALITIES > 2 PERSONALITY2_WORDSIZE, # endif }; # endif void set_personality(int personality) { nsyscalls = nsyscall_vec[personality]; sysent = sysent_vec[personality]; switch (personality) { case 0: errnoent = errnoent0; nerrnos = nerrnos0; ioctlent = ioctlent0; nioctlents = nioctlents0; signalent = signalent0; nsignals = nsignals0; printers = &printers0; break; case 1: errnoent = errnoent1; nerrnos = nerrnos1; ioctlent = ioctlent1; nioctlents = nioctlents1; signalent = signalent1; nsignals = nsignals1; printers = &printers1; break; # if SUPPORTED_PERSONALITIES > 2 case 2: errnoent = errnoent2; nerrnos = nerrnos2; ioctlent = ioctlent2; nioctlents = nioctlents2; signalent = signalent2; nsignals = nsignals2; printers = &printers2; break; # endif } current_personality = personality; # ifndef current_wordsize current_wordsize = personality_wordsize[personality]; # endif } static void update_personality(struct tcb *tcp, unsigned int personality) { if (personality == current_personality) return; set_personality(personality); if (personality == tcp->currpers) return; tcp->currpers = personality; # undef PERSONALITY_NAMES # if defined POWERPC64 # define PERSONALITY_NAMES {"64 bit", "32 bit"} # elif defined X86_64 # define PERSONALITY_NAMES {"64 bit", "32 bit", "x32"} # elif defined X32 # define PERSONALITY_NAMES {"x32", "32 bit"} # elif defined AARCH64 # define PERSONALITY_NAMES {"64 bit", "32 bit"} # elif defined TILE # define PERSONALITY_NAMES {"64-bit", "32-bit"} # endif # ifdef PERSONALITY_NAMES if (!qflag) { static const char *const names[] = PERSONALITY_NAMES; error_msg("[ Process PID=%d runs in %s mode. ]", tcp->pid, names[personality]); } # endif } #endif static int qual_desc(const char *, unsigned int, int); static int qual_fault(const char *, unsigned int, int); static int qual_signal(const char *, unsigned int, int); static int qual_syscall(const char *, unsigned int, int); static const struct qual_options { unsigned int bitflag; const char *option_name; int (*qualify)(const char *, unsigned int, int); const char *argument_name; } qual_options[] = { { QUAL_TRACE, "trace", qual_syscall, "system call" }, { QUAL_TRACE, "t", qual_syscall, "system call" }, { QUAL_ABBREV, "abbrev", qual_syscall, "system call" }, { QUAL_ABBREV, "a", qual_syscall, "system call" }, { QUAL_VERBOSE, "verbose", qual_syscall, "system call" }, { QUAL_VERBOSE, "v", qual_syscall, "system call" }, { QUAL_RAW, "raw", qual_syscall, "system call" }, { QUAL_RAW, "x", qual_syscall, "system call" }, { QUAL_SIGNAL, "signal", qual_signal, "signal" }, { QUAL_SIGNAL, "signals", qual_signal, "signal" }, { QUAL_SIGNAL, "s", qual_signal, "signal" }, { QUAL_READ, "read", qual_desc, "descriptor" }, { QUAL_READ, "reads", qual_desc, "descriptor" }, { QUAL_READ, "r", qual_desc, "descriptor" }, { QUAL_WRITE, "write", qual_desc, "descriptor" }, { QUAL_WRITE, "writes", qual_desc, "descriptor" }, { QUAL_WRITE, "w", qual_desc, "descriptor" }, { QUAL_FAULT, "fault", qual_fault, "fault argument"}, { 0, NULL, NULL, NULL }, }; static void reallocate_vec(void **vec, unsigned int old_nmemb, size_t size, unsigned int new_nmemb) { unsigned int p; for (p = 0; p < SUPPORTED_PERSONALITIES; ++p) { vec[p] = xreallocarray(vec[p], new_nmemb, size); memset(vec[p] + size * old_nmemb, 0, (new_nmemb - old_nmemb) * size); } } static void reallocate_qual(const unsigned int n) { reallocate_vec((void **) qual_vec, num_quals, sizeof(qualbits_t), n); num_quals = n; } struct fault_opts { uint16_t first; uint16_t step; uint16_t err; }; static unsigned int num_faults; static struct fault_opts *fault_vec[SUPPORTED_PERSONALITIES]; static inline void reallocate_fault(const unsigned int n) { reallocate_vec((void **) fault_vec, num_faults, sizeof(struct fault_opts), n); num_faults = n; } static void qualify_one(const unsigned int n, unsigned int bitflag, const int not, const int pers, const struct fault_opts *fopts) { int p; if (num_quals <= n) { reallocate_qual(n + 1); reallocate_fault(n + 1); } for (p = 0; p < SUPPORTED_PERSONALITIES; p++) { if (pers == p || pers < 0) { if (not) qual_vec[p][n] &= ~bitflag; else { qual_vec[p][n] |= bitflag; if (fopts) memcpy(&fault_vec[p][n], fopts, sizeof(*fopts)); } } } } static bool qualify_scno(const char *const s, const unsigned int bitflag, const int not, const struct fault_opts *const fopts) { int n = string_to_uint_upto(s, MAX_NSYSCALLS - 1); if (n < 0) return false; if (not && fopts) { /* set bitflag for all syscall numbers except n */ unsigned int p; for (p = 0; p < SUPPORTED_PERSONALITIES; ++p) { unsigned int i; for (i = 0; i < nsyscall_vec[p]; ++i) { if (i != (unsigned int) n && sysent_vec[p][i].sys_name) { qualify_one(i, bitflag, 0, p, fopts); } } } } else { qualify_one(n, bitflag, not, -1, fopts); } return true; } static int lookup_class(const char *s) { if (strcmp(s, "all") == 0) return 0; if (strcmp(s, "file") == 0) return TRACE_FILE; if (strcmp(s, "ipc") == 0) return TRACE_IPC; if (strcmp(s, "network") == 0) return TRACE_NETWORK; if (strcmp(s, "process") == 0) return TRACE_PROCESS; if (strcmp(s, "signal") == 0) return TRACE_SIGNAL; if (strcmp(s, "desc") == 0) return TRACE_DESC; if (strcmp(s, "memory") == 0) return TRACE_MEMORY; return -1; } static bool qualify_syscall_class(const char *const s, const unsigned int bitflag, const int not, const struct fault_opts *const fopts) { unsigned int p; const int n = lookup_class(s); if (n < 0) return false; for (p = 0; p < SUPPORTED_PERSONALITIES; ++p) { unsigned int i; for (i = 0; i < nsyscall_vec[p]; ++i) { if (!sysent_vec[p][i].sys_name) continue; const bool match = (sysent_vec[p][i].sys_flags & n) == n; if (match ^ (not && fopts)) { qualify_one(i, bitflag, not && !fopts, p, fopts); } } } return true; } static bool qualify_syscall_name(const char *const s, const unsigned int bitflag, const int not, const struct fault_opts *const fopts) { bool found = false; unsigned int p; for (p = 0; p < SUPPORTED_PERSONALITIES; ++p) { unsigned int i; for (i = 0; i < nsyscall_vec[p]; ++i) { if (!sysent_vec[p][i].sys_name) continue; const bool match = !strcmp(s, sysent_vec[p][i].sys_name); found = found || match; if (match ^ (not && fopts)) { qualify_one(i, bitflag, not && !fopts, p, fopts); } } } return found; } static int qual_syscall_ex(const char *const s, const unsigned int bitflag, const int not, const struct fault_opts *const fopts) { if (qualify_scno(s, bitflag, not, fopts) || qualify_syscall_class(s, bitflag, not, fopts) || qualify_syscall_name(s, bitflag, not, fopts)) { return 0; } return -1; } static int qual_syscall(const char *const s, const unsigned int bitflag, const int not) { return qual_syscall_ex(s, bitflag, not, NULL); } /* * Returns NULL if STR does not start with PREFIX, * or a pointer to the first char in STR after PREFIX. */ static const char * strip_prefix(const char *prefix, const char *str) { size_t len = strlen(prefix); return strncmp(prefix, str, len) ? NULL : str + len; } static int find_errno_by_name(const char *name) { unsigned int i; for (i = 1; i < nerrnos; ++i) { if (errnoent[i] && (strcmp(name, errnoent[i]) == 0)) return i; } return -1; } static bool parse_fault_token(const char *const token, struct fault_opts *const fopts) { const char *val; int intval; if ((val = strip_prefix("when=", token))) { /* * == 1+1 * F == F+0 * F+ == F+1 * F+S */ char *end; intval = string_to_uint_ex(val, &end, 0xffff, "+"); if (intval < 1) return false; fopts->first = intval; if (*end) { val = end + 1; if (*val) { /* F+S */ intval = string_to_uint_upto(val, 0xffff); if (intval < 1) return false; fopts->step = intval; } else { /* F+ == F+1 */ fopts->step = 1; } } else { /* F == F+0 */ fopts->step = 0; } } else if ((val = strip_prefix("error=", token))) { intval = string_to_uint_upto(val, 4095); if (intval < 0) intval = find_errno_by_name(val); if (intval < 1) return false; fopts->err = intval; } else { return false; } return true; } static char * parse_fault_expression(const char *const s, char **buf, struct fault_opts *const fopts) { char *saveptr = NULL; char *name = NULL; char *token; *buf = xstrdup(s); for (token = strtok_r(*buf, ":", &saveptr); token; token = strtok_r(NULL, ":", &saveptr)) { if (!name) name = token; else if (!parse_fault_token(token, fopts)) goto parse_error; } if (name) return name; parse_error: free(*buf); return *buf = NULL; } static int qual_fault(const char *const s, const unsigned int bitflag, const int not) { struct fault_opts opts = { .first = 1, .step = 1, .err = 0 }; char *buf = NULL; char *name = parse_fault_expression(s, &buf, &opts); char *saveptr = NULL; const char *token; int rc = -1; if (!name) return -1; for (token = strtok_r(name, ",", &saveptr); token; token = strtok_r(NULL, ",", &saveptr)) { rc = qual_syscall_ex(token, bitflag, not, &opts); if (rc) break; } free(buf); return rc; } static int qual_signal(const char *s, const unsigned int bitflag, const int not) { int i; if (*s >= '0' && *s <= '9') { i = string_to_uint_upto(s, 255); if (i < 0) return -1; qualify_one(i, bitflag, not, -1, NULL); return 0; } if (strncasecmp(s, "SIG", 3) == 0) s += 3; for (i = 0; i <= NSIG; ++i) { const char *name = signame(i); if (strncasecmp(name, "SIG", 3) != 0) continue; name += 3; if (strcasecmp(name, s) != 0) continue; qualify_one(i, bitflag, not, -1, NULL); return 0; } return -1; } static int qual_desc(const char *s, const unsigned int bitflag, const int not) { int desc = string_to_uint_upto(s, 0x7fff); if (desc < 0) return -1; qualify_one(desc, bitflag, not, -1, NULL); return 0; } void qualify(const char *s) { const struct qual_options *opt; char *copy; const char *p; int not; unsigned int i; if (num_quals == 0) { reallocate_qual(MIN_QUALS); reallocate_fault(MIN_QUALS); } opt = &qual_options[0]; for (i = 0; (p = qual_options[i].option_name); i++) { unsigned int len = strlen(p); if (strncmp(s, p, len) == 0 && s[len] == '=') { opt = &qual_options[i]; s += len + 1; break; } } not = 0; if (*s == '!') { not = 1; s++; } if (strcmp(s, "none") == 0) { not = 1 - not; s = "all"; } if (opt->bitflag == QUAL_FAULT) { if (opt->qualify(s, opt->bitflag, not)) { error_msg_and_die("invalid %s '%s'", opt->argument_name, s); } return; } if (strcmp(s, "all") == 0) { for (i = 0; i < num_quals; ++i) { qualify_one(i, opt->bitflag, not, -1, NULL); } return; } for (i = 0; i < num_quals; ++i) { qualify_one(i, opt->bitflag, !not, -1, NULL); } copy = xstrdup(s); for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) { if (opt->qualify(p, opt->bitflag, not)) { error_msg_and_die("invalid %s '%s'", opt->argument_name, p); } } free(copy); return; } #ifdef SYS_socket_subcall static void decode_socket_subcall(struct tcb *tcp) { const int call = tcp->u_arg[0]; if (call < 1 || call >= SYS_socket_nsubcalls) return; const unsigned long scno = SYS_socket_subcall + call; const unsigned int nargs = sysent[scno].nargs; uint64_t buf[nargs]; if (umoven(tcp, tcp->u_arg[1], nargs * current_wordsize, buf) < 0) return; tcp->scno = scno; tcp->qual_flg = qual_flags[scno]; tcp->s_ent = &sysent[scno]; unsigned int i; for (i = 0; i < nargs; ++i) tcp->u_arg[i] = (sizeof(uint32_t) == current_wordsize) ? ((uint32_t *) (void *) buf)[i] : buf[i]; } #endif #ifdef SYS_ipc_subcall static void decode_ipc_subcall(struct tcb *tcp) { unsigned int call = tcp->u_arg[0]; const unsigned int version = call >> 16; if (version) { # if defined S390 || defined S390X return; # else # ifdef SPARC64 if (current_wordsize == 8) return; # endif set_tcb_priv_ulong(tcp, version); call &= 0xffff; # endif } switch (call) { case 1: case 2: case 3: case 4: case 11: case 12: case 13: case 14: case 21: case 22: case 23: case 24: break; default: return; } tcp->scno = SYS_ipc_subcall + call; tcp->qual_flg = qual_flags[tcp->scno]; tcp->s_ent = &sysent[tcp->scno]; const unsigned int n = tcp->s_ent->nargs; unsigned int i; for (i = 0; i < n; i++) tcp->u_arg[i] = tcp->u_arg[i + 1]; } #endif #ifdef LINUX_MIPSO32 static void decode_mips_subcall(struct tcb *tcp) { if (!SCNO_IS_VALID(tcp->u_arg[0])) return; tcp->scno = tcp->u_arg[0]; tcp->qual_flg = qual_flags[tcp->scno]; tcp->s_ent = &sysent[tcp->scno]; memmove(&tcp->u_arg[0], &tcp->u_arg[1], sizeof(tcp->u_arg) - sizeof(tcp->u_arg[0])); /* * Fetching the last arg of 7-arg syscalls (fadvise64_64 * and sync_file_range) requires additional code, * see linux/mips/get_syscall_args.c */ if (tcp->s_ent->nargs == MAX_ARGS) { if (umoven(tcp, mips_REG_SP + MAX_ARGS * sizeof(tcp->u_arg[0]), sizeof(tcp->u_arg[0]), &tcp->u_arg[MAX_ARGS - 1]) < 0) tcp->u_arg[MAX_ARGS - 1] = 0; } } #endif /* LINUX_MIPSO32 */ static void dumpio(struct tcb *tcp) { if (syserror(tcp)) return; int fd = tcp->u_arg[0]; if (fd < 0 || (unsigned int) fd >= num_quals) return; if (qual_flags[fd] & QUAL_READ) { switch (tcp->s_ent->sen) { case SEN_read: case SEN_pread: case SEN_recv: case SEN_recvfrom: case SEN_mq_timedreceive: dumpstr(tcp, tcp->u_arg[1], tcp->u_rval); return; case SEN_readv: case SEN_preadv: case SEN_preadv2: dumpiov_upto(tcp, tcp->u_arg[2], tcp->u_arg[1], tcp->u_rval); return; case SEN_recvmsg: dumpiov_in_msghdr(tcp, tcp->u_arg[1], tcp->u_rval); return; case SEN_recvmmsg: dumpiov_in_mmsghdr(tcp, tcp->u_arg[1]); return; } } if (qual_flags[fd] & QUAL_WRITE) { switch (tcp->s_ent->sen) { case SEN_write: case SEN_pwrite: case SEN_send: case SEN_sendto: case SEN_mq_timedsend: dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]); break; case SEN_writev: case SEN_pwritev: case SEN_pwritev2: case SEN_vmsplice: dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); break; case SEN_sendmsg: dumpiov_in_msghdr(tcp, tcp->u_arg[1], (unsigned long) -1L); break; case SEN_sendmmsg: dumpiov_in_mmsghdr(tcp, tcp->u_arg[1]); break; } } } /* * Shuffle syscall numbers so that we don't have huge gaps in syscall table. * The shuffling should be an involution: shuffle_scno(shuffle_scno(n)) == n. */ #if defined(ARM) || defined(AARCH64) /* So far only 32-bit ARM needs this */ static long shuffle_scno(unsigned long scno) { if (scno < ARM_FIRST_SHUFFLED_SYSCALL) return scno; /* __ARM_NR_cmpxchg? Swap with LAST_ORDINARY+1 */ if (scno == ARM_FIRST_SHUFFLED_SYSCALL) return 0x000ffff0; if (scno == 0x000ffff0) return ARM_FIRST_SHUFFLED_SYSCALL; #define ARM_SECOND_SHUFFLED_SYSCALL (ARM_FIRST_SHUFFLED_SYSCALL + 1) /* * Is it ARM specific syscall? * Swap [0x000f0000, 0x000f0000 + LAST_SPECIAL] range * with [SECOND_SHUFFLED, SECOND_SHUFFLED + LAST_SPECIAL] range. */ if (scno >= 0x000f0000 && scno <= 0x000f0000 + ARM_LAST_SPECIAL_SYSCALL) { return scno - 0x000f0000 + ARM_SECOND_SHUFFLED_SYSCALL; } if (scno <= ARM_SECOND_SHUFFLED_SYSCALL + ARM_LAST_SPECIAL_SYSCALL) { return scno + 0x000f0000 - ARM_SECOND_SHUFFLED_SYSCALL; } return scno; } #else # define shuffle_scno(scno) ((long)(scno)) #endif const char * syscall_name(long scno) { return SCNO_IS_VALID(scno) ? sysent[scno].sys_name: NULL; } const char * err_name(unsigned long err) { if ((err < nerrnos) && errnoent[err]) return errnoent[err]; return NULL; } static long get_regs_error; void clear_regs(void) { get_regs_error = -1; } static int get_syscall_args(struct tcb *); static int get_syscall_result(struct tcb *); static int arch_get_scno(struct tcb *tcp); static int arch_set_scno(struct tcb *, long); static void get_error(struct tcb *, const bool); static int arch_set_error(struct tcb *); static struct fault_opts * tcb_fault_opts(struct tcb *tcp) { return (SCNO_IN_RANGE(tcp->scno) && tcp->fault_vec[current_personality]) ? &tcp->fault_vec[current_personality][tcp->scno] : NULL; } static long inject_syscall_fault_entering(struct tcb *tcp) { if (!tcp->fault_vec[current_personality]) { tcp->fault_vec[current_personality] = xreallocarray(NULL, num_faults, sizeof(struct fault_opts)); memcpy(tcp->fault_vec[current_personality], fault_vec[current_personality], num_faults * sizeof(struct fault_opts)); } struct fault_opts *opts = tcb_fault_opts(tcp); if (opts->first == 0) return 0; --opts->first; if (opts->first != 0) return 0; opts->first = opts->step; if (!arch_set_scno(tcp, -1)) tcp->flags |= TCB_FAULT_INJ; return 0; } static long update_syscall_fault_exiting(struct tcb *tcp) { struct fault_opts *opts = tcb_fault_opts(tcp); if (opts && opts->err && tcp->u_error != opts->err) { unsigned long u_error = tcp->u_error; tcp->u_error = opts->err; if (arch_set_error(tcp)) tcp->u_error = u_error; } return 0; } static int trace_syscall_entering(struct tcb *tcp) { int res, scno_good; scno_good = res = get_scno(tcp); if (res == 0) return res; if (res == 1) res = get_syscall_args(tcp); if (res != 1) { printleader(tcp); tprintf("%s(", scno_good == 1 ? tcp->s_ent->sys_name : "????"); /* * " " will be added later by the code which * detects ptrace errors. */ goto ret; } #ifdef LINUX_MIPSO32 if (SEN_syscall == tcp->s_ent->sen) decode_mips_subcall(tcp); #endif #if defined(SYS_socket_subcall) || defined(SYS_ipc_subcall) switch (tcp->s_ent->sen) { # ifdef SYS_socket_subcall case SEN_socketcall: decode_socket_subcall(tcp); break; # endif # ifdef SYS_ipc_subcall case SEN_ipc: decode_ipc_subcall(tcp); break; # endif } #endif /* Restrain from fault injection while the trace executes strace code. */ if (hide_log(tcp)) { tcp->qual_flg &= ~QUAL_FAULT; } switch (tcp->s_ent->sen) { case SEN_execve: case SEN_execveat: #if defined SPARC || defined SPARC64 case SEN_execv: #endif tcp->flags &= ~TCB_HIDE_LOG; break; } if (!(tcp->qual_flg & QUAL_TRACE) || (tracing_paths && !pathtrace_match(tcp)) ) { tcp->flags |= TCB_INSYSCALL | TCB_FILTERED; tcp->sys_func_rval = 0; return 0; } tcp->flags &= ~TCB_FILTERED; if (hide_log(tcp)) { res = 0; goto ret; } if (tcp->qual_flg & QUAL_FAULT) inject_syscall_fault_entering(tcp); if (cflag == CFLAG_ONLY_STATS) { res = 0; goto ret; } #ifdef USE_LIBUNWIND if (stack_trace_enabled) { if (tcp->s_ent->sys_flags & STACKTRACE_CAPTURE_ON_ENTER) unwind_capture_stacktrace(tcp); } #endif printleader(tcp); tprintf("%s(", tcp->s_ent->sys_name); if (tcp->qual_flg & QUAL_RAW) res = printargs(tcp); else res = tcp->s_ent->sys_func(tcp); fflush(tcp->outf); ret: tcp->flags |= TCB_INSYSCALL; tcp->sys_func_rval = res; /* Measure the entrance time as late as possible to avoid errors. */ if (Tflag || cflag) gettimeofday(&tcp->etime, NULL); return res; } static bool syscall_fault_injected(struct tcb *tcp) { return tcp->flags & TCB_FAULT_INJ; } static int trace_syscall_exiting(struct tcb *tcp) { int sys_res; struct timeval tv; int res; unsigned long u_error; const char *u_error_str; /* Measure the exit time as early as possible to avoid errors. */ if (Tflag || cflag) gettimeofday(&tv, NULL); #ifdef USE_LIBUNWIND if (stack_trace_enabled) { if (tcp->s_ent->sys_flags & STACKTRACE_INVALIDATE_CACHE) unwind_cache_invalidate(tcp); } #endif #if SUPPORTED_PERSONALITIES > 1 update_personality(tcp, tcp->currpers); #endif res = (get_regs_error ? -1 : get_syscall_result(tcp)); if (filtered(tcp) || hide_log(tcp)) goto ret; if (syserror(tcp) && syscall_fault_injected(tcp)) update_syscall_fault_exiting(tcp); if (cflag) { count_syscall(tcp, &tv); if (cflag == CFLAG_ONLY_STATS) { goto ret; } } /* If not in -ff mode, and printing_tcp != tcp, * then the log currently does not end with output * of _our syscall entry_, but with something else. * We need to say which syscall's return is this. * * Forced reprinting via TCB_REPRINT is used only by * "strace -ff -oLOG test/threaded_execve" corner case. * It's the only case when -ff mode needs reprinting. */ if ((followfork < 2 && printing_tcp != tcp) || (tcp->flags & TCB_REPRINT)) { tcp->flags &= ~TCB_REPRINT; printleader(tcp); tprintf("<... %s resumed> ", tcp->s_ent->sys_name); } printing_tcp = tcp; tcp->s_prev_ent = NULL; if (res != 1) { /* There was error in one of prior ptrace ops */ tprints(") "); tabto(); tprints("= ? \n"); line_ended(); tcp->flags &= ~(TCB_INSYSCALL | TCB_FAULT_INJ); tcp->sys_func_rval = 0; free_tcb_priv_data(tcp); return res; } tcp->s_prev_ent = tcp->s_ent; sys_res = 0; if (tcp->qual_flg & QUAL_RAW) { /* sys_res = printargs(tcp); - but it's nop on sysexit */ } else { /* FIXME: not_failing_only (IOW, option -z) is broken: * failure of syscall is known only after syscall return. * Thus we end up with something like this on, say, ENOENT: * open("doesnt_exist", O_RDONLY * {next syscall decode} * whereas the intended result is that open(...) line * is not shown at all. */ if (not_failing_only && tcp->u_error) goto ret; /* ignore failed syscalls */ if (tcp->sys_func_rval & RVAL_DECODED) sys_res = tcp->sys_func_rval; else sys_res = tcp->s_ent->sys_func(tcp); } tprints(") "); tabto(); u_error = tcp->u_error; if (tcp->qual_flg & QUAL_RAW) { if (u_error) { tprintf("= -1 (errno %lu)", u_error); if (syscall_fault_injected(tcp)) tprints(" (INJECTED)"); } else { tprintf("= %#lx", tcp->u_rval); } } else if (!(sys_res & RVAL_NONE) && u_error) { switch (u_error) { /* Blocked signals do not interrupt any syscalls. * In this case syscalls don't return ERESTARTfoo codes. * * Deadly signals set to SIG_DFL interrupt syscalls * and kill the process regardless of which of the codes below * is returned by the interrupted syscall. * In some cases, kernel forces a kernel-generated deadly * signal to be unblocked and set to SIG_DFL (and thus cause * death) if it is blocked or SIG_IGNed: for example, SIGSEGV * or SIGILL. (The alternative is to leave process spinning * forever on the faulty instruction - not useful). * * SIG_IGNed signals and non-deadly signals set to SIG_DFL * (for example, SIGCHLD, SIGWINCH) interrupt syscalls, * but kernel will always restart them. */ case ERESTARTSYS: /* Most common type of signal-interrupted syscall exit code. * The system call will be restarted with the same arguments * if SA_RESTART is set; otherwise, it will fail with EINTR. */ tprints("= ? ERESTARTSYS (To be restarted if SA_RESTART is set)"); break; case ERESTARTNOINTR: /* Rare. For example, fork() returns this if interrupted. * SA_RESTART is ignored (assumed set): the restart is unconditional. */ tprints("= ? ERESTARTNOINTR (To be restarted)"); break; case ERESTARTNOHAND: /* pause(), rt_sigsuspend() etc use this code. * SA_RESTART is ignored (assumed not set): * syscall won't restart (will return EINTR instead) * even after signal with SA_RESTART set. However, * after SIG_IGN or SIG_DFL signal it will restart * (thus the name "restart only if has no handler"). */ tprints("= ? ERESTARTNOHAND (To be restarted if no handler)"); break; case ERESTART_RESTARTBLOCK: /* Syscalls like nanosleep(), poll() which can't be * restarted with their original arguments use this * code. Kernel will execute restart_syscall() instead, * which changes arguments before restarting syscall. * SA_RESTART is ignored (assumed not set) similarly * to ERESTARTNOHAND. (Kernel can't honor SA_RESTART * since restart data is saved in "restart block" * in task struct, and if signal handler uses a syscall * which in turn saves another such restart block, * old data is lost and restart becomes impossible) */ tprints("= ? ERESTART_RESTARTBLOCK (Interrupted by signal)"); break; default: u_error_str = err_name(u_error); if (u_error_str) tprintf("= -1 %s (%s)", u_error_str, strerror(u_error)); else tprintf("= -1 %lu (%s)", u_error, strerror(u_error)); break; } if (syscall_fault_injected(tcp)) tprintf(" (INJECTED)"); if ((sys_res & RVAL_STR) && tcp->auxstr) tprintf(" (%s)", tcp->auxstr); } else { if (sys_res & RVAL_NONE) tprints("= ?"); else { switch (sys_res & RVAL_MASK) { case RVAL_HEX: #if SUPPORTED_PERSONALITIES > 1 if (current_wordsize < sizeof(long)) tprintf("= %#x", (unsigned int) tcp->u_rval); else #endif tprintf("= %#lx", tcp->u_rval); break; case RVAL_OCTAL: tprints("= "); print_numeric_long_umask(tcp->u_rval); break; case RVAL_UDECIMAL: #if SUPPORTED_PERSONALITIES > 1 if (current_wordsize < sizeof(long)) tprintf("= %u", (unsigned int) tcp->u_rval); else #endif tprintf("= %lu", tcp->u_rval); break; case RVAL_DECIMAL: tprintf("= %ld", tcp->u_rval); break; case RVAL_FD: if (show_fd_path) { tprints("= "); printfd(tcp, tcp->u_rval); } else tprintf("= %ld", tcp->u_rval); break; #if HAVE_STRUCT_TCB_EXT_ARG /* case RVAL_LHEX: tprintf("= %#llx", tcp->u_lrval); break; case RVAL_LOCTAL: tprintf("= %#llo", tcp->u_lrval); break; */ case RVAL_LUDECIMAL: tprintf("= %llu", tcp->u_lrval); break; /* case RVAL_LDECIMAL: tprintf("= %lld", tcp->u_lrval); break; */ #endif /* HAVE_STRUCT_TCB_EXT_ARG */ default: error_msg("invalid rval format"); break; } } if ((sys_res & RVAL_STR) && tcp->auxstr) tprintf(" (%s)", tcp->auxstr); } if (Tflag) { tv_sub(&tv, &tv, &tcp->etime); tprintf(" <%ld.%06ld>", (long) tv.tv_sec, (long) tv.tv_usec); } tprints("\n"); dumpio(tcp); line_ended(); #ifdef USE_LIBUNWIND if (stack_trace_enabled) unwind_print_stacktrace(tcp); #endif ret: tcp->flags &= ~(TCB_INSYSCALL | TCB_FAULT_INJ); tcp->sys_func_rval = 0; free_tcb_priv_data(tcp); return 0; } int trace_syscall(struct tcb *tcp) { return exiting(tcp) ? trace_syscall_exiting(tcp) : trace_syscall_entering(tcp); } bool is_erestart(struct tcb *tcp) { switch (tcp->u_error) { case ERESTARTSYS: case ERESTARTNOINTR: case ERESTARTNOHAND: case ERESTART_RESTARTBLOCK: return true; default: return false; } } static unsigned long saved_u_error; void temporarily_clear_syserror(struct tcb *tcp) { saved_u_error = tcp->u_error; tcp->u_error = 0; } void restore_cleared_syserror(struct tcb *tcp) { tcp->u_error = saved_u_error; } #include "kernel_types.h" /* * Check the syscall return value register value for whether it is * a negated errno code indicating an error, or a success return value. */ static inline bool is_negated_errno(kernel_ulong_t val) { /* Linux kernel defines MAX_ERRNO to 4095. */ kernel_ulong_t max = -(kernel_long_t) 4095; #if defined X86_64 || defined X32 /* * current_wordsize is 4 for x32 personality * but truncation _must not_ be done in it, so * check current_personality instead. */ if (current_personality == 1) { val = (uint32_t) val; max = (uint32_t) max; } #elif SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4 if (current_wordsize < sizeof(val)) { val = (uint32_t) val; max = (uint32_t) max; } #endif return val >= max; } #include "arch_regs.c" #ifdef HAVE_GETRVAL2 # include "arch_getrval2.c" #endif void print_pc(struct tcb *tcp) { #if defined ARCH_PC_REG # define ARCH_GET_PC 0 #elif defined ARCH_PC_PEEK_ADDR long pc; # define ARCH_PC_REG pc # define ARCH_GET_PC upeek(tcp->pid, ARCH_PC_PEEK_ADDR, &pc) #else # error Neither ARCH_PC_REG nor ARCH_PC_PEEK_ADDR is defined #endif if (get_regs_error || ARCH_GET_PC) tprints(current_wordsize == 4 ? "[????????] " : "[????????????????] "); else tprintf(current_wordsize == 4 ? "[%08lx] " : "[%016lx] ", (unsigned long) ARCH_PC_REG); } #include "getregs_old.h" #undef ptrace_getregset_or_getregs #undef ptrace_setregset_or_setregs #ifdef ARCH_REGS_FOR_GETREGSET # define ptrace_getregset_or_getregs ptrace_getregset static long ptrace_getregset(pid_t pid) { # ifdef ARCH_IOVEC_FOR_GETREGSET /* variable iovec */ ARCH_IOVEC_FOR_GETREGSET.iov_len = sizeof(ARCH_REGS_FOR_GETREGSET); return ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &ARCH_IOVEC_FOR_GETREGSET); # else /* constant iovec */ static struct iovec io = { .iov_base = &ARCH_REGS_FOR_GETREGSET, .iov_len = sizeof(ARCH_REGS_FOR_GETREGSET) }; return ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &io); # endif } # ifndef HAVE_GETREGS_OLD # define ptrace_setregset_or_setregs ptrace_setregset static int ptrace_setregset(pid_t pid) { # ifdef ARCH_IOVEC_FOR_GETREGSET /* variable iovec */ return ptrace(PTRACE_SETREGSET, pid, NT_PRSTATUS, &ARCH_IOVEC_FOR_GETREGSET); # else /* constant iovec */ static struct iovec io = { .iov_base = &ARCH_REGS_FOR_GETREGSET, .iov_len = sizeof(ARCH_REGS_FOR_GETREGSET) }; return ptrace(PTRACE_SETREGSET, pid, NT_PRSTATUS, &io); # endif } # endif /* !HAVE_GETREGS_OLD */ #elif defined ARCH_REGS_FOR_GETREGS # define ptrace_getregset_or_getregs ptrace_getregs static long ptrace_getregs(pid_t pid) { # if defined SPARC || defined SPARC64 /* SPARC systems have the meaning of data and addr reversed */ return ptrace(PTRACE_GETREGS, pid, (void *) &ARCH_REGS_FOR_GETREGS, 0); # else return ptrace(PTRACE_GETREGS, pid, NULL, &ARCH_REGS_FOR_GETREGS); # endif } # ifndef HAVE_GETREGS_OLD # define ptrace_setregset_or_setregs ptrace_setregs static int ptrace_setregs(pid_t pid) { # if defined SPARC || defined SPARC64 /* SPARC systems have the meaning of data and addr reversed */ return ptrace(PTRACE_SETREGS, pid, (void *) &ARCH_REGS_FOR_GETREGS, 0); # else return ptrace(PTRACE_SETREGS, pid, NULL, &ARCH_REGS_FOR_GETREGS); # endif } # endif /* !HAVE_GETREGS_OLD */ #endif /* ARCH_REGS_FOR_GETREGSET || ARCH_REGS_FOR_GETREGS */ void get_regs(pid_t pid) { #undef USE_GET_SYSCALL_RESULT_REGS #ifdef ptrace_getregset_or_getregs # ifdef HAVE_GETREGS_OLD /* * Try PTRACE_GETREGSET/PTRACE_GETREGS first, * fallback to getregs_old. */ static int use_getregs_old; if (use_getregs_old < 0) { get_regs_error = ptrace_getregset_or_getregs(pid); return; } else if (use_getregs_old == 0) { get_regs_error = ptrace_getregset_or_getregs(pid); if (get_regs_error >= 0) { use_getregs_old = -1; return; } if (errno == EPERM || errno == ESRCH) return; use_getregs_old = 1; } get_regs_error = getregs_old(pid); # else /* !HAVE_GETREGS_OLD */ /* Assume that PTRACE_GETREGSET/PTRACE_GETREGS works. */ get_regs_error = ptrace_getregset_or_getregs(pid); # endif /* !HAVE_GETREGS_OLD */ #else /* !ptrace_getregset_or_getregs */ # define USE_GET_SYSCALL_RESULT_REGS 1 # warning get_regs is not implemented for this architecture yet get_regs_error = 0; #endif /* !ptrace_getregset_or_getregs */ } #ifdef ptrace_setregset_or_setregs static int set_regs(pid_t pid) { return ptrace_setregset_or_setregs(pid); } #endif /* ptrace_setregset_or_setregs */ struct sysent_buf { struct tcb *tcp; struct_sysent ent; char buf[sizeof("syscall_%lu") + sizeof(long) * 3]; }; static void free_sysent_buf(void *ptr) { struct sysent_buf *s = ptr; s->tcp->s_prev_ent = s->tcp->s_ent = NULL; free(ptr); } /* * Returns: * 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently. * 1: ok, continue in trace_syscall_entering(). * other: error, trace_syscall_entering() should print error indicator * ("????" etc) and bail out. */ int get_scno(struct tcb *tcp) { if (get_regs_error) return -1; int rc = arch_get_scno(tcp); if (rc != 1) return rc; if (SCNO_IS_VALID(tcp->scno)) { tcp->s_ent = &sysent[tcp->scno]; tcp->qual_flg = qual_flags[tcp->scno]; } else { struct sysent_buf *s = xcalloc(1, sizeof(*s)); s->tcp = tcp; s->ent.nargs = MAX_ARGS; s->ent.sen = SEN_printargs; s->ent.sys_func = printargs; s->ent.sys_name = s->buf; sprintf(s->buf, "syscall_%lu", shuffle_scno(tcp->scno)); tcp->s_ent = &s->ent; tcp->qual_flg = QUAL_RAW | DEFAULT_QUAL_FLAGS; set_tcb_priv_data(tcp, s, free_sysent_buf); if (debug_flag) error_msg("pid %d invalid syscall %ld", tcp->pid, tcp->scno); } return 1; } #ifdef USE_GET_SYSCALL_RESULT_REGS static int get_syscall_result_regs(struct tcb *); #endif /* Returns: * 1: ok, continue in trace_syscall_exiting(). * -1: error, trace_syscall_exiting() should print error indicator * ("????" etc) and bail out. */ static int get_syscall_result(struct tcb *tcp) { #ifdef USE_GET_SYSCALL_RESULT_REGS if (get_syscall_result_regs(tcp)) return -1; #endif tcp->u_error = 0; get_error(tcp, !(tcp->s_ent->sys_flags & SYSCALL_NEVER_FAILS)); return 1; } #include "get_scno.c" #include "set_scno.c" #include "get_syscall_args.c" #ifdef USE_GET_SYSCALL_RESULT_REGS # include "get_syscall_result.c" #endif #include "get_error.c" #include "set_error.c" #ifdef HAVE_GETREGS_OLD # include "getregs_old.c" #endif