/* * Copyright (c) 1991, 1992 Paul Kranenburg * Copyright (c) 1993 Branko Lankester * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey * Copyright (c) 1996-1999 Wichert Akkerman * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Linux for s390 port by D.J. Barrow * * Copyright (c) 1999-2018 The strace developers. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "defs.h" #include #include #include #include #include #ifdef HAVE_SYS_XATTR_H # include #endif #include #include "largefile_wrappers.h" #include "string_to_uint.h" #include "xlat.h" #include "xstring.h" int ts_nz(const struct timespec *a) { return a->tv_sec || a->tv_nsec; } int ts_cmp(const struct timespec *a, const struct timespec *b) { if (a->tv_sec < b->tv_sec || (a->tv_sec == b->tv_sec && a->tv_nsec < b->tv_nsec)) return -1; if (a->tv_sec > b->tv_sec || (a->tv_sec == b->tv_sec && a->tv_nsec > b->tv_nsec)) return 1; return 0; } double ts_float(const struct timespec *tv) { return tv->tv_sec + tv->tv_nsec/1000000000.0; } void ts_add(struct timespec *tv, const struct timespec *a, const struct timespec *b) { tv->tv_sec = a->tv_sec + b->tv_sec; tv->tv_nsec = a->tv_nsec + b->tv_nsec; if (tv->tv_nsec >= 1000000000) { tv->tv_sec++; tv->tv_nsec -= 1000000000; } } void ts_sub(struct timespec *tv, const struct timespec *a, const struct timespec *b) { tv->tv_sec = a->tv_sec - b->tv_sec; tv->tv_nsec = a->tv_nsec - b->tv_nsec; if (tv->tv_nsec < 0) { tv->tv_sec--; tv->tv_nsec += 1000000000; } } void ts_div(struct timespec *tv, const struct timespec *a, int n) { long long nsec = (a->tv_sec % n * 1000000000LL + a->tv_nsec + n / 2) / n; tv->tv_sec = a->tv_sec / n + nsec / 1000000000; tv->tv_nsec = nsec % 1000000000; } void ts_mul(struct timespec *tv, const struct timespec *a, int n) { long long nsec = a->tv_nsec * n; tv->tv_sec = a->tv_sec * n + nsec / 1000000000; tv->tv_nsec = nsec % 1000000000; } void ts_min(struct timespec *tv, const struct timespec *a, const struct timespec *b) { if (ts_cmp(a, b) < 0) { tv->tv_sec = a->tv_sec; tv->tv_nsec = a->tv_nsec; } else { tv->tv_sec = b->tv_sec; tv->tv_nsec = b->tv_nsec; } } void ts_max(struct timespec *tv, const struct timespec *a, const struct timespec *b) { if (ts_cmp(a, b) > 0) { tv->tv_sec = a->tv_sec; tv->tv_nsec = a->tv_nsec; } else { tv->tv_sec = b->tv_sec; tv->tv_nsec = b->tv_nsec; } } int parse_ts(const char *s, struct timespec *t) { enum { NS_IN_S = 1000000000 }; static const struct time_unit { const char *s; unsigned int mul; } units[] = { { "", 1000 }, /* default is microseconds */ { "s", 1000000000 }, { "ms", 1000000 }, { "us", 1000 }, { "ns", 1 }, }; static const char float_accept[] = "eE.-+0123456789"; static const char int_accept[] = "+0123456789"; size_t float_len = strspn(s, float_accept); size_t int_len = strspn(s, int_accept); const struct time_unit *unit = NULL; char *endptr = NULL; double float_val = -1; long long int_val = -1; if (float_len > int_len) { errno = 0; float_val = strtod(s, &endptr); if (endptr == s || errno) return -1; if (float_val < 0) return -1; } else { int_val = string_to_uint_ex(s, &endptr, LLONG_MAX, "smun"); if (int_val < 0) return -1; } for (size_t i = 0; i < ARRAY_SIZE(units); i++) { if (strcmp(endptr, units[i].s)) continue; unit = units + i; break; } if (!unit) return -1; if (float_len > int_len) { t->tv_sec = float_val / (NS_IN_S / unit->mul); t->tv_nsec = ((uint64_t) ((float_val - (t->tv_sec * (NS_IN_S / unit->mul))) * unit->mul)) % NS_IN_S; } else { t->tv_sec = int_val / (NS_IN_S / unit->mul); t->tv_nsec = (int_val % (NS_IN_S / unit->mul)) * unit->mul; } return 0; } #if !defined HAVE_STPCPY char * stpcpy(char *dst, const char *src) { while ((*dst = *src++) != '\0') dst++; return dst; } #endif /* Find a next bit which is set. * Starts testing at cur_bit. * Returns -1 if no more bits are set. * * We never touch bytes we don't need to. * On big-endian, array is assumed to consist of * current_wordsize wide words: for example, is current_wordsize is 4, * the bytes are walked in 3,2,1,0, 7,6,5,4, 11,10,9,8 ... sequence. * On little-endian machines, word size is immaterial. */ int next_set_bit(const void *bit_array, unsigned cur_bit, unsigned size_bits) { const unsigned endian = 1; int little_endian = *(char *) (void *) &endian; const uint8_t *array = bit_array; unsigned pos = cur_bit / 8; unsigned pos_xor_mask = little_endian ? 0 : current_wordsize-1; for (;;) { uint8_t bitmask; uint8_t cur_byte; if (cur_bit >= size_bits) return -1; cur_byte = array[pos ^ pos_xor_mask]; if (cur_byte == 0) { cur_bit = (cur_bit + 8) & (-8); pos++; continue; } bitmask = 1 << (cur_bit & 7); for (;;) { if (cur_byte & bitmask) return cur_bit; cur_bit++; if (cur_bit >= size_bits) return -1; bitmask <<= 1; /* This check *can't be* optimized out: */ if (bitmask == 0) break; } pos++; } } /* * Fetch 64bit argument at position arg_no and * return the index of the next argument. */ int getllval(struct tcb *tcp, unsigned long long *val, int arg_no) { #if SIZEOF_KERNEL_LONG_T > 4 # ifndef current_klongsize if (current_klongsize < SIZEOF_KERNEL_LONG_T) { # if defined(AARCH64) || defined(POWERPC64) /* Align arg_no to the next even number. */ arg_no = (arg_no + 1) & 0xe; # endif /* AARCH64 || POWERPC64 */ *val = ULONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]); arg_no += 2; } else # endif /* !current_klongsize */ { *val = tcp->u_arg[arg_no]; arg_no++; } #else /* SIZEOF_KERNEL_LONG_T == 4 */ # if defined __ARM_EABI__ \ || defined LINUX_MIPSO32 \ || defined POWERPC \ || defined XTENSA /* Align arg_no to the next even number. */ arg_no = (arg_no + 1) & 0xe; # elif defined SH /* * The SH4 ABI does allow long longs in odd-numbered registers, but * does not allow them to be split between registers and memory - and * there are only four argument registers for normal functions. As a * result, pread, for example, takes an extra padding argument before * the offset. This was changed late in the 2.4 series (around 2.4.20). */ if (arg_no == 3) arg_no++; # endif /* __ARM_EABI__ || LINUX_MIPSO32 || POWERPC || XTENSA || SH */ *val = ULONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]); arg_no += 2; #endif return arg_no; } /* * Print 64bit argument at position arg_no and * return the index of the next argument. */ int printllval(struct tcb *tcp, const char *format, int arg_no) { unsigned long long val = 0; arg_no = getllval(tcp, &val, arg_no); tprintf(format, val); return arg_no; } void printaddr64(const uint64_t addr) { if (!addr) tprints("NULL"); else tprintf("%#" PRIx64, addr); } #define DEF_PRINTNUM(name, type) \ bool \ printnum_ ## name(struct tcb *const tcp, const kernel_ulong_t addr, \ const char *const fmt) \ { \ type num; \ if (umove_or_printaddr(tcp, addr, &num)) \ return false; \ tprints("["); \ tprintf(fmt, num); \ tprints("]"); \ return true; \ } #define DEF_PRINTNUM_ADDR(name, type) \ bool \ printnum_addr_ ## name(struct tcb *tcp, const kernel_ulong_t addr) \ { \ type num; \ if (umove_or_printaddr(tcp, addr, &num)) \ return false; \ tprints("["); \ printaddr64(num); \ tprints("]"); \ return true; \ } #define DEF_PRINTPAIR(name, type) \ bool \ printpair_ ## name(struct tcb *const tcp, const kernel_ulong_t addr, \ const char *const fmt) \ { \ type pair[2]; \ if (umove_or_printaddr(tcp, addr, &pair)) \ return false; \ tprints("["); \ tprintf(fmt, pair[0]); \ tprints(", "); \ tprintf(fmt, pair[1]); \ tprints("]"); \ return true; \ } DEF_PRINTNUM(int, int) DEF_PRINTNUM_ADDR(int, unsigned int) DEF_PRINTPAIR(int, int) DEF_PRINTNUM(short, short) DEF_PRINTNUM(int64, uint64_t) DEF_PRINTNUM_ADDR(int64, uint64_t) DEF_PRINTPAIR(int64, uint64_t) #ifndef current_wordsize bool printnum_long_int(struct tcb *const tcp, const kernel_ulong_t addr, const char *const fmt_long, const char *const fmt_int) { if (current_wordsize > sizeof(int)) { return printnum_int64(tcp, addr, fmt_long); } else { return printnum_int(tcp, addr, fmt_int); } } bool printnum_addr_long_int(struct tcb *tcp, const kernel_ulong_t addr) { if (current_wordsize > sizeof(int)) { return printnum_addr_int64(tcp, addr); } else { return printnum_addr_int(tcp, addr); } } #endif /* !current_wordsize */ #ifndef current_klongsize bool printnum_addr_klong_int(struct tcb *tcp, const kernel_ulong_t addr) { if (current_klongsize > sizeof(int)) { return printnum_addr_int64(tcp, addr); } else { return printnum_addr_int(tcp, addr); } } #endif /* !current_klongsize */ /** * Prints time to a (static internal) buffer and returns pointer to it. * Returns NULL if the provided time specification is not correct. * * @param sec Seconds since epoch. * @param part_sec Amount of second parts since the start of a second. * @param max_part_sec Maximum value of a valid part_sec. * @param width 1 + floor(log10(max_part_sec)). * @return Pointer to a statically allocated string on success, * NULL on error. */ static const char * sprinttime_ex(const long long sec, const unsigned long long part_sec, const unsigned int max_part_sec, const int width) { static char buf[sizeof(int) * 3 * 6 + sizeof(part_sec) * 3 + sizeof("+0000")]; if ((sec == 0 && part_sec == 0) || part_sec > max_part_sec) return NULL; time_t t = (time_t) sec; struct tm *tmp = (sec == t) ? localtime(&t) : NULL; if (!tmp) return NULL; size_t pos = strftime(buf, sizeof(buf), "%FT%T", tmp); if (!pos) return NULL; if (part_sec > 0) pos += xsnprintf(buf + pos, sizeof(buf) - pos, ".%0*llu", width, part_sec); return strftime(buf + pos, sizeof(buf) - pos, "%z", tmp) ? buf : NULL; } const char * sprinttime(long long sec) { return sprinttime_ex(sec, 0, 0, 0); } const char * sprinttime_usec(long long sec, unsigned long long usec) { return sprinttime_ex(sec, usec, 999999, 6); } const char * sprinttime_nsec(long long sec, unsigned long long nsec) { return sprinttime_ex(sec, nsec, 999999999, 9); } enum sock_proto getfdproto(struct tcb *tcp, int fd) { #ifdef HAVE_SYS_XATTR_H size_t bufsize = 256; char buf[bufsize]; ssize_t r; char path[sizeof("/proc/%u/fd/%u") + 2 * sizeof(int)*3]; if (fd < 0) return SOCK_PROTO_UNKNOWN; xsprintf(path, "/proc/%u/fd/%u", tcp->pid, fd); r = getxattr(path, "system.sockprotoname", buf, bufsize - 1); if (r <= 0) return SOCK_PROTO_UNKNOWN; else { /* * This is a protection for the case when the kernel * side does not append a null byte to the buffer. */ buf[r] = '\0'; return get_proto_by_name(buf); } #else return SOCK_PROTO_UNKNOWN; #endif } unsigned long getfdinode(struct tcb *tcp, int fd) { char path[PATH_MAX + 1]; if (getfdpath(tcp, fd, path, sizeof(path)) >= 0) { const char *str = STR_STRIP_PREFIX(path, "socket:["); if (str != path) { const size_t str_len = strlen(str); if (str_len && str[str_len - 1] == ']') return strtoul(str, NULL, 10); } } return 0; } static bool printsocket(struct tcb *tcp, int fd, const char *path) { const char *str = STR_STRIP_PREFIX(path, "socket:["); size_t len; unsigned long inode; return (str != path) && (len = strlen(str)) && (str[len - 1] == ']') && (inode = strtoul(str, NULL, 10)) && print_sockaddr_by_inode(tcp, fd, inode); } static bool printdev(struct tcb *tcp, int fd, const char *path) { struct_stat st; if (path[0] != '/') return false; if (stat_file(path, &st)) { debug_func_perror_msg("stat(\"%s\")", path); return false; } switch (st.st_mode & S_IFMT) { case S_IFBLK: case S_IFCHR: print_quoted_string_ex(path, strlen(path), QUOTE_OMIT_LEADING_TRAILING_QUOTES, "<>"); tprintf("<%s %u:%u>", S_ISBLK(st.st_mode)? "block" : "char", major(st.st_rdev), minor(st.st_rdev)); return true; } return false; } void printfd(struct tcb *tcp, int fd) { char path[PATH_MAX + 1]; if (show_fd_path && getfdpath(tcp, fd, path, sizeof(path)) >= 0) { tprintf("%d<", fd); if (show_fd_path <= 1 || (!printsocket(tcp, fd, path) && !printdev(tcp, fd, path))) { print_quoted_string_ex(path, strlen(path), QUOTE_OMIT_LEADING_TRAILING_QUOTES, "<>"); } tprints(">"); } else tprintf("%d", fd); } /* * Quote string `instr' of length `size' * Write up to (3 + `size' * 4) bytes to `outstr' buffer. * * `escape_chars' specifies characters (in addition to characters with * codes 0..31, 127..255, single and double quotes) that should be escaped. * * If QUOTE_0_TERMINATED `style' flag is set, * treat `instr' as a NUL-terminated string, * checking up to (`size' + 1) bytes of `instr'. * * If QUOTE_OMIT_LEADING_TRAILING_QUOTES `style' flag is set, * do not add leading and trailing quoting symbols. * * Returns 0 if QUOTE_0_TERMINATED is set and NUL was seen, 1 otherwise. * Note that if QUOTE_0_TERMINATED is not set, always returns 1. */ int string_quote(const char *instr, char *outstr, const unsigned int size, const unsigned int style, const char *escape_chars) { const unsigned char *ustr = (const unsigned char *) instr; char *s = outstr; unsigned int i; int usehex, c, eol; bool escape; if (style & QUOTE_0_TERMINATED) eol = '\0'; else eol = 0x100; /* this can never match a char */ usehex = 0; if ((xflag > 1) || (style & QUOTE_FORCE_HEX)) { usehex = 1; } else if (xflag) { /* Check for presence of symbol which require to hex-quote the whole string. */ for (i = 0; i < size; ++i) { c = ustr[i]; /* Check for NUL-terminated string. */ if (c == eol) break; /* Force hex unless c is printable or whitespace */ if (c > 0x7e) { usehex = 1; break; } /* In ASCII isspace is only these chars: "\t\n\v\f\r". * They happen to have ASCII codes 9,10,11,12,13. */ if (c < ' ' && (unsigned)(c - 9) >= 5) { usehex = 1; break; } } } if (style & QUOTE_EMIT_COMMENT) s = stpcpy(s, " /* "); if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES)) *s++ = '\"'; if (usehex) { /* Hex-quote the whole string. */ for (i = 0; i < size; ++i) { c = ustr[i]; /* Check for NUL-terminated string. */ if (c == eol) goto asciz_ended; *s++ = '\\'; *s++ = 'x'; *s++ = "0123456789abcdef"[c >> 4]; *s++ = "0123456789abcdef"[c & 0xf]; } goto string_ended; } for (i = 0; i < size; ++i) { c = ustr[i]; /* Check for NUL-terminated string. */ if (c == eol) goto asciz_ended; if ((i == (size - 1)) && (style & QUOTE_OMIT_TRAILING_0) && (c == '\0')) goto asciz_ended; switch (c) { case '\"': case '\\': *s++ = '\\'; *s++ = c; break; case '\f': *s++ = '\\'; *s++ = 'f'; break; case '\n': *s++ = '\\'; *s++ = 'n'; break; case '\r': *s++ = '\\'; *s++ = 'r'; break; case '\t': *s++ = '\\'; *s++ = 't'; break; case '\v': *s++ = '\\'; *s++ = 'v'; break; default: escape = (c < ' ') || (c > 0x7e); if (!escape && escape_chars) escape = !!strchr(escape_chars, c); if (!escape) { *s++ = c; } else { /* Print \octal */ *s++ = '\\'; if (i + 1 < size && ustr[i + 1] >= '0' && ustr[i + 1] <= '7' ) { /* Print \ooo */ *s++ = '0' + (c >> 6); *s++ = '0' + ((c >> 3) & 0x7); } else { /* Print \[[o]o]o */ if ((c >> 3) != 0) { if ((c >> 6) != 0) *s++ = '0' + (c >> 6); *s++ = '0' + ((c >> 3) & 0x7); } } *s++ = '0' + (c & 0x7); } } } string_ended: if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES)) *s++ = '\"'; if (style & QUOTE_EMIT_COMMENT) s = stpcpy(s, " */"); *s = '\0'; /* Return zero if we printed entire ASCIZ string (didn't truncate it) */ if (style & QUOTE_0_TERMINATED && ustr[i] == '\0') { /* We didn't see NUL yet (otherwise we'd jump to 'asciz_ended') * but next char is NUL. */ return 0; } return 1; asciz_ended: if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES)) *s++ = '\"'; if (style & QUOTE_EMIT_COMMENT) s = stpcpy(s, " */"); *s = '\0'; /* Return zero: we printed entire ASCIZ string (didn't truncate it) */ return 0; } #ifndef ALLOCA_CUTOFF # define ALLOCA_CUTOFF 4032 #endif #define use_alloca(n) ((n) <= ALLOCA_CUTOFF) /* * Quote string `str' of length `size' and print the result. * * If QUOTE_0_TERMINATED `style' flag is set, * treat `str' as a NUL-terminated string and * quote at most (`size' - 1) bytes. * * If QUOTE_OMIT_LEADING_TRAILING_QUOTES `style' flag is set, * do not add leading and trailing quoting symbols. * * Returns 0 if QUOTE_0_TERMINATED is set and NUL was seen, 1 otherwise. * Note that if QUOTE_0_TERMINATED is not set, always returns 1. */ int print_quoted_string_ex(const char *str, unsigned int size, const unsigned int style, const char *escape_chars) { char *buf; char *outstr; unsigned int alloc_size; int rc; if (size && style & QUOTE_0_TERMINATED) --size; alloc_size = 4 * size; if (alloc_size / 4 != size) { error_func_msg("requested %u bytes exceeds %u bytes limit", size, -1U / 4); tprints("???"); return -1; } alloc_size += 1 + (style & QUOTE_OMIT_LEADING_TRAILING_QUOTES ? 0 : 2) + (style & QUOTE_EMIT_COMMENT ? 7 : 0); if (use_alloca(alloc_size)) { outstr = alloca(alloc_size); buf = NULL; } else { outstr = buf = malloc(alloc_size); if (!buf) { error_func_msg("memory exhausted when tried to allocate" " %u bytes", alloc_size); tprints("???"); return -1; } } rc = string_quote(str, outstr, size, style, escape_chars); tprints(outstr); free(buf); return rc; } inline int print_quoted_string(const char *str, unsigned int size, const unsigned int style) { return print_quoted_string_ex(str, size, style, NULL); } /* * Quote a NUL-terminated string `str' of length up to `size' - 1 * and print the result. * * Returns 0 if NUL was seen, 1 otherwise. */ int print_quoted_cstring(const char *str, unsigned int size) { int unterminated = print_quoted_string(str, size, QUOTE_0_TERMINATED); if (unterminated) tprints("..."); return unterminated; } /* * Print path string specified by address `addr' and length `n'. * If path length exceeds `n', append `...' to the output. * * Returns the result of umovenstr. */ int printpathn(struct tcb *const tcp, const kernel_ulong_t addr, unsigned int n) { char path[PATH_MAX]; int nul_seen; if (!addr) { tprints("NULL"); return -1; } /* Cap path length to the path buffer size */ if (n > sizeof(path) - 1) n = sizeof(path) - 1; /* Fetch one byte more to find out whether path length > n. */ nul_seen = umovestr(tcp, addr, n + 1, path); if (nul_seen < 0) printaddr(addr); else { path[n++] = !nul_seen; print_quoted_cstring(path, n); } return nul_seen; } int printpath(struct tcb *const tcp, const kernel_ulong_t addr) { /* Size must correspond to char path[] size in printpathn */ return printpathn(tcp, addr, PATH_MAX - 1); } /* * Print string specified by address `addr' and length `len'. * If `user_style' has QUOTE_0_TERMINATED bit set, treat the string * as a NUL-terminated string. * Pass `user_style' on to `string_quote'. * Append `...' to the output if either the string length exceeds `max_strlen', * or QUOTE_0_TERMINATED bit is set and the string length exceeds `len'. * * Returns the result of umovenstr if style has QUOTE_0_TERMINATED, * or the result of umoven otherwise. */ int printstr_ex(struct tcb *const tcp, const kernel_ulong_t addr, const kernel_ulong_t len, const unsigned int user_style) { static char *str; static char *outstr; unsigned int size; unsigned int style = user_style; int rc; int ellipsis; if (!addr) { tprints("NULL"); return -1; } /* Allocate static buffers if they are not allocated yet. */ if (!str) { const unsigned int outstr_size = 4 * max_strlen + /* for quotes and NUL */ 3; /* * We can assume that outstr_size / 4 == max_strlen * since we have a guarantee that max_strlen <= -1U / 4. */ str = xmalloc(max_strlen + 1); outstr = xmalloc(outstr_size); } /* Fetch one byte more because string_quote may look one byte ahead. */ size = max_strlen + 1; if (size > len) size = len; if (style & QUOTE_0_TERMINATED) rc = umovestr(tcp, addr, size, str); else rc = umoven(tcp, addr, size, str); if (rc < 0) { printaddr(addr); return rc; } if (size > max_strlen) size = max_strlen; else str[size] = '\xff'; /* If string_quote didn't see NUL and (it was supposed to be ASCIZ str * or we were requested to print more than -s NUM chars)... */ ellipsis = string_quote(str, outstr, size, style, NULL) && len && ((style & QUOTE_0_TERMINATED) || len > max_strlen); tprints(outstr); if (ellipsis) tprints("..."); return rc; } void dumpiov_upto(struct tcb *const tcp, const int len, const kernel_ulong_t addr, kernel_ulong_t data_size) { #if ANY_WORDSIZE_LESS_THAN_KERNEL_LONG union { struct { uint32_t base; uint32_t len; } *iov32; struct { uint64_t base; uint64_t len; } *iov64; } iovu; #define iov iovu.iov64 #define sizeof_iov \ (current_wordsize == 4 ? (unsigned int) sizeof(*iovu.iov32) \ : (unsigned int) sizeof(*iovu.iov64)) #define iov_iov_base(i) \ (current_wordsize == 4 ? (uint64_t) iovu.iov32[i].base : iovu.iov64[i].base) #define iov_iov_len(i) \ (current_wordsize == 4 ? (uint64_t) iovu.iov32[i].len : iovu.iov64[i].len) #else struct iovec *iov; #define sizeof_iov ((unsigned int) sizeof(*iov)) #define iov_iov_base(i) ptr_to_kulong(iov[i].iov_base) #define iov_iov_len(i) iov[i].iov_len #endif int i; unsigned int size = sizeof_iov * len; if (size / sizeof_iov != (unsigned int) len) { error_func_msg("requested %u iovec elements exceeds" " %u iovec limit", len, -1U / sizeof_iov); return; } iov = malloc(size); if (!iov) { error_func_msg("memory exhausted when tried to allocate" " %u bytes", size); return; } if (umoven(tcp, addr, size, iov) >= 0) { for (i = 0; i < len; i++) { kernel_ulong_t iov_len = iov_iov_len(i); if (iov_len > data_size) iov_len = data_size; if (!iov_len) break; data_size -= iov_len; /* include the buffer number to make it easy to * match up the trace with the source */ tprintf(" * %" PRI_klu " bytes in buffer %d\n", iov_len, i); dumpstr(tcp, iov_iov_base(i), iov_len); } } free(iov); #undef sizeof_iov #undef iov_iov_base #undef iov_iov_len #undef iov } void dumpstr(struct tcb *const tcp, const kernel_ulong_t addr, const int len) { static int strsize = -1; static unsigned char *str; char outbuf[ ( (sizeof( "xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx " "1234567890123456") + /*in case I'm off by few:*/ 4) /*align to 8 to make memset easier:*/ + 7) & -8 ]; const unsigned char *src; int i; if ((len < 0) || (len > INT_MAX - 16)) return; memset(outbuf, ' ', sizeof(outbuf)); if (strsize < len + 16) { free(str); str = malloc(len + 16); if (!str) { strsize = -1; error_func_msg("memory exhausted when tried to allocate" " %zu bytes", (size_t) (len + 16)); return; } strsize = len + 16; } if (umoven(tcp, addr, len, str) < 0) return; /* Space-pad to 16 bytes */ i = len; while (i & 0xf) str[i++] = ' '; i = 0; src = str; while (i < len) { char *dst = outbuf; /* Hex dump */ do { if (i < len) { *dst++ = "0123456789abcdef"[*src >> 4]; *dst++ = "0123456789abcdef"[*src & 0xf]; } else { *dst++ = ' '; *dst++ = ' '; } dst++; /* space is there by memset */ i++; if ((i & 7) == 0) dst++; /* space is there by memset */ src++; } while (i & 0xf); /* ASCII dump */ i -= 16; src -= 16; do { if (*src >= ' ' && *src < 0x7f) *dst++ = *src; else *dst++ = '.'; src++; } while (++i & 0xf); *dst = '\0'; tprintf(" | %05x %s |\n", i - 16, outbuf); } } bool tfetch_mem64(struct tcb *const tcp, const uint64_t addr, const unsigned int len, void *const our_addr) { return addr && verbose(tcp) && (entering(tcp) || !syserror(tcp)) && !umoven(tcp, addr, len, our_addr); } bool tfetch_mem64_ignore_syserror(struct tcb *const tcp, const uint64_t addr, const unsigned int len, void *const our_addr) { return addr && verbose(tcp) && !umoven(tcp, addr, len, our_addr); } int umoven_or_printaddr64(struct tcb *const tcp, const uint64_t addr, const unsigned int len, void *const our_addr) { if (tfetch_mem64(tcp, addr, len, our_addr)) return 0; printaddr64(addr); return -1; } int umoven_or_printaddr64_ignore_syserror(struct tcb *const tcp, const uint64_t addr, const unsigned int len, void *const our_addr) { if (tfetch_mem64_ignore_syserror(tcp, addr, len, our_addr)) return 0; printaddr64(addr); return -1; } bool print_int32_array_member(struct tcb *tcp, void *elem_buf, size_t elem_size, void *data) { tprintf("%" PRId32, *(int32_t *) elem_buf); return true; } bool print_uint32_array_member(struct tcb *tcp, void *elem_buf, size_t elem_size, void *data) { tprintf("%" PRIu32, *(uint32_t *) elem_buf); return true; } bool print_uint64_array_member(struct tcb *tcp, void *elem_buf, size_t elem_size, void *data) { tprintf("%" PRIu64, *(uint64_t *) elem_buf); return true; } /* * Iteratively fetch and print up to nmemb elements of elem_size size * from the array that starts at tracee's address start_addr. * * Array elements are being fetched to the address specified by elem_buf. * * The fetcher callback function specified by tfetch_mem_func should follow * the same semantics as tfetch_mem function. * * The printer callback function specified by print_func is expected * to print something; if it returns false, no more iterations will be made. * * The pointer specified by opaque_data is passed to each invocation * of print_func callback function. * * This function prints: * - "NULL", if start_addr is NULL; * - "[]", if nmemb is 0; * - start_addr, if nmemb * elem_size overflows or wraps around; * - start_addr, if the first tfetch_mem_func invocation returned false; * - elements of the array, delimited by ", ", with the array itself * enclosed with [] brackets. * * If abbrev(tcp) is true, then * - the maximum number of elements printed equals to max_strlen; * - "..." is printed instead of max_strlen+1 element * and no more iterations will be made. * * This function returns true only if tfetch_mem_func has returned true * at least once. */ bool print_array_ex(struct tcb *const tcp, const kernel_ulong_t start_addr, const size_t nmemb, void *const elem_buf, const size_t elem_size, tfetch_mem_fn tfetch_mem_func, print_fn print_func, void *const opaque_data, unsigned int flags, const struct xlat *index_xlat, const char *index_dflt) { if (!start_addr) { tprints("NULL"); return false; } if (!nmemb) { tprints("[]"); return false; } const size_t size = nmemb * elem_size; const kernel_ulong_t end_addr = start_addr + size; if (end_addr <= start_addr || size / elem_size != nmemb) { printaddr(start_addr); return false; } const kernel_ulong_t abbrev_end = (abbrev(tcp) && max_strlen < nmemb) ? start_addr + elem_size * max_strlen : end_addr; kernel_ulong_t cur; kernel_ulong_t idx = 0; enum xlat_style xlat_style = flags & XLAT_STYLE_MASK; for (cur = start_addr; cur < end_addr; cur += elem_size, idx++) { if (cur != start_addr) tprints(", "); if (!tfetch_mem_func(tcp, cur, elem_size, elem_buf)) { if (cur == start_addr) printaddr(cur); else { tprints("..."); printaddr_comment(cur); } break; } if (cur == start_addr) tprints("["); if (cur >= abbrev_end) { tprints("..."); cur = end_addr; break; } if (flags & PAF_PRINT_INDICES) { tprints("["); if (!index_xlat) { print_xlat_ex(idx, NULL, xlat_style); } else { printxval_ex(idx ? NULL : index_xlat, idx, index_dflt, xlat_style); } tprints("] = "); } if (!print_func(tcp, elem_buf, elem_size, opaque_data)) { cur = end_addr; break; } } if (cur != start_addr) tprints("]"); return cur >= end_addr; } int printargs(struct tcb *tcp) { const int n = tcp->s_ent->nargs; int i; for (i = 0; i < n; ++i) tprintf("%s%#" PRI_klx, i ? ", " : "", tcp->u_arg[i]); return RVAL_DECODED; } int printargs_u(struct tcb *tcp) { const int n = tcp->s_ent->nargs; int i; for (i = 0; i < n; ++i) tprintf("%s%u", i ? ", " : "", (unsigned int) tcp->u_arg[i]); return RVAL_DECODED; } int printargs_d(struct tcb *tcp) { const int n = tcp->s_ent->nargs; int i; for (i = 0; i < n; ++i) tprintf("%s%d", i ? ", " : "", (int) tcp->u_arg[i]); return RVAL_DECODED; } /* Print abnormal high bits of a kernel_ulong_t value. */ void print_abnormal_hi(const kernel_ulong_t val) { if (current_klongsize > 4) { const unsigned int hi = (unsigned int) ((uint64_t) val >> 32); if (hi) tprintf("%#x<<32|", hi); } } #if defined _LARGEFILE64_SOURCE && defined HAVE_OPEN64 # define open_file open64 #else # define open_file open #endif int read_int_from_file(struct tcb *tcp, const char *const fname, int *const pvalue) { const int fd = open_file(fname, O_RDONLY); if (fd < 0) return -1; long lval; char buf[sizeof(lval) * 3]; int n = read(fd, buf, sizeof(buf) - 1); int saved_errno = errno; close(fd); if (n < 0) { errno = saved_errno; return -1; } buf[n] = '\0'; char *endptr = 0; errno = 0; lval = strtol(buf, &endptr, 10); if (!endptr || (*endptr && '\n' != *endptr) #if INT_MAX < LONG_MAX || lval > INT_MAX || lval < INT_MIN #endif || ERANGE == errno) { if (!errno) errno = EINVAL; return -1; } *pvalue = (int) lval; return 0; }