strace/sockaddr.c
Eugene Syromyatnikov 92d020787f sockaddr: decode AX.25 socket addresses
* defs.h (print_ax25_addr): New prototype.
* print_fields.h (PRINT_FIELD_AX25_ADDR): New macro.
* sockaddr.c: Include <linux/ax25.h>.
(check_ax25_address, ax25_addr2str, print_ax25_addr_raw,
print_ax25_addr, print_sockaddr_data_ax25): New functions.
(sa_printers) <[AF_AX25]>: New printer.
* tests/net-sockaddr.c (AX25_ADDR): New macro.
(check_ax25): New function.
(main): Use it to check AX.25 socket address decoding.
2018-09-02 22:03:43 +00:00

645 lines
16 KiB
C

/*
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
* Copyright (c) 1996-2000 Wichert Akkerman <wichert@cistron.nl>
* Copyright (c) 2005-2016 Dmitry V. Levin <ldv@altlinux.org>
* Copyright (c) 2016-2018 The strace developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "defs.h"
#include "print_fields.h"
#include <sys/socket.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "netlink.h"
#include <linux/ax25.h>
#include <linux/if_packet.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#ifdef HAVE_NETIPX_IPX_H
# include <netipx/ipx.h>
#else
# include <linux/ipx.h>
#endif
#include "xlat/addrfams.h"
#include "xlat/arp_hardware_types.h"
#include "xlat/ethernet_protocols.h"
#include "xlat/af_packet_types.h"
#include "xlat/bdaddr_types.h"
#include "xlat/bluetooth_l2_cid.h"
#include "xlat/bluetooth_l2_psm.h"
#include "xlat/hci_channels.h"
#define SIZEOF_SA_FAMILY sizeof(((struct sockaddr *) 0)->sa_family)
const size_t arp_hardware_types_size = ARRAY_SIZE(arp_hardware_types) - 1;
const size_t ethernet_protocols_size = ARRAY_SIZE(ethernet_protocols) - 1;
static void
print_sockaddr_data_un(const void *const buf, const int addrlen)
{
const struct sockaddr_un *const sa_un = buf;
const int un_len = addrlen > (int) sizeof(*sa_un)
? (int) sizeof(*sa_un) : addrlen;
const int path_len = un_len - SIZEOF_SA_FAMILY;
tprints("sun_path=");
if (sa_un->sun_path[0]) {
print_quoted_string(sa_un->sun_path, path_len + 1,
QUOTE_0_TERMINATED);
} else {
tprints("@");
print_quoted_string(sa_un->sun_path + 1, path_len - 1, 0);
}
}
bool
print_inet_addr(const int af,
const void *const addr,
const unsigned int len,
const char *const var_name)
{
char buf[INET6_ADDRSTRLEN];
switch (af) {
case AF_INET:
if (inet_ntop(af, addr, buf, sizeof(buf))) {
if (var_name)
tprintf("%s=inet_addr(\"%s\")", var_name, buf);
else
tprints(buf);
return true;
}
break;
case AF_INET6:
if (inet_ntop(af, addr, buf, sizeof(buf))) {
if (var_name)
tprintf("inet_pton(%s, \"%s\", &%s)",
"AF_INET6", buf, var_name);
else
tprints(buf);
return true;
}
break;
}
if (var_name)
tprintf("%s=", var_name);
print_quoted_string(addr, len, QUOTE_FORCE_HEX);
return false;
}
bool
decode_inet_addr(struct tcb *const tcp,
const kernel_ulong_t addr,
const unsigned int len,
const int family,
const char *const var_name)
{
union {
struct in_addr a4;
struct in6_addr a6;
} addrbuf;
size_t size = 0;
switch (family) {
case AF_INET:
size = sizeof(addrbuf.a4);
break;
case AF_INET6:
size = sizeof(addrbuf.a6);
break;
}
if (!size || len < size) {
if (var_name)
tprintf("%s=", var_name);
printstr_ex(tcp, addr, len, QUOTE_FORCE_HEX);
return false;
}
if (umoven(tcp, addr, size, &addrbuf) < 0) {
if (var_name)
tprintf("%s=", var_name);
printaddr(addr);
return false;
}
return print_inet_addr(family, &addrbuf, size, var_name);
}
static void
print_sockaddr_data_in(const void *const buf, const int addrlen)
{
const struct sockaddr_in *const sa_in = buf;
PRINT_FIELD_NET_PORT("", *sa_in, sin_port);
PRINT_FIELD_INET4_ADDR(", ", *sa_in, sin_addr);
}
#define SIN6_MIN_LEN offsetof(struct sockaddr_in6, sin6_scope_id)
static void
print_sockaddr_data_in6(const void *const buf, const int addrlen)
{
const struct sockaddr_in6 *const sa_in6 = buf;
PRINT_FIELD_NET_PORT("", *sa_in6, sin6_port);
PRINT_FIELD_INET_ADDR(", ", *sa_in6, sin6_addr, AF_INET6);
tprintf(", sin6_flowinfo=htonl(%u)", ntohl(sa_in6->sin6_flowinfo));
if (addrlen <= (int) SIN6_MIN_LEN)
return;
#if defined IN6_IS_ADDR_LINKLOCAL && defined IN6_IS_ADDR_MC_LINKLOCAL
if (IN6_IS_ADDR_LINKLOCAL(&sa_in6->sin6_addr)
|| IN6_IS_ADDR_MC_LINKLOCAL(&sa_in6->sin6_addr))
PRINT_FIELD_IFINDEX(", ", *sa_in6, sin6_scope_id);
else
#endif
PRINT_FIELD_U(", ", *sa_in6, sin6_scope_id);
}
/**
* Check that we can print an AX.25 address in its native form, otherwise it
* makes sense to print it in raw also (or in raw only).
*/
enum xlat_style
check_ax25_address(const ax25_address *addr)
{
enum xlat_style ret = XLAT_STYLE_DEFAULT;
bool space_seen = false;
bool char_seen = false;
for (size_t i = 0; i < ARRAY_SIZE(addr->ax25_call) - 1; i++) {
unsigned char c = addr->ax25_call[i];
/* The lowest bit should be zero */
if (c & 1)
ret = XLAT_STYLE_VERBOSE;
c >>= 1;
if (c == ' ')
space_seen = true;
else
char_seen = true;
/* Sane address contains only numbers and uppercase letters */
if ((c < '0' || c > '9') && (c < 'A' || c > 'Z') && c != ' ')
ret = XLAT_STYLE_VERBOSE;
if (c != ' ' && space_seen)
ret = XLAT_STYLE_VERBOSE;
/* non-printable chars */
if (c < ' ' || c > 0x7e
/* characters used for printing comments */
|| c == '*' || c == '/')
return XLAT_STYLE_RAW;
}
if (addr->ax25_call[ARRAY_SIZE(addr->ax25_call) - 1] & ~0x1e)
ret = XLAT_STYLE_VERBOSE;
if (!char_seen && addr->ax25_call[ARRAY_SIZE(addr->ax25_call) - 1])
ret = XLAT_STYLE_VERBOSE;
return ret;
}
/** Convert a (presumably) valid AX.25 to a string */
static const char *
ax25_addr2str(const ax25_address *addr)
{
static char buf[ARRAY_SIZE(addr->ax25_call) + sizeof("-15")];
char *p = buf;
size_t end;
for (end = ARRAY_SIZE(addr->ax25_call) - 1; end; end--)
if ((addr->ax25_call[end - 1] >> 1) != ' ')
break;
for (size_t i = 0; i < end; i++)
*p++ = ((unsigned char) addr->ax25_call[i]) >> 1;
*p++ = '-';
unsigned char ssid = (addr->ax25_call[ARRAY_SIZE(addr->ax25_call) - 1]
>> 1) & 0xf;
if (ssid > 9) {
*p++ = '1';
ssid -= 10;
}
*p++ = ssid + '0';
*p = '\0';
if (buf[0] == '-' && buf[1] == '0')
return "*";
return buf;
}
static void
print_ax25_addr_raw(const ax25_address *addr)
{
PRINT_FIELD_HEX_ARRAY("{", *addr, ax25_call);
tprints("}");
}
void
print_ax25_addr(const void /* ax25_address */ *addr_void)
{
const ax25_address *addr = addr_void;
enum xlat_style xs = check_ax25_address(addr);
if (xs == XLAT_STYLE_DEFAULT)
xs = xlat_verbose(xlat_verbosity);
if (xs != XLAT_STYLE_ABBREV)
print_ax25_addr_raw(addr);
if (xs == XLAT_STYLE_RAW)
return;
const char *addr_str = ax25_addr2str(addr);
(xs == XLAT_STYLE_VERBOSE ? tprints_comment : tprints)(addr_str);
}
static void
print_sockaddr_data_ax25(const void *const buf, const int addrlen)
{
const struct full_sockaddr_ax25 *const sax25 = buf;
size_t addrlen_us = MAX(addrlen, 0);
bool full = sax25->fsa_ax25.sax25_ndigis ||
(addrlen_us > sizeof(struct sockaddr_ax25));
if (full)
tprints("fsa_ax25={");
tprints("sax25_call=");
print_ax25_addr(&sax25->fsa_ax25.sax25_call);
PRINT_FIELD_D(", ", sax25->fsa_ax25, sax25_ndigis);
if (!full)
return;
tprints("}");
size_t has_digis = MIN((addrlen_us - sizeof(sax25->fsa_ax25))
/ sizeof(sax25->fsa_digipeater[0]),
ARRAY_SIZE(sax25->fsa_digipeater));
size_t want_digis = MIN(
(unsigned int) MAX(sax25->fsa_ax25.sax25_ndigis, 0),
ARRAY_SIZE(sax25->fsa_digipeater));
size_t digis = MIN(has_digis, want_digis);
if (want_digis == 0)
goto digis_end;
tprints(", fsa_digipeater=[");
for (size_t i = 0; i < digis; i++) {
if (i)
tprints(", ");
print_ax25_addr(sax25->fsa_digipeater + i);
}
if (want_digis > has_digis)
tprintf("%s/* ??? */", digis ? ", " : "");
tprints("]");
digis_end:
if (addrlen_us > (has_digis * sizeof(sax25->fsa_digipeater[0])
+ sizeof(sax25->fsa_ax25)))
tprints(", ...");
}
static void
print_sockaddr_data_ipx(const void *const buf, const int addrlen)
{
const struct sockaddr_ipx *const sa_ipx = buf;
unsigned int i;
PRINT_FIELD_NET_PORT("", *sa_ipx, sipx_port);
tprintf(", sipx_network=htonl(%#08x)"
", sipx_node=[",
ntohl(sa_ipx->sipx_network));
for (i = 0; i < IPX_NODE_LEN; ++i) {
tprintf("%s%#02x", i ? ", " : "",
sa_ipx->sipx_node[i]);
}
PRINT_FIELD_0X("], ", *sa_ipx, sipx_type);
}
static void
print_sockaddr_data_nl(const void *const buf, const int addrlen)
{
const struct sockaddr_nl *const sa_nl = buf;
PRINT_FIELD_D("", *sa_nl, nl_pid);
PRINT_FIELD_0X(", ", *sa_nl, nl_groups);
}
static void
print_sockaddr_data_ll(const void *const buf, const int addrlen)
{
const struct sockaddr_ll *const sa_ll = buf;
tprints("sll_protocol=htons(");
printxval_search(ethernet_protocols, ntohs(sa_ll->sll_protocol),
"ETH_P_???");
PRINT_FIELD_IFINDEX("), ", *sa_ll, sll_ifindex);
tprints(", sll_hatype=");
printxval_search(arp_hardware_types, sa_ll->sll_hatype, "ARPHRD_???");
tprints(", sll_pkttype=");
printxval_index(af_packet_types, sa_ll->sll_pkttype, "PACKET_???");
tprintf(", sll_halen=%u", sa_ll->sll_halen);
if (sa_ll->sll_halen) {
const unsigned int oob_halen =
addrlen - offsetof(struct sockaddr_ll, sll_addr);
unsigned int i;
tprints(", sll_addr=[");
for (i = 0; i < sa_ll->sll_halen; ++i) {
if (i)
tprints(", ");
if (i >= oob_halen) {
tprints("...");
break;
}
tprintf("%#02x", sa_ll->sll_addr[i]);
}
tprints("]");
}
}
static void
print_sockaddr_data_raw(const void *const buf, const int addrlen)
{
const char *const data = buf + SIZEOF_SA_FAMILY;
const int datalen = addrlen - SIZEOF_SA_FAMILY;
tprints("sa_data=");
print_quoted_string(data, datalen, 0);
}
static uint16_t
btohs(uint16_t val)
{
#ifdef WORDS_BIGENDIAN
return (val << 8) | (val >> 8);
#else
return val;
#endif
}
static void
print_bluetooth_l2_psm(const char *prefix, uint16_t psm)
{
const uint16_t psm_he = btohs(psm);
const char *psm_name = xlookup(bluetooth_l2_psm, psm_he);
const bool psm_str = psm_name || (psm_he >= L2CAP_PSM_LE_DYN_START
&& psm_he <= L2CAP_PSM_LE_DYN_END)
|| (psm_he >= L2CAP_PSM_DYN_START);
tprintf("%shtobs(", prefix);
if (xlat_verbose(xlat_verbosity) != XLAT_STYLE_ABBREV || !psm_str)
tprintf("%#x", psm_he);
if (xlat_verbose(xlat_verbosity) == XLAT_STYLE_RAW)
goto print_bluetooth_l2_psm_end;
if (xlat_verbose(xlat_verbosity) == XLAT_STYLE_VERBOSE || !psm_str)
tprints(" /* ");
if (psm_name) {
tprints(psm_name);
} else if (psm_he >= L2CAP_PSM_LE_DYN_START
&& psm_he <= L2CAP_PSM_LE_DYN_END) {
print_xlat(L2CAP_PSM_LE_DYN_START);
tprintf(" + %u", psm_he - L2CAP_PSM_LE_DYN_START);
} else if (psm_he >= L2CAP_PSM_DYN_START) {
print_xlat(L2CAP_PSM_DYN_START);
tprintf(" + %u", psm_he - L2CAP_PSM_DYN_START);
} else {
tprints("L2CAP_PSM_???");
}
if (xlat_verbose(xlat_verbosity) == XLAT_STYLE_VERBOSE || !psm_str)
tprints(" */");
print_bluetooth_l2_psm_end:
tprints(")");
}
static void
print_bluetooth_l2_cid(const char *prefix, uint16_t cid)
{
const uint16_t cid_he = btohs(cid);
const char *cid_name = xlookup(bluetooth_l2_cid, cid_he);
const bool cid_str = cid_name || (cid_he >= L2CAP_CID_DYN_START);
tprintf("%shtobs(", prefix);
if (xlat_verbose(xlat_verbosity) != XLAT_STYLE_ABBREV || !cid_str)
tprintf("%#x", cid_he);
if (xlat_verbose(xlat_verbosity) == XLAT_STYLE_RAW)
goto print_bluetooth_l2_cid_end;
if (xlat_verbose(xlat_verbosity) == XLAT_STYLE_VERBOSE || !cid_str)
tprints(" /* ");
if (cid_name) {
tprints(cid_name);
} else if (cid_he >= L2CAP_CID_DYN_START) {
print_xlat(L2CAP_CID_DYN_START);
tprintf(" + %u", cid_he - L2CAP_CID_DYN_START);
} else {
tprints("L2CAP_CID_???");
}
if (xlat_verbose(xlat_verbosity) == XLAT_STYLE_VERBOSE || !cid_str)
tprints(" */");
print_bluetooth_l2_cid_end:
tprints(")");
}
static void
print_sockaddr_data_bt(const void *const buf, const int addrlen)
{
struct sockaddr_hci {
/* sa_family_t */ uint16_t hci_family;
uint16_t hci_dev;
uint16_t hci_channel;
};
struct bdaddr {
uint8_t b[6];
} ATTRIBUTE_PACKED;
struct sockaddr_sco {
/* sa_family_t */ uint16_t sco_family;
struct bdaddr sco_bdaddr;
};
struct sockaddr_rc {
/* sa_family_t */ uint16_t rc_family;
struct bdaddr rc_bdaddr;
uint8_t rc_channel;
};
struct sockaddr_l2 {
/* sa_family_t */ uint16_t l2_family;
/* little endian */ uint16_t l2_psm;
struct bdaddr l2_bdaddr;
/* little endian */ uint16_t l2_cid;
uint8_t l2_bdaddr_type;
};
switch (addrlen) {
case sizeof(struct sockaddr_hci): {
const struct sockaddr_hci *const hci = buf;
tprintf("hci_dev=htobs(%hu), hci_channel=",
btohs(hci->hci_dev));
printxval_index(hci_channels, hci->hci_channel,
"HCI_CHANNEL_???");
break;
}
case sizeof(struct sockaddr_sco): {
const struct sockaddr_sco *const sco = buf;
print_mac_addr("sco_bdaddr=", sco->sco_bdaddr.b,
sizeof(sco->sco_bdaddr.b));
break;
}
case sizeof(struct sockaddr_rc): {
const struct sockaddr_rc *const rc = buf;
print_mac_addr("rc_bdaddr=", rc->rc_bdaddr.b,
sizeof(rc->rc_bdaddr.b));
tprintf(", rc_channel=%u", rc->rc_channel);
break;
}
case offsetof(struct sockaddr_l2, l2_bdaddr_type):
case sizeof(struct sockaddr_l2): {
const struct sockaddr_l2 *const l2 = buf;
print_bluetooth_l2_psm("l2_psm=", l2->l2_psm);
print_mac_addr(", l2_bdaddr=", l2->l2_bdaddr.b,
sizeof(l2->l2_bdaddr.b));
print_bluetooth_l2_cid(", l2_cid=", l2->l2_cid);
if (addrlen == sizeof(struct sockaddr_l2)) {
tprints(", l2_bdaddr_type=");
printxval_index(bdaddr_types, l2->l2_bdaddr_type,
"BDADDR_???");
}
break;
}
default:
print_sockaddr_data_raw(buf, addrlen);
break;
}
}
typedef void (* const sockaddr_printer)(const void *const, const int);
static const struct {
const sockaddr_printer printer;
const int min_len;
} sa_printers[] = {
[AF_UNIX] = { print_sockaddr_data_un, SIZEOF_SA_FAMILY + 1 },
[AF_INET] = { print_sockaddr_data_in, sizeof(struct sockaddr_in) },
[AF_AX25] = { print_sockaddr_data_ax25, sizeof(struct sockaddr_ax25) },
[AF_IPX] = { print_sockaddr_data_ipx, sizeof(struct sockaddr_ipx) },
[AF_INET6] = { print_sockaddr_data_in6, SIN6_MIN_LEN },
[AF_NETLINK] = { print_sockaddr_data_nl, SIZEOF_SA_FAMILY + 1 },
[AF_PACKET] = { print_sockaddr_data_ll, sizeof(struct sockaddr_ll) },
[AF_BLUETOOTH] = { print_sockaddr_data_bt, SIZEOF_SA_FAMILY + 1 },
};
void
print_sockaddr(const void *const buf, const int addrlen)
{
const struct sockaddr *const sa = buf;
tprints("{sa_family=");
printxval_index(addrfams, sa->sa_family, "AF_???");
if (addrlen > (int) SIZEOF_SA_FAMILY) {
tprints(", ");
if (sa->sa_family < ARRAY_SIZE(sa_printers)
&& sa_printers[sa->sa_family].printer
&& addrlen >= sa_printers[sa->sa_family].min_len) {
sa_printers[sa->sa_family].printer(buf, addrlen);
} else {
print_sockaddr_data_raw(buf, addrlen);
}
}
tprints("}");
}
int
decode_sockaddr(struct tcb *const tcp, const kernel_ulong_t addr, int addrlen)
{
if (addrlen < 2) {
printaddr(addr);
return -1;
}
union {
struct sockaddr sa;
struct sockaddr_storage storage;
char pad[sizeof(struct sockaddr_storage) + 1];
} addrbuf;
if ((unsigned) addrlen > sizeof(addrbuf.storage))
addrlen = sizeof(addrbuf.storage);
if (umoven_or_printaddr(tcp, addr, addrlen, addrbuf.pad))
return -1;
memset(&addrbuf.pad[addrlen], 0, sizeof(addrbuf.pad) - addrlen);
print_sockaddr(&addrbuf, addrlen);
return addrbuf.sa.sa_family;
}