Dmitry V. Levin
cf7248d004
* linux/arm/syscallent.h: Define ARM_FIRST_SHUFFLED_SYSCALL instead of ARM_LAST_ORDINARY_SYSCALL. * syscall.c [ARM || AARCH64] (shuffle_scno): Update.
2767 lines
68 KiB
C
2767 lines
68 KiB
C
/*
|
|
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
|
|
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
|
|
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
|
|
* Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
|
|
* Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
|
|
* Linux for s390 port by D.J. Barrow
|
|
* <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include <sys/user.h>
|
|
#include <sys/param.h>
|
|
|
|
#ifdef HAVE_SYS_REG_H
|
|
# include <sys/reg.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_LINUX_PTRACE_H
|
|
# undef PTRACE_SYSCALL
|
|
# ifdef HAVE_STRUCT_IA64_FPREG
|
|
# define ia64_fpreg XXX_ia64_fpreg
|
|
# endif
|
|
# ifdef HAVE_STRUCT_PT_ALL_USER_REGS
|
|
# define pt_all_user_regs XXX_pt_all_user_regs
|
|
# endif
|
|
# ifdef HAVE_STRUCT_PTRACE_PEEKSIGINFO_ARGS
|
|
# define ptrace_peeksiginfo_args XXX_ptrace_peeksiginfo_args
|
|
# endif
|
|
# include <linux/ptrace.h>
|
|
# undef ptrace_peeksiginfo_args
|
|
# undef ia64_fpreg
|
|
# undef pt_all_user_regs
|
|
#endif
|
|
|
|
#if defined(SPARC64)
|
|
# undef PTRACE_GETREGS
|
|
# define PTRACE_GETREGS PTRACE_GETREGS64
|
|
# undef PTRACE_SETREGS
|
|
# define PTRACE_SETREGS PTRACE_SETREGS64
|
|
#endif
|
|
|
|
#if defined(IA64)
|
|
# include <asm/ptrace_offsets.h>
|
|
# include <asm/rse.h>
|
|
#endif
|
|
|
|
/* for struct iovec */
|
|
#include <sys/uio.h>
|
|
/* for NT_PRSTATUS */
|
|
#ifdef HAVE_ELF_H
|
|
# include <elf.h>
|
|
#endif
|
|
|
|
#if defined(AARCH64)
|
|
# include <asm/ptrace.h>
|
|
#endif
|
|
|
|
#if defined(XTENSA)
|
|
# include <asm/ptrace.h>
|
|
#endif
|
|
|
|
#ifndef NSIG
|
|
# warning: NSIG is not defined, using 32
|
|
# define NSIG 32
|
|
#endif
|
|
|
|
#include "syscall.h"
|
|
|
|
/* Define these shorthand notations to simplify the syscallent files. */
|
|
#define TD TRACE_DESC
|
|
#define TF TRACE_FILE
|
|
#define TI TRACE_IPC
|
|
#define TN TRACE_NETWORK
|
|
#define TP TRACE_PROCESS
|
|
#define TS TRACE_SIGNAL
|
|
#define TM TRACE_MEMORY
|
|
#define NF SYSCALL_NEVER_FAILS
|
|
#define MA MAX_ARGS
|
|
#define SI STACKTRACE_INVALIDATE_CACHE
|
|
#define SE STACKTRACE_CAPTURE_ON_ENTER
|
|
|
|
const struct_sysent sysent0[] = {
|
|
#include "syscallent.h"
|
|
};
|
|
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
static const struct_sysent sysent1[] = {
|
|
# include "syscallent1.h"
|
|
};
|
|
#endif
|
|
|
|
#if SUPPORTED_PERSONALITIES > 2
|
|
static const struct_sysent sysent2[] = {
|
|
# include "syscallent2.h"
|
|
};
|
|
#endif
|
|
|
|
/* Now undef them since short defines cause wicked namespace pollution. */
|
|
#undef TD
|
|
#undef TF
|
|
#undef TI
|
|
#undef TN
|
|
#undef TP
|
|
#undef TS
|
|
#undef TM
|
|
#undef NF
|
|
#undef MA
|
|
#undef SI
|
|
#undef SE
|
|
|
|
/*
|
|
* `ioctlent.h' may be generated from `ioctlent.raw' by the auxiliary
|
|
* program `ioctlsort', such that the list is sorted by the `code' field.
|
|
* This has the side-effect of resolving the _IO.. macros into
|
|
* plain integers, eliminating the need to include here everything
|
|
* in "/usr/include".
|
|
*/
|
|
|
|
const char *const errnoent0[] = {
|
|
#include "errnoent.h"
|
|
};
|
|
const char *const signalent0[] = {
|
|
#include "signalent.h"
|
|
};
|
|
const struct_ioctlent ioctlent0[] = {
|
|
#include "ioctlent.h"
|
|
};
|
|
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
static const char *const errnoent1[] = {
|
|
# include "errnoent1.h"
|
|
};
|
|
static const char *const signalent1[] = {
|
|
# include "signalent1.h"
|
|
};
|
|
static const struct_ioctlent ioctlent1[] = {
|
|
# include "ioctlent1.h"
|
|
};
|
|
#endif
|
|
|
|
#if SUPPORTED_PERSONALITIES > 2
|
|
static const char *const errnoent2[] = {
|
|
# include "errnoent2.h"
|
|
};
|
|
static const char *const signalent2[] = {
|
|
# include "signalent2.h"
|
|
};
|
|
static const struct_ioctlent ioctlent2[] = {
|
|
# include "ioctlent2.h"
|
|
};
|
|
#endif
|
|
|
|
enum {
|
|
nsyscalls0 = ARRAY_SIZE(sysent0)
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
, nsyscalls1 = ARRAY_SIZE(sysent1)
|
|
# if SUPPORTED_PERSONALITIES > 2
|
|
, nsyscalls2 = ARRAY_SIZE(sysent2)
|
|
# endif
|
|
#endif
|
|
};
|
|
|
|
enum {
|
|
nerrnos0 = ARRAY_SIZE(errnoent0)
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
, nerrnos1 = ARRAY_SIZE(errnoent1)
|
|
# if SUPPORTED_PERSONALITIES > 2
|
|
, nerrnos2 = ARRAY_SIZE(errnoent2)
|
|
# endif
|
|
#endif
|
|
};
|
|
|
|
enum {
|
|
nsignals0 = ARRAY_SIZE(signalent0)
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
, nsignals1 = ARRAY_SIZE(signalent1)
|
|
# if SUPPORTED_PERSONALITIES > 2
|
|
, nsignals2 = ARRAY_SIZE(signalent2)
|
|
# endif
|
|
#endif
|
|
};
|
|
|
|
enum {
|
|
nioctlents0 = ARRAY_SIZE(ioctlent0)
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
, nioctlents1 = ARRAY_SIZE(ioctlent1)
|
|
# if SUPPORTED_PERSONALITIES > 2
|
|
, nioctlents2 = ARRAY_SIZE(ioctlent2)
|
|
# endif
|
|
#endif
|
|
};
|
|
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
const struct_sysent *sysent = sysent0;
|
|
const char *const *errnoent = errnoent0;
|
|
const char *const *signalent = signalent0;
|
|
const struct_ioctlent *ioctlent = ioctlent0;
|
|
#endif
|
|
unsigned nsyscalls = nsyscalls0;
|
|
unsigned nerrnos = nerrnos0;
|
|
unsigned nsignals = nsignals0;
|
|
unsigned nioctlents = nioctlents0;
|
|
|
|
unsigned num_quals;
|
|
qualbits_t *qual_vec[SUPPORTED_PERSONALITIES];
|
|
|
|
static const unsigned nsyscall_vec[SUPPORTED_PERSONALITIES] = {
|
|
nsyscalls0,
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
nsyscalls1,
|
|
#endif
|
|
#if SUPPORTED_PERSONALITIES > 2
|
|
nsyscalls2,
|
|
#endif
|
|
};
|
|
static const struct_sysent *const sysent_vec[SUPPORTED_PERSONALITIES] = {
|
|
sysent0,
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
sysent1,
|
|
#endif
|
|
#if SUPPORTED_PERSONALITIES > 2
|
|
sysent2,
|
|
#endif
|
|
};
|
|
|
|
enum {
|
|
MAX_NSYSCALLS1 = (nsyscalls0
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
> nsyscalls1 ? nsyscalls0 : nsyscalls1
|
|
#endif
|
|
),
|
|
MAX_NSYSCALLS2 = (MAX_NSYSCALLS1
|
|
#if SUPPORTED_PERSONALITIES > 2
|
|
> nsyscalls2 ? MAX_NSYSCALLS1 : nsyscalls2
|
|
#endif
|
|
),
|
|
MAX_NSYSCALLS = MAX_NSYSCALLS2,
|
|
/* We are ready for arches with up to 255 signals,
|
|
* even though the largest known signo is on MIPS and it is 128.
|
|
* The number of existing syscalls on all arches is
|
|
* larger that 255 anyway, so it is just a pedantic matter.
|
|
*/
|
|
MIN_QUALS = MAX_NSYSCALLS > 255 ? MAX_NSYSCALLS : 255
|
|
};
|
|
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
unsigned current_personality;
|
|
|
|
# ifndef current_wordsize
|
|
unsigned current_wordsize;
|
|
static const int personality_wordsize[SUPPORTED_PERSONALITIES] = {
|
|
PERSONALITY0_WORDSIZE,
|
|
PERSONALITY1_WORDSIZE,
|
|
# if SUPPORTED_PERSONALITIES > 2
|
|
PERSONALITY2_WORDSIZE,
|
|
# endif
|
|
};
|
|
# endif
|
|
|
|
void
|
|
set_personality(int personality)
|
|
{
|
|
nsyscalls = nsyscall_vec[personality];
|
|
sysent = sysent_vec[personality];
|
|
|
|
switch (personality) {
|
|
case 0:
|
|
errnoent = errnoent0;
|
|
nerrnos = nerrnos0;
|
|
ioctlent = ioctlent0;
|
|
nioctlents = nioctlents0;
|
|
signalent = signalent0;
|
|
nsignals = nsignals0;
|
|
break;
|
|
|
|
case 1:
|
|
errnoent = errnoent1;
|
|
nerrnos = nerrnos1;
|
|
ioctlent = ioctlent1;
|
|
nioctlents = nioctlents1;
|
|
signalent = signalent1;
|
|
nsignals = nsignals1;
|
|
break;
|
|
|
|
# if SUPPORTED_PERSONALITIES > 2
|
|
case 2:
|
|
errnoent = errnoent2;
|
|
nerrnos = nerrnos2;
|
|
ioctlent = ioctlent2;
|
|
nioctlents = nioctlents2;
|
|
signalent = signalent2;
|
|
nsignals = nsignals2;
|
|
break;
|
|
# endif
|
|
}
|
|
|
|
current_personality = personality;
|
|
# ifndef current_wordsize
|
|
current_wordsize = personality_wordsize[personality];
|
|
# endif
|
|
}
|
|
|
|
static void
|
|
update_personality(struct tcb *tcp, unsigned int personality)
|
|
{
|
|
if (personality == current_personality)
|
|
return;
|
|
set_personality(personality);
|
|
|
|
if (personality == tcp->currpers)
|
|
return;
|
|
tcp->currpers = personality;
|
|
|
|
# if defined(POWERPC64)
|
|
if (!qflag) {
|
|
static const char *const names[] = {"64 bit", "32 bit"};
|
|
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
|
|
tcp->pid, names[personality]);
|
|
}
|
|
# elif defined(X86_64)
|
|
if (!qflag) {
|
|
static const char *const names[] = {"64 bit", "32 bit", "x32"};
|
|
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
|
|
tcp->pid, names[personality]);
|
|
}
|
|
# elif defined(X32)
|
|
if (!qflag) {
|
|
static const char *const names[] = {"x32", "32 bit"};
|
|
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
|
|
tcp->pid, names[personality]);
|
|
}
|
|
# elif defined(AARCH64)
|
|
if (!qflag) {
|
|
static const char *const names[] = {"32-bit", "AArch64"};
|
|
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
|
|
tcp->pid, names[personality]);
|
|
}
|
|
# elif defined(TILE)
|
|
if (!qflag) {
|
|
static const char *const names[] = {"64-bit", "32-bit"};
|
|
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
|
|
tcp->pid, names[personality]);
|
|
}
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
static int qual_syscall(), qual_signal(), qual_desc();
|
|
|
|
static const struct qual_options {
|
|
unsigned int bitflag;
|
|
const char *option_name;
|
|
int (*qualify)(const char *, int, int);
|
|
const char *argument_name;
|
|
} qual_options[] = {
|
|
{ QUAL_TRACE, "trace", qual_syscall, "system call" },
|
|
{ QUAL_TRACE, "t", qual_syscall, "system call" },
|
|
{ QUAL_ABBREV, "abbrev", qual_syscall, "system call" },
|
|
{ QUAL_ABBREV, "a", qual_syscall, "system call" },
|
|
{ QUAL_VERBOSE, "verbose", qual_syscall, "system call" },
|
|
{ QUAL_VERBOSE, "v", qual_syscall, "system call" },
|
|
{ QUAL_RAW, "raw", qual_syscall, "system call" },
|
|
{ QUAL_RAW, "x", qual_syscall, "system call" },
|
|
{ QUAL_SIGNAL, "signal", qual_signal, "signal" },
|
|
{ QUAL_SIGNAL, "signals", qual_signal, "signal" },
|
|
{ QUAL_SIGNAL, "s", qual_signal, "signal" },
|
|
{ QUAL_READ, "read", qual_desc, "descriptor" },
|
|
{ QUAL_READ, "reads", qual_desc, "descriptor" },
|
|
{ QUAL_READ, "r", qual_desc, "descriptor" },
|
|
{ QUAL_WRITE, "write", qual_desc, "descriptor" },
|
|
{ QUAL_WRITE, "writes", qual_desc, "descriptor" },
|
|
{ QUAL_WRITE, "w", qual_desc, "descriptor" },
|
|
{ 0, NULL, NULL, NULL },
|
|
};
|
|
|
|
static void
|
|
reallocate_qual(const unsigned int n)
|
|
{
|
|
unsigned p;
|
|
qualbits_t *qp;
|
|
for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
|
|
qp = qual_vec[p] = realloc(qual_vec[p], n * sizeof(qualbits_t));
|
|
if (!qp)
|
|
die_out_of_memory();
|
|
memset(&qp[num_quals], 0, (n - num_quals) * sizeof(qualbits_t));
|
|
}
|
|
num_quals = n;
|
|
}
|
|
|
|
static void
|
|
qualify_one(const unsigned int n, unsigned int bitflag, const int not, const int pers)
|
|
{
|
|
int p;
|
|
|
|
if (num_quals <= n)
|
|
reallocate_qual(n + 1);
|
|
|
|
for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
|
|
if (pers == p || pers < 0) {
|
|
if (not)
|
|
qual_vec[p][n] &= ~bitflag;
|
|
else
|
|
qual_vec[p][n] |= bitflag;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
qual_syscall(const char *s, const unsigned int bitflag, const int not)
|
|
{
|
|
int p;
|
|
unsigned int i;
|
|
int rc = -1;
|
|
|
|
if (*s >= '0' && *s <= '9') {
|
|
i = string_to_uint(s);
|
|
if (i >= MAX_NSYSCALLS)
|
|
return -1;
|
|
qualify_one(i, bitflag, not, -1);
|
|
return 0;
|
|
}
|
|
|
|
for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
|
|
for (i = 0; i < nsyscall_vec[p]; i++) {
|
|
if (sysent_vec[p][i].sys_name
|
|
&& strcmp(s, sysent_vec[p][i].sys_name) == 0
|
|
) {
|
|
qualify_one(i, bitflag, not, p);
|
|
rc = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
qual_signal(const char *s, const unsigned int bitflag, const int not)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (*s >= '0' && *s <= '9') {
|
|
int signo = string_to_uint(s);
|
|
if (signo < 0 || signo > 255)
|
|
return -1;
|
|
qualify_one(signo, bitflag, not, -1);
|
|
return 0;
|
|
}
|
|
if (strncasecmp(s, "SIG", 3) == 0)
|
|
s += 3;
|
|
for (i = 0; i <= NSIG; i++) {
|
|
if (strcasecmp(s, signame(i) + 3) == 0) {
|
|
qualify_one(i, bitflag, not, -1);
|
|
return 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
qual_desc(const char *s, const unsigned int bitflag, const int not)
|
|
{
|
|
if (*s >= '0' && *s <= '9') {
|
|
int desc = string_to_uint(s);
|
|
if (desc < 0 || desc > 0x7fff) /* paranoia */
|
|
return -1;
|
|
qualify_one(desc, bitflag, not, -1);
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
lookup_class(const char *s)
|
|
{
|
|
if (strcmp(s, "file") == 0)
|
|
return TRACE_FILE;
|
|
if (strcmp(s, "ipc") == 0)
|
|
return TRACE_IPC;
|
|
if (strcmp(s, "network") == 0)
|
|
return TRACE_NETWORK;
|
|
if (strcmp(s, "process") == 0)
|
|
return TRACE_PROCESS;
|
|
if (strcmp(s, "signal") == 0)
|
|
return TRACE_SIGNAL;
|
|
if (strcmp(s, "desc") == 0)
|
|
return TRACE_DESC;
|
|
if (strcmp(s, "memory") == 0)
|
|
return TRACE_MEMORY;
|
|
return -1;
|
|
}
|
|
|
|
void
|
|
qualify(const char *s)
|
|
{
|
|
const struct qual_options *opt;
|
|
char *copy;
|
|
const char *p;
|
|
int not;
|
|
unsigned int i;
|
|
|
|
if (num_quals == 0)
|
|
reallocate_qual(MIN_QUALS);
|
|
|
|
opt = &qual_options[0];
|
|
for (i = 0; (p = qual_options[i].option_name); i++) {
|
|
unsigned int len = strlen(p);
|
|
if (strncmp(s, p, len) == 0 && s[len] == '=') {
|
|
opt = &qual_options[i];
|
|
s += len + 1;
|
|
break;
|
|
}
|
|
}
|
|
not = 0;
|
|
if (*s == '!') {
|
|
not = 1;
|
|
s++;
|
|
}
|
|
if (strcmp(s, "none") == 0) {
|
|
not = 1 - not;
|
|
s = "all";
|
|
}
|
|
if (strcmp(s, "all") == 0) {
|
|
for (i = 0; i < num_quals; i++) {
|
|
qualify_one(i, opt->bitflag, not, -1);
|
|
}
|
|
return;
|
|
}
|
|
for (i = 0; i < num_quals; i++) {
|
|
qualify_one(i, opt->bitflag, !not, -1);
|
|
}
|
|
copy = strdup(s);
|
|
if (!copy)
|
|
die_out_of_memory();
|
|
for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) {
|
|
int n;
|
|
if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) {
|
|
unsigned pers;
|
|
for (pers = 0; pers < SUPPORTED_PERSONALITIES; pers++) {
|
|
for (i = 0; i < nsyscall_vec[pers]; i++)
|
|
if (sysent_vec[pers][i].sys_flags & n)
|
|
qualify_one(i, opt->bitflag, not, pers);
|
|
}
|
|
continue;
|
|
}
|
|
if (opt->qualify(p, opt->bitflag, not)) {
|
|
error_msg_and_die("invalid %s '%s'",
|
|
opt->argument_name, p);
|
|
}
|
|
}
|
|
free(copy);
|
|
return;
|
|
}
|
|
|
|
#ifdef SYS_socket_subcall
|
|
static void
|
|
decode_socket_subcall(struct tcb *tcp)
|
|
{
|
|
unsigned long addr;
|
|
unsigned int i, n, size;
|
|
|
|
if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_socket_nsubcalls)
|
|
return;
|
|
|
|
tcp->scno = SYS_socket_subcall + tcp->u_arg[0];
|
|
tcp->qual_flg = qual_flags[tcp->scno];
|
|
tcp->s_ent = &sysent[tcp->scno];
|
|
addr = tcp->u_arg[1];
|
|
size = current_wordsize;
|
|
n = tcp->s_ent->nargs;
|
|
for (i = 0; i < n; ++i) {
|
|
if (size == sizeof(int)) {
|
|
unsigned int arg;
|
|
if (umove(tcp, addr, &arg) < 0)
|
|
arg = 0;
|
|
tcp->u_arg[i] = arg;
|
|
}
|
|
else {
|
|
unsigned long arg;
|
|
if (umove(tcp, addr, &arg) < 0)
|
|
arg = 0;
|
|
tcp->u_arg[i] = arg;
|
|
}
|
|
addr += size;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SYS_ipc_subcall
|
|
static void
|
|
decode_ipc_subcall(struct tcb *tcp)
|
|
{
|
|
unsigned int i, n;
|
|
|
|
if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_ipc_nsubcalls)
|
|
return;
|
|
|
|
tcp->scno = SYS_ipc_subcall + tcp->u_arg[0];
|
|
tcp->qual_flg = qual_flags[tcp->scno];
|
|
tcp->s_ent = &sysent[tcp->scno];
|
|
n = tcp->s_ent->nargs;
|
|
for (i = 0; i < n; i++)
|
|
tcp->u_arg[i] = tcp->u_arg[i + 1];
|
|
}
|
|
#endif
|
|
|
|
int
|
|
printargs(struct tcb *tcp)
|
|
{
|
|
if (entering(tcp)) {
|
|
int i;
|
|
int n = tcp->s_ent->nargs;
|
|
for (i = 0; i < n; i++)
|
|
tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
printargs_lu(struct tcb *tcp)
|
|
{
|
|
if (entering(tcp)) {
|
|
int i;
|
|
int n = tcp->s_ent->nargs;
|
|
for (i = 0; i < n; i++)
|
|
tprintf("%s%lu", i ? ", " : "", tcp->u_arg[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
printargs_ld(struct tcb *tcp)
|
|
{
|
|
if (entering(tcp)) {
|
|
int i;
|
|
int n = tcp->s_ent->nargs;
|
|
for (i = 0; i < n; i++)
|
|
tprintf("%s%ld", i ? ", " : "", tcp->u_arg[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if defined(SPARC) || defined(SPARC64) || defined(IA64) || defined(SH)
|
|
long
|
|
getrval2(struct tcb *tcp)
|
|
{
|
|
long val;
|
|
|
|
# if defined(SPARC) || defined(SPARC64)
|
|
val = sparc_regs.u_regs[U_REG_O1];
|
|
# elif defined(SH)
|
|
if (upeek(tcp->pid, 4*(REG_REG0+1), &val) < 0)
|
|
return -1;
|
|
# elif defined(IA64)
|
|
if (upeek(tcp->pid, PT_R9, &val) < 0)
|
|
return -1;
|
|
# endif
|
|
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
#if defined(I386)
|
|
static struct user_regs_struct i386_regs;
|
|
/* Cast suppresses signedness warning (.esp is long, not unsigned long) */
|
|
uint32_t *const i386_esp_ptr = (uint32_t*)&i386_regs.esp;
|
|
# define ARCH_REGS_FOR_GETREGSET i386_regs
|
|
#elif defined(X86_64) || defined(X32)
|
|
/*
|
|
* On i386, pt_regs and user_regs_struct are the same,
|
|
* but on 64 bit x86, user_regs_struct has six more fields:
|
|
* fs_base, gs_base, ds, es, fs, gs.
|
|
* PTRACE_GETREGS fills them too, so struct pt_regs would overflow.
|
|
*/
|
|
struct i386_user_regs_struct {
|
|
uint32_t ebx;
|
|
uint32_t ecx;
|
|
uint32_t edx;
|
|
uint32_t esi;
|
|
uint32_t edi;
|
|
uint32_t ebp;
|
|
uint32_t eax;
|
|
uint32_t xds;
|
|
uint32_t xes;
|
|
uint32_t xfs;
|
|
uint32_t xgs;
|
|
uint32_t orig_eax;
|
|
uint32_t eip;
|
|
uint32_t xcs;
|
|
uint32_t eflags;
|
|
uint32_t esp;
|
|
uint32_t xss;
|
|
};
|
|
static union {
|
|
struct user_regs_struct x86_64_r;
|
|
struct i386_user_regs_struct i386_r;
|
|
} x86_regs_union;
|
|
# define x86_64_regs x86_regs_union.x86_64_r
|
|
# define i386_regs x86_regs_union.i386_r
|
|
uint32_t *const i386_esp_ptr = &i386_regs.esp;
|
|
static struct iovec x86_io = {
|
|
.iov_base = &x86_regs_union
|
|
};
|
|
#elif defined(IA64)
|
|
bool ia64_ia32mode = 0; /* not static */
|
|
static long ia64_r8, ia64_r10;
|
|
#elif defined(POWERPC)
|
|
struct pt_regs ppc_regs;
|
|
#elif defined(M68K)
|
|
static long m68k_d0;
|
|
#elif defined(BFIN)
|
|
static long bfin_r0;
|
|
#elif defined(ARM)
|
|
struct pt_regs arm_regs; /* not static */
|
|
# define ARCH_REGS_FOR_GETREGSET arm_regs
|
|
#elif defined(AARCH64)
|
|
static union {
|
|
struct user_pt_regs aarch64_r;
|
|
struct arm_pt_regs arm_r;
|
|
} arm_regs_union;
|
|
# define aarch64_regs arm_regs_union.aarch64_r
|
|
# define arm_regs arm_regs_union.arm_r
|
|
static struct iovec aarch64_io = {
|
|
.iov_base = &arm_regs_union
|
|
};
|
|
#elif defined(ALPHA)
|
|
static long alpha_r0;
|
|
static long alpha_a3;
|
|
#elif defined(AVR32)
|
|
static struct pt_regs avr32_regs;
|
|
#elif defined(SPARC) || defined(SPARC64)
|
|
struct pt_regs sparc_regs; /* not static */
|
|
#elif defined(LINUX_MIPSN32)
|
|
static long long mips_a3;
|
|
static long long mips_r2;
|
|
#elif defined(MIPS)
|
|
static long mips_a3;
|
|
static long mips_r2;
|
|
#elif defined(S390) || defined(S390X)
|
|
static long s390_gpr2;
|
|
#elif defined(HPPA)
|
|
static long hppa_r28;
|
|
#elif defined(SH)
|
|
static long sh_r0;
|
|
#elif defined(SH64)
|
|
static long sh64_r9;
|
|
#elif defined(CRISV10) || defined(CRISV32)
|
|
static long cris_r10;
|
|
#elif defined(TILE)
|
|
struct pt_regs tile_regs;
|
|
#elif defined(MICROBLAZE)
|
|
static long microblaze_r3;
|
|
#elif defined(OR1K)
|
|
static struct user_regs_struct or1k_regs;
|
|
# define ARCH_REGS_FOR_GETREGSET or1k_regs
|
|
#elif defined(METAG)
|
|
static struct user_gp_regs metag_regs;
|
|
# define ARCH_REGS_FOR_GETREGSET metag_regs
|
|
#elif defined(XTENSA)
|
|
static long xtensa_a2;
|
|
# elif defined(ARC)
|
|
static struct user_regs_struct arc_regs;
|
|
# define ARCH_REGS_FOR_GETREGSET arc_regs
|
|
#endif
|
|
|
|
void
|
|
print_pc(struct tcb *tcp)
|
|
{
|
|
#define PRINTBADPC tprintf(sizeof(long) == 4 ? "[????????] " : \
|
|
sizeof(long) == 8 ? "[????????????????] " : \
|
|
NULL /* crash */)
|
|
if (get_regs_error) {
|
|
PRINTBADPC;
|
|
return;
|
|
}
|
|
#if defined(I386)
|
|
tprintf("[%08lx] ", i386_regs.eip);
|
|
#elif defined(S390) || defined(S390X)
|
|
long psw;
|
|
if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0) {
|
|
PRINTBADPC;
|
|
return;
|
|
}
|
|
# ifdef S390
|
|
tprintf("[%08lx] ", psw);
|
|
# elif S390X
|
|
tprintf("[%016lx] ", psw);
|
|
# endif
|
|
#elif defined(X86_64) || defined(X32)
|
|
if (x86_io.iov_len == sizeof(i386_regs)) {
|
|
tprintf("[%08x] ", (unsigned) i386_regs.eip);
|
|
} else {
|
|
# if defined(X86_64)
|
|
tprintf("[%016lx] ", (unsigned long) x86_64_regs.rip);
|
|
# elif defined(X32)
|
|
/* Note: this truncates 64-bit rip to 32 bits */
|
|
tprintf("[%08lx] ", (unsigned long) x86_64_regs.rip);
|
|
# endif
|
|
}
|
|
#elif defined(IA64)
|
|
long ip;
|
|
if (upeek(tcp->pid, PT_B0, &ip) < 0) {
|
|
PRINTBADPC;
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", ip);
|
|
#elif defined(POWERPC)
|
|
long pc = ppc_regs.nip;
|
|
# ifdef POWERPC64
|
|
tprintf("[%016lx] ", pc);
|
|
# else
|
|
tprintf("[%08lx] ", pc);
|
|
# endif
|
|
#elif defined(M68K)
|
|
long pc;
|
|
if (upeek(tcp->pid, 4*PT_PC, &pc) < 0) {
|
|
tprints("[????????] ");
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(ALPHA)
|
|
long pc;
|
|
if (upeek(tcp->pid, REG_PC, &pc) < 0) {
|
|
tprints("[????????????????] ");
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(SPARC)
|
|
tprintf("[%08lx] ", sparc_regs.pc);
|
|
#elif defined(SPARC64)
|
|
tprintf("[%08lx] ", sparc_regs.tpc);
|
|
#elif defined(HPPA)
|
|
long pc;
|
|
if (upeek(tcp->pid, PT_IAOQ0, &pc) < 0) {
|
|
tprints("[????????] ");
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(MIPS)
|
|
long pc;
|
|
if (upeek(tcp->pid, REG_EPC, &pc) < 0) {
|
|
tprints("[????????] ");
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(SH)
|
|
long pc;
|
|
if (upeek(tcp->pid, 4*REG_PC, &pc) < 0) {
|
|
tprints("[????????] ");
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(SH64)
|
|
long pc;
|
|
if (upeek(tcp->pid, REG_PC, &pc) < 0) {
|
|
tprints("[????????????????] ");
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(ARM)
|
|
tprintf("[%08lx] ", arm_regs.ARM_pc);
|
|
#elif defined(AARCH64)
|
|
/* tprintf("[%016lx] ", aarch64_regs.regs[???]); */
|
|
#elif defined(AVR32)
|
|
tprintf("[%08lx] ", avr32_regs.pc);
|
|
#elif defined(BFIN)
|
|
long pc;
|
|
if (upeek(tcp->pid, PT_PC, &pc) < 0) {
|
|
PRINTBADPC;
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(CRISV10)
|
|
long pc;
|
|
if (upeek(tcp->pid, 4*PT_IRP, &pc) < 0) {
|
|
PRINTBADPC;
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(CRISV32)
|
|
long pc;
|
|
if (upeek(tcp->pid, 4*PT_ERP, &pc) < 0) {
|
|
PRINTBADPC;
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(TILE)
|
|
# ifdef _LP64
|
|
tprintf("[%016lx] ", (unsigned long) tile_regs.pc);
|
|
# else
|
|
tprintf("[%08lx] ", (unsigned long) tile_regs.pc);
|
|
# endif
|
|
#elif defined(OR1K)
|
|
tprintf("[%08lx] ", or1k_regs.pc);
|
|
#elif defined(METAG)
|
|
tprintf("[%08lx] ", metag_regs.pc);
|
|
#elif defined(XTENSA)
|
|
long pc;
|
|
if (upeek(tcp->pid, REG_PC, &pc) < 0) {
|
|
PRINTBADPC;
|
|
return;
|
|
}
|
|
tprintf("[%08lx] ", pc);
|
|
#elif defined(ARC)
|
|
tprintf("[%08lx] ", arc_regs.efa);
|
|
#endif /* architecture */
|
|
}
|
|
|
|
/*
|
|
* Shuffle syscall numbers so that we don't have huge gaps in syscall table.
|
|
* The shuffling should be an involution: shuffle_scno(shuffle_scno(n)) == n.
|
|
*/
|
|
#if defined(ARM) || defined(AARCH64) /* So far only 32-bit ARM needs this */
|
|
static long
|
|
shuffle_scno(unsigned long scno)
|
|
{
|
|
if (scno < ARM_FIRST_SHUFFLED_SYSCALL)
|
|
return scno;
|
|
|
|
/* __ARM_NR_cmpxchg? Swap with LAST_ORDINARY+1 */
|
|
if (scno == ARM_FIRST_SHUFFLED_SYSCALL)
|
|
return 0x000ffff0;
|
|
if (scno == 0x000ffff0)
|
|
return ARM_FIRST_SHUFFLED_SYSCALL;
|
|
|
|
#define ARM_SECOND_SHUFFLED_SYSCALL (ARM_FIRST_SHUFFLED_SYSCALL + 1)
|
|
/*
|
|
* Is it ARM specific syscall?
|
|
* Swap [0x000f0000, 0x000f0000 + LAST_SPECIAL] range
|
|
* with [SECOND_SHUFFLED, SECOND_SHUFFLED + LAST_SPECIAL] range.
|
|
*/
|
|
if (scno >= 0x000f0000 &&
|
|
scno <= 0x000f0000 + ARM_LAST_SPECIAL_SYSCALL) {
|
|
return scno - 0x000f0000 + ARM_SECOND_SHUFFLED_SYSCALL;
|
|
}
|
|
if (scno <= ARM_SECOND_SHUFFLED_SYSCALL + ARM_LAST_SPECIAL_SYSCALL) {
|
|
return scno + 0x000f0000 - ARM_SECOND_SHUFFLED_SYSCALL;
|
|
}
|
|
|
|
return scno;
|
|
}
|
|
#else
|
|
# define shuffle_scno(scno) ((long)(scno))
|
|
#endif
|
|
|
|
static char*
|
|
undefined_scno_name(struct tcb *tcp)
|
|
{
|
|
static char buf[sizeof("syscall_%lu") + sizeof(long)*3];
|
|
|
|
sprintf(buf, "syscall_%lu", shuffle_scno(tcp->scno));
|
|
return buf;
|
|
}
|
|
|
|
#ifdef POWERPC
|
|
/*
|
|
* PTRACE_GETREGS was added to the PowerPC kernel in v2.6.23,
|
|
* we provide a slow fallback for old kernels.
|
|
*/
|
|
static int powerpc_getregs_old(pid_t pid)
|
|
{
|
|
int i;
|
|
long r;
|
|
|
|
if (iflag) {
|
|
r = upeek(pid, sizeof(long) * PT_NIP, (long *)&ppc_regs.nip);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
#ifdef POWERPC64 /* else we never use it */
|
|
r = upeek(pid, sizeof(long) * PT_MSR, (long *)&ppc_regs.msr);
|
|
if (r)
|
|
goto out;
|
|
#endif
|
|
r = upeek(pid, sizeof(long) * PT_CCR, (long *)&ppc_regs.ccr);
|
|
if (r)
|
|
goto out;
|
|
r = upeek(pid, sizeof(long) * PT_ORIG_R3, (long *)&ppc_regs.orig_gpr3);
|
|
if (r)
|
|
goto out;
|
|
for (i = 0; i <= 8; i++) {
|
|
r = upeek(pid, sizeof(long) * (PT_R0 + i),
|
|
(long *)&ppc_regs.gpr[i]);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
#ifndef get_regs
|
|
long get_regs_error;
|
|
|
|
#if defined(PTRACE_GETREGSET) && defined(NT_PRSTATUS)
|
|
static void get_regset(pid_t pid)
|
|
{
|
|
/* constant iovec */
|
|
# if defined(ARM) \
|
|
|| defined(I386) \
|
|
|| defined(METAG) \
|
|
|| defined(OR1K) \
|
|
|| defined(ARC)
|
|
static struct iovec io = {
|
|
.iov_base = &ARCH_REGS_FOR_GETREGSET,
|
|
.iov_len = sizeof(ARCH_REGS_FOR_GETREGSET)
|
|
};
|
|
get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &io);
|
|
|
|
/* variable iovec */
|
|
# elif defined(X86_64) || defined(X32)
|
|
/* x86_io.iov_base = &x86_regs_union; - already is */
|
|
x86_io.iov_len = sizeof(x86_regs_union);
|
|
get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &x86_io);
|
|
# elif defined(AARCH64)
|
|
/* aarch64_io.iov_base = &arm_regs_union; - already is */
|
|
aarch64_io.iov_len = sizeof(arm_regs_union);
|
|
get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &aarch64_io);
|
|
# else
|
|
# warning both PTRACE_GETREGSET and NT_PRSTATUS are available but not yet used
|
|
# endif
|
|
}
|
|
#endif /* PTRACE_GETREGSET && NT_PRSTATUS */
|
|
|
|
void
|
|
get_regs(pid_t pid)
|
|
{
|
|
/* PTRACE_GETREGSET only */
|
|
# if defined(METAG) || defined(OR1K) || defined(X32) || defined(AARCH64) || defined(ARC)
|
|
get_regset(pid);
|
|
|
|
/* PTRACE_GETREGS only */
|
|
# elif defined(AVR32)
|
|
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &avr32_regs);
|
|
# elif defined(TILE)
|
|
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &tile_regs);
|
|
# elif defined(SPARC) || defined(SPARC64)
|
|
get_regs_error = ptrace(PTRACE_GETREGS, pid, (char *)&sparc_regs, 0);
|
|
# elif defined(POWERPC)
|
|
static bool old_kernel = 0;
|
|
if (old_kernel)
|
|
goto old;
|
|
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, (long) &ppc_regs);
|
|
if (get_regs_error && errno == EIO) {
|
|
old_kernel = 1;
|
|
old:
|
|
get_regs_error = powerpc_getregs_old(pid);
|
|
}
|
|
|
|
/* try PTRACE_GETREGSET first, fallback to PTRACE_GETREGS */
|
|
# else
|
|
# if defined(PTRACE_GETREGSET) && defined(NT_PRSTATUS)
|
|
static int getregset_support;
|
|
|
|
if (getregset_support >= 0) {
|
|
get_regset(pid);
|
|
if (getregset_support > 0)
|
|
return;
|
|
if (get_regs_error >= 0) {
|
|
getregset_support = 1;
|
|
return;
|
|
}
|
|
if (errno == EPERM || errno == ESRCH)
|
|
return;
|
|
getregset_support = -1;
|
|
}
|
|
# endif /* PTRACE_GETREGSET && NT_PRSTATUS */
|
|
# if defined(ARM)
|
|
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &arm_regs);
|
|
# elif defined(I386)
|
|
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &i386_regs);
|
|
# elif defined(X86_64)
|
|
/* Use old method, with unreliable heuristical detection of 32-bitness. */
|
|
x86_io.iov_len = sizeof(x86_64_regs);
|
|
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &x86_64_regs);
|
|
if (!get_regs_error && x86_64_regs.cs == 0x23) {
|
|
x86_io.iov_len = sizeof(i386_regs);
|
|
/*
|
|
* The order is important: i386_regs and x86_64_regs
|
|
* are overlaid in memory!
|
|
*/
|
|
i386_regs.ebx = x86_64_regs.rbx;
|
|
i386_regs.ecx = x86_64_regs.rcx;
|
|
i386_regs.edx = x86_64_regs.rdx;
|
|
i386_regs.esi = x86_64_regs.rsi;
|
|
i386_regs.edi = x86_64_regs.rdi;
|
|
i386_regs.ebp = x86_64_regs.rbp;
|
|
i386_regs.eax = x86_64_regs.rax;
|
|
/* i386_regs.xds = x86_64_regs.ds; unused by strace */
|
|
/* i386_regs.xes = x86_64_regs.es; ditto... */
|
|
/* i386_regs.xfs = x86_64_regs.fs; */
|
|
/* i386_regs.xgs = x86_64_regs.gs; */
|
|
i386_regs.orig_eax = x86_64_regs.orig_rax;
|
|
i386_regs.eip = x86_64_regs.rip;
|
|
/* i386_regs.xcs = x86_64_regs.cs; */
|
|
/* i386_regs.eflags = x86_64_regs.eflags; */
|
|
i386_regs.esp = x86_64_regs.rsp;
|
|
/* i386_regs.xss = x86_64_regs.ss; */
|
|
}
|
|
# else
|
|
# error unhandled architecture
|
|
# endif /* ARM || I386 || X86_64 */
|
|
# endif
|
|
}
|
|
#endif /* !get_regs */
|
|
|
|
/* Returns:
|
|
* 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently.
|
|
* 1: ok, continue in trace_syscall_entering().
|
|
* other: error, trace_syscall_entering() should print error indicator
|
|
* ("????" etc) and bail out.
|
|
*/
|
|
static int
|
|
get_scno(struct tcb *tcp)
|
|
{
|
|
long scno = 0;
|
|
|
|
#if defined(S390) || defined(S390X)
|
|
if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0)
|
|
return -1;
|
|
|
|
if (s390_gpr2 != -ENOSYS) {
|
|
/*
|
|
* Since kernel version 2.5.44 the scno gets passed in gpr2.
|
|
*/
|
|
scno = s390_gpr2;
|
|
} else {
|
|
/*
|
|
* Old style of "passing" the scno via the SVC instruction.
|
|
*/
|
|
long psw;
|
|
long opcode, offset_reg, tmp;
|
|
void *svc_addr;
|
|
static const int gpr_offset[16] = {
|
|
PT_GPR0, PT_GPR1, PT_ORIGGPR2, PT_GPR3,
|
|
PT_GPR4, PT_GPR5, PT_GPR6, PT_GPR7,
|
|
PT_GPR8, PT_GPR9, PT_GPR10, PT_GPR11,
|
|
PT_GPR12, PT_GPR13, PT_GPR14, PT_GPR15
|
|
};
|
|
|
|
if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0)
|
|
return -1;
|
|
errno = 0;
|
|
opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(psw - sizeof(long)), 0);
|
|
if (errno) {
|
|
perror_msg("peektext(psw-oneword)");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* We have to check if the SVC got executed directly or via an
|
|
* EXECUTE instruction. In case of EXECUTE it is necessary to do
|
|
* instruction decoding to derive the system call number.
|
|
* Unfortunately the opcode sizes of EXECUTE and SVC are differently,
|
|
* so that this doesn't work if a SVC opcode is part of an EXECUTE
|
|
* opcode. Since there is no way to find out the opcode size this
|
|
* is the best we can do...
|
|
*/
|
|
if ((opcode & 0xff00) == 0x0a00) {
|
|
/* SVC opcode */
|
|
scno = opcode & 0xff;
|
|
}
|
|
else {
|
|
/* SVC got executed by EXECUTE instruction */
|
|
|
|
/*
|
|
* Do instruction decoding of EXECUTE. If you really want to
|
|
* understand this, read the Principles of Operations.
|
|
*/
|
|
svc_addr = (void *) (opcode & 0xfff);
|
|
|
|
tmp = 0;
|
|
offset_reg = (opcode & 0x000f0000) >> 16;
|
|
if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
|
|
return -1;
|
|
svc_addr += tmp;
|
|
|
|
tmp = 0;
|
|
offset_reg = (opcode & 0x0000f000) >> 12;
|
|
if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
|
|
return -1;
|
|
svc_addr += tmp;
|
|
|
|
scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0);
|
|
if (errno)
|
|
return -1;
|
|
# if defined(S390X)
|
|
scno >>= 48;
|
|
# else
|
|
scno >>= 16;
|
|
# endif
|
|
tmp = 0;
|
|
offset_reg = (opcode & 0x00f00000) >> 20;
|
|
if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
|
|
return -1;
|
|
|
|
scno = (scno | tmp) & 0xff;
|
|
}
|
|
}
|
|
#elif defined(POWERPC)
|
|
scno = ppc_regs.gpr[0];
|
|
# ifdef POWERPC64
|
|
unsigned int currpers;
|
|
|
|
/*
|
|
* Check for 64/32 bit mode.
|
|
* Embedded implementations covered by Book E extension of PPC use
|
|
* bit 0 (CM) of 32-bit Machine state register (MSR).
|
|
* Other implementations use bit 0 (SF) of 64-bit MSR.
|
|
*/
|
|
currpers = (ppc_regs.msr & 0x8000000080000000) ? 0 : 1;
|
|
update_personality(tcp, currpers);
|
|
# endif
|
|
#elif defined(AVR32)
|
|
scno = avr32_regs.r8;
|
|
#elif defined(BFIN)
|
|
if (upeek(tcp->pid, PT_ORIG_P0, &scno))
|
|
return -1;
|
|
#elif defined(I386)
|
|
scno = i386_regs.orig_eax;
|
|
#elif defined(X86_64) || defined(X32)
|
|
# ifndef __X32_SYSCALL_BIT
|
|
# define __X32_SYSCALL_BIT 0x40000000
|
|
# endif
|
|
unsigned int currpers;
|
|
# if 1
|
|
/* GETREGSET of NT_PRSTATUS tells us regset size,
|
|
* which unambiguously detects i386.
|
|
*
|
|
* Linux kernel distinguishes x86-64 and x32 processes
|
|
* solely by looking at __X32_SYSCALL_BIT:
|
|
* arch/x86/include/asm/compat.h::is_x32_task():
|
|
* if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)
|
|
* return true;
|
|
*/
|
|
if (x86_io.iov_len == sizeof(i386_regs)) {
|
|
scno = i386_regs.orig_eax;
|
|
currpers = 1;
|
|
} else {
|
|
scno = x86_64_regs.orig_rax;
|
|
currpers = 0;
|
|
if (scno & __X32_SYSCALL_BIT) {
|
|
scno -= __X32_SYSCALL_BIT;
|
|
currpers = 2;
|
|
}
|
|
}
|
|
# elif 0
|
|
/* cs = 0x33 for long mode (native 64 bit and x32)
|
|
* cs = 0x23 for compatibility mode (32 bit)
|
|
* ds = 0x2b for x32 mode (x86-64 in 32 bit)
|
|
*/
|
|
scno = x86_64_regs.orig_rax;
|
|
switch (x86_64_regs.cs) {
|
|
case 0x23: currpers = 1; break;
|
|
case 0x33:
|
|
if (x86_64_regs.ds == 0x2b) {
|
|
currpers = 2;
|
|
scno &= ~__X32_SYSCALL_BIT;
|
|
} else
|
|
currpers = 0;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown value CS=0x%08X while "
|
|
"detecting personality of process "
|
|
"PID=%d\n", (int)x86_64_regs.cs, tcp->pid);
|
|
currpers = current_personality;
|
|
break;
|
|
}
|
|
# elif 0
|
|
/* This version analyzes the opcode of a syscall instruction.
|
|
* (int 0x80 on i386 vs. syscall on x86-64)
|
|
* It works, but is too complicated, and strictly speaking, unreliable.
|
|
*/
|
|
unsigned long call, rip = x86_64_regs.rip;
|
|
/* sizeof(syscall) == sizeof(int 0x80) == 2 */
|
|
rip -= 2;
|
|
errno = 0;
|
|
call = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)rip, (char *)0);
|
|
if (errno)
|
|
fprintf(stderr, "ptrace_peektext failed: %s\n",
|
|
strerror(errno));
|
|
switch (call & 0xffff) {
|
|
/* x86-64: syscall = 0x0f 0x05 */
|
|
case 0x050f: currpers = 0; break;
|
|
/* i386: int 0x80 = 0xcd 0x80 */
|
|
case 0x80cd: currpers = 1; break;
|
|
default:
|
|
currpers = current_personality;
|
|
fprintf(stderr,
|
|
"Unknown syscall opcode (0x%04X) while "
|
|
"detecting personality of process "
|
|
"PID=%d\n", (int)call, tcp->pid);
|
|
break;
|
|
}
|
|
# endif
|
|
|
|
# ifdef X32
|
|
/* If we are built for a x32 system, then personality 0 is x32
|
|
* (not x86_64), and stracing of x86_64 apps is not supported.
|
|
* Stracing of i386 apps is still supported.
|
|
*/
|
|
if (currpers == 0) {
|
|
fprintf(stderr, "syscall_%lu(...) in unsupported "
|
|
"64-bit mode of process PID=%d\n",
|
|
scno, tcp->pid);
|
|
return 0;
|
|
}
|
|
currpers &= ~2; /* map 2,1 to 0,1 */
|
|
# endif
|
|
update_personality(tcp, currpers);
|
|
#elif defined(IA64)
|
|
# define IA64_PSR_IS ((long)1 << 34)
|
|
long psr;
|
|
if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0)
|
|
ia64_ia32mode = ((psr & IA64_PSR_IS) != 0);
|
|
if (ia64_ia32mode) {
|
|
if (upeek(tcp->pid, PT_R1, &scno) < 0)
|
|
return -1;
|
|
} else {
|
|
if (upeek(tcp->pid, PT_R15, &scno) < 0)
|
|
return -1;
|
|
}
|
|
#elif defined(AARCH64)
|
|
switch (aarch64_io.iov_len) {
|
|
case sizeof(aarch64_regs):
|
|
/* We are in 64-bit mode */
|
|
scno = aarch64_regs.regs[8];
|
|
update_personality(tcp, 1);
|
|
break;
|
|
case sizeof(arm_regs):
|
|
/* We are in 32-bit mode */
|
|
/* Note: we don't support OABI, unlike 32-bit ARM build */
|
|
scno = arm_regs.ARM_r7;
|
|
scno = shuffle_scno(scno);
|
|
update_personality(tcp, 0);
|
|
break;
|
|
}
|
|
#elif defined(ARM)
|
|
if (arm_regs.ARM_ip != 0) {
|
|
/* It is not a syscall entry */
|
|
fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid);
|
|
tcp->flags |= TCB_INSYSCALL;
|
|
return 0;
|
|
}
|
|
/* Note: we support only 32-bit CPUs, not 26-bit */
|
|
|
|
# if !defined(__ARM_EABI__) || ENABLE_ARM_OABI
|
|
if (arm_regs.ARM_cpsr & 0x20)
|
|
/* Thumb mode */
|
|
goto scno_in_r7;
|
|
/* ARM mode */
|
|
/* Check EABI/OABI by examining SVC insn's low 24 bits */
|
|
errno = 0;
|
|
scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(arm_regs.ARM_pc - 4), NULL);
|
|
if (errno)
|
|
return -1;
|
|
/* EABI syscall convention? */
|
|
if (scno != 0xef000000) {
|
|
/* No, it's OABI */
|
|
if ((scno & 0x0ff00000) != 0x0f900000) {
|
|
fprintf(stderr, "pid %d unknown syscall trap 0x%08lx\n",
|
|
tcp->pid, scno);
|
|
return -1;
|
|
}
|
|
/* Fixup the syscall number */
|
|
scno &= 0x000fffff;
|
|
} else {
|
|
scno_in_r7:
|
|
scno = arm_regs.ARM_r7;
|
|
}
|
|
# else /* __ARM_EABI__ || !ENABLE_ARM_OABI */
|
|
scno = arm_regs.ARM_r7;
|
|
# endif
|
|
scno = shuffle_scno(scno);
|
|
#elif defined(M68K)
|
|
if (upeek(tcp->pid, 4*PT_ORIG_D0, &scno) < 0)
|
|
return -1;
|
|
#elif defined(LINUX_MIPSN32)
|
|
unsigned long long regs[38];
|
|
|
|
if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0)
|
|
return -1;
|
|
mips_a3 = regs[REG_A3];
|
|
mips_r2 = regs[REG_V0];
|
|
|
|
scno = mips_r2;
|
|
if (!SCNO_IN_RANGE(scno)) {
|
|
if (mips_a3 == 0 || mips_a3 == -1) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno);
|
|
return 0;
|
|
}
|
|
}
|
|
#elif defined(MIPS)
|
|
if (upeek(tcp->pid, REG_A3, &mips_a3) < 0)
|
|
return -1;
|
|
if (upeek(tcp->pid, REG_V0, &scno) < 0)
|
|
return -1;
|
|
|
|
if (!SCNO_IN_RANGE(scno)) {
|
|
if (mips_a3 == 0 || mips_a3 == -1) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno);
|
|
return 0;
|
|
}
|
|
}
|
|
#elif defined(ALPHA)
|
|
if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0)
|
|
return -1;
|
|
if (upeek(tcp->pid, REG_R0, &scno) < 0)
|
|
return -1;
|
|
|
|
/*
|
|
* Do some sanity checks to figure out if it's
|
|
* really a syscall entry
|
|
*/
|
|
if (!SCNO_IN_RANGE(scno)) {
|
|
if (alpha_a3 == 0 || alpha_a3 == -1) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "stray syscall exit: r0 = %ld\n", scno);
|
|
return 0;
|
|
}
|
|
}
|
|
#elif defined(SPARC) || defined(SPARC64)
|
|
/* Disassemble the syscall trap. */
|
|
/* Retrieve the syscall trap instruction. */
|
|
unsigned long trap;
|
|
errno = 0;
|
|
# if defined(SPARC64)
|
|
trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.tpc, 0);
|
|
trap >>= 32;
|
|
# else
|
|
trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.pc, 0);
|
|
# endif
|
|
if (errno)
|
|
return -1;
|
|
|
|
/* Disassemble the trap to see what personality to use. */
|
|
switch (trap) {
|
|
case 0x91d02010:
|
|
/* Linux/SPARC syscall trap. */
|
|
update_personality(tcp, 0);
|
|
break;
|
|
case 0x91d0206d:
|
|
/* Linux/SPARC64 syscall trap. */
|
|
update_personality(tcp, 2);
|
|
break;
|
|
case 0x91d02000:
|
|
/* SunOS syscall trap. (pers 1) */
|
|
fprintf(stderr, "syscall: SunOS no support\n");
|
|
return -1;
|
|
case 0x91d02008:
|
|
/* Solaris 2.x syscall trap. (per 2) */
|
|
update_personality(tcp, 1);
|
|
break;
|
|
case 0x91d02009:
|
|
/* NetBSD/FreeBSD syscall trap. */
|
|
fprintf(stderr, "syscall: NetBSD/FreeBSD not supported\n");
|
|
return -1;
|
|
case 0x91d02027:
|
|
/* Solaris 2.x gettimeofday */
|
|
update_personality(tcp, 1);
|
|
break;
|
|
default:
|
|
# if defined(SPARC64)
|
|
fprintf(stderr, "syscall: unknown syscall trap %08lx %016lx\n", trap, sparc_regs.tpc);
|
|
# else
|
|
fprintf(stderr, "syscall: unknown syscall trap %08lx %08lx\n", trap, sparc_regs.pc);
|
|
# endif
|
|
return -1;
|
|
}
|
|
|
|
/* Extract the system call number from the registers. */
|
|
if (trap == 0x91d02027)
|
|
scno = 156;
|
|
else
|
|
scno = sparc_regs.u_regs[U_REG_G1];
|
|
if (scno == 0) {
|
|
scno = sparc_regs.u_regs[U_REG_O0];
|
|
memmove(&sparc_regs.u_regs[U_REG_O0], &sparc_regs.u_regs[U_REG_O1], 7*sizeof(sparc_regs.u_regs[0]));
|
|
}
|
|
#elif defined(HPPA)
|
|
if (upeek(tcp->pid, PT_GR20, &scno) < 0)
|
|
return -1;
|
|
#elif defined(SH)
|
|
/*
|
|
* In the new syscall ABI, the system call number is in R3.
|
|
*/
|
|
if (upeek(tcp->pid, 4*(REG_REG0+3), &scno) < 0)
|
|
return -1;
|
|
|
|
if (scno < 0) {
|
|
/* Odd as it may seem, a glibc bug has been known to cause
|
|
glibc to issue bogus negative syscall numbers. So for
|
|
our purposes, make strace print what it *should* have been */
|
|
long correct_scno = (scno & 0xff);
|
|
if (debug_flag)
|
|
fprintf(stderr,
|
|
"Detected glibc bug: bogus system call"
|
|
" number = %ld, correcting to %ld\n",
|
|
scno,
|
|
correct_scno);
|
|
scno = correct_scno;
|
|
}
|
|
#elif defined(SH64)
|
|
if (upeek(tcp->pid, REG_SYSCALL, &scno) < 0)
|
|
return -1;
|
|
scno &= 0xFFFF;
|
|
#elif defined(CRISV10) || defined(CRISV32)
|
|
if (upeek(tcp->pid, 4*PT_R9, &scno) < 0)
|
|
return -1;
|
|
#elif defined(TILE)
|
|
unsigned int currpers;
|
|
scno = tile_regs.regs[10];
|
|
# ifdef __tilepro__
|
|
currpers = 1;
|
|
# else
|
|
# ifndef PT_FLAGS_COMPAT
|
|
# define PT_FLAGS_COMPAT 0x10000 /* from Linux 3.8 on */
|
|
# endif
|
|
if (tile_regs.flags & PT_FLAGS_COMPAT)
|
|
currpers = 1;
|
|
else
|
|
currpers = 0;
|
|
# endif
|
|
update_personality(tcp, currpers);
|
|
#elif defined(MICROBLAZE)
|
|
if (upeek(tcp->pid, 0, &scno) < 0)
|
|
return -1;
|
|
#elif defined(OR1K)
|
|
scno = or1k_regs.gpr[11];
|
|
#elif defined(METAG)
|
|
scno = metag_regs.dx[0][1]; /* syscall number in D1Re0 (D1.0) */
|
|
#elif defined(XTENSA)
|
|
if (upeek(tcp->pid, SYSCALL_NR, &scno) < 0)
|
|
return -1;
|
|
# elif defined(ARC)
|
|
scno = arc_regs.scratch.r8;
|
|
#endif
|
|
|
|
tcp->scno = scno;
|
|
if (SCNO_IS_VALID(tcp->scno)) {
|
|
tcp->s_ent = &sysent[scno];
|
|
tcp->qual_flg = qual_flags[scno];
|
|
} else {
|
|
static const struct_sysent unknown = {
|
|
.nargs = MAX_ARGS,
|
|
.sys_flags = 0,
|
|
.sys_func = printargs,
|
|
.sys_name = "unknown", /* not used */
|
|
};
|
|
tcp->s_ent = &unknown;
|
|
tcp->qual_flg = UNDEFINED_SCNO | QUAL_RAW | DEFAULT_QUAL_FLAGS;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Called at each syscall entry.
|
|
* Returns:
|
|
* 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently.
|
|
* 1: ok, continue in trace_syscall_entering().
|
|
* other: error, trace_syscall_entering() should print error indicator
|
|
* ("????" etc) and bail out.
|
|
*/
|
|
static int
|
|
syscall_fixup_on_sysenter(struct tcb *tcp)
|
|
{
|
|
/* A common case of "not a syscall entry" is post-execve SIGTRAP */
|
|
#if defined(I386)
|
|
if (i386_regs.eax != -ENOSYS) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "not a syscall entry (eax = %ld)\n", i386_regs.eax);
|
|
return 0;
|
|
}
|
|
#elif defined(X86_64) || defined(X32)
|
|
{
|
|
long rax;
|
|
if (x86_io.iov_len == sizeof(i386_regs)) {
|
|
/* Sign extend from 32 bits */
|
|
rax = (int32_t)i386_regs.eax;
|
|
} else {
|
|
/* Note: in X32 build, this truncates 64 to 32 bits */
|
|
rax = x86_64_regs.rax;
|
|
}
|
|
if (rax != -ENOSYS) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "not a syscall entry (rax = %ld)\n", rax);
|
|
return 0;
|
|
}
|
|
}
|
|
#elif defined(M68K)
|
|
/* TODO? Eliminate upeek's in arches below like we did in x86 */
|
|
if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0)
|
|
return -1;
|
|
if (m68k_d0 != -ENOSYS) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "not a syscall entry (d0 = %ld)\n", m68k_d0);
|
|
return 0;
|
|
}
|
|
#elif defined(IA64)
|
|
if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0)
|
|
return -1;
|
|
if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0)
|
|
return -1;
|
|
if (ia64_ia32mode && ia64_r8 != -ENOSYS) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "not a syscall entry (r8 = %ld)\n", ia64_r8);
|
|
return 0;
|
|
}
|
|
#elif defined(CRISV10) || defined(CRISV32)
|
|
if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0)
|
|
return -1;
|
|
if (cris_r10 != -ENOSYS) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "not a syscall entry (r10 = %ld)\n", cris_r10);
|
|
return 0;
|
|
}
|
|
#elif defined(MICROBLAZE)
|
|
if (upeek(tcp->pid, 3 * 4, µblaze_r3) < 0)
|
|
return -1;
|
|
if (microblaze_r3 != -ENOSYS) {
|
|
if (debug_flag)
|
|
fprintf(stderr, "not a syscall entry (r3 = %ld)\n", microblaze_r3);
|
|
return 0;
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
internal_fork(struct tcb *tcp)
|
|
{
|
|
#if defined S390 || defined S390X || defined CRISV10 || defined CRISV32
|
|
# define ARG_FLAGS 1
|
|
#else
|
|
# define ARG_FLAGS 0
|
|
#endif
|
|
#ifndef CLONE_UNTRACED
|
|
# define CLONE_UNTRACED 0x00800000
|
|
#endif
|
|
if ((ptrace_setoptions
|
|
& (PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK))
|
|
== (PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK))
|
|
return;
|
|
|
|
if (!followfork)
|
|
return;
|
|
|
|
if (entering(tcp)) {
|
|
/*
|
|
* We won't see the new child if clone is called with
|
|
* CLONE_UNTRACED, so we keep the same logic with that option
|
|
* and don't trace it.
|
|
*/
|
|
if ((tcp->s_ent->sys_func == sys_clone)
|
|
&& (tcp->u_arg[ARG_FLAGS] & CLONE_UNTRACED)
|
|
)
|
|
return;
|
|
setbpt(tcp);
|
|
} else {
|
|
if (tcp->flags & TCB_BPTSET)
|
|
clearbpt(tcp);
|
|
}
|
|
}
|
|
|
|
#if defined(TCB_WAITEXECVE)
|
|
static void
|
|
internal_exec(struct tcb *tcp)
|
|
{
|
|
/* Maybe we have post-execve SIGTRAP suppressed? */
|
|
if (ptrace_setoptions & PTRACE_O_TRACEEXEC)
|
|
return; /* yes, no need to do anything */
|
|
|
|
if (exiting(tcp) && syserror(tcp))
|
|
/* Error in execve, no post-execve SIGTRAP expected */
|
|
tcp->flags &= ~TCB_WAITEXECVE;
|
|
else
|
|
tcp->flags |= TCB_WAITEXECVE;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
syscall_fixup_for_fork_exec(struct tcb *tcp)
|
|
{
|
|
/*
|
|
* We must always trace a few critical system calls in order to
|
|
* correctly support following forks in the presence of tracing
|
|
* qualifiers.
|
|
*/
|
|
int (*func)();
|
|
|
|
func = tcp->s_ent->sys_func;
|
|
|
|
if ( sys_fork == func
|
|
|| sys_clone == func
|
|
) {
|
|
internal_fork(tcp);
|
|
return;
|
|
}
|
|
|
|
#if defined(TCB_WAITEXECVE)
|
|
if ( sys_execve == func
|
|
# if defined(SPARC) || defined(SPARC64)
|
|
|| sys_execv == func
|
|
# endif
|
|
) {
|
|
internal_exec(tcp);
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Return -1 on error or 1 on success (never 0!) */
|
|
static int
|
|
get_syscall_args(struct tcb *tcp)
|
|
{
|
|
int i, nargs;
|
|
|
|
nargs = tcp->s_ent->nargs;
|
|
|
|
#if defined(S390) || defined(S390X)
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, i==0 ? PT_ORIGGPR2 : PT_GPR2 + i*sizeof(long), &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(ALPHA)
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, REG_A0+i, &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(IA64)
|
|
if (!ia64_ia32mode) {
|
|
unsigned long *out0, cfm, sof, sol;
|
|
long rbs_end;
|
|
/* be backwards compatible with kernel < 2.4.4... */
|
|
# ifndef PT_RBS_END
|
|
# define PT_RBS_END PT_AR_BSP
|
|
# endif
|
|
|
|
if (upeek(tcp->pid, PT_RBS_END, &rbs_end) < 0)
|
|
return -1;
|
|
if (upeek(tcp->pid, PT_CFM, (long *) &cfm) < 0)
|
|
return -1;
|
|
|
|
sof = (cfm >> 0) & 0x7f;
|
|
sol = (cfm >> 7) & 0x7f;
|
|
out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol);
|
|
|
|
for (i = 0; i < nargs; ++i) {
|
|
if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i),
|
|
sizeof(long), (char *) &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
}
|
|
} else {
|
|
static const int argreg[MAX_ARGS] = { PT_R11 /* EBX = out0 */,
|
|
PT_R9 /* ECX = out1 */,
|
|
PT_R10 /* EDX = out2 */,
|
|
PT_R14 /* ESI = out3 */,
|
|
PT_R15 /* EDI = out4 */,
|
|
PT_R13 /* EBP = out5 */};
|
|
|
|
for (i = 0; i < nargs; ++i) {
|
|
if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
/* truncate away IVE sign-extension */
|
|
tcp->u_arg[i] &= 0xffffffff;
|
|
}
|
|
}
|
|
#elif defined(LINUX_MIPSN32) || defined(LINUX_MIPSN64)
|
|
/* N32 and N64 both use up to six registers. */
|
|
unsigned long long regs[38];
|
|
|
|
if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0)
|
|
return -1;
|
|
|
|
for (i = 0; i < nargs; ++i) {
|
|
tcp->u_arg[i] = regs[REG_A0 + i];
|
|
# if defined(LINUX_MIPSN32)
|
|
tcp->ext_arg[i] = regs[REG_A0 + i];
|
|
# endif
|
|
}
|
|
#elif defined(MIPS)
|
|
if (nargs > 4) {
|
|
long sp;
|
|
|
|
if (upeek(tcp->pid, REG_SP, &sp) < 0)
|
|
return -1;
|
|
for (i = 0; i < 4; ++i)
|
|
if (upeek(tcp->pid, REG_A0 + i, &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
umoven(tcp, sp + 16, (nargs - 4) * sizeof(tcp->u_arg[0]),
|
|
(char *)(tcp->u_arg + 4));
|
|
} else {
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, REG_A0 + i, &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
}
|
|
#elif defined(POWERPC)
|
|
(void)i;
|
|
(void)nargs;
|
|
tcp->u_arg[0] = ppc_regs.orig_gpr3;
|
|
tcp->u_arg[1] = ppc_regs.gpr[4];
|
|
tcp->u_arg[2] = ppc_regs.gpr[5];
|
|
tcp->u_arg[3] = ppc_regs.gpr[6];
|
|
tcp->u_arg[4] = ppc_regs.gpr[7];
|
|
tcp->u_arg[5] = ppc_regs.gpr[8];
|
|
#elif defined(SPARC) || defined(SPARC64)
|
|
for (i = 0; i < nargs; ++i)
|
|
tcp->u_arg[i] = sparc_regs.u_regs[U_REG_O0 + i];
|
|
#elif defined(HPPA)
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, PT_GR26-4*i, &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(ARM) || defined(AARCH64)
|
|
# if defined(AARCH64)
|
|
if (tcp->currpers == 1)
|
|
for (i = 0; i < nargs; ++i)
|
|
tcp->u_arg[i] = aarch64_regs.regs[i];
|
|
else
|
|
# endif
|
|
for (i = 0; i < nargs; ++i)
|
|
tcp->u_arg[i] = arm_regs.uregs[i];
|
|
#elif defined(AVR32)
|
|
(void)i;
|
|
(void)nargs;
|
|
tcp->u_arg[0] = avr32_regs.r12;
|
|
tcp->u_arg[1] = avr32_regs.r11;
|
|
tcp->u_arg[2] = avr32_regs.r10;
|
|
tcp->u_arg[3] = avr32_regs.r9;
|
|
tcp->u_arg[4] = avr32_regs.r5;
|
|
tcp->u_arg[5] = avr32_regs.r3;
|
|
#elif defined(BFIN)
|
|
static const int argreg[MAX_ARGS] = { PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5 };
|
|
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(SH)
|
|
static const int syscall_regs[MAX_ARGS] = {
|
|
4 * (REG_REG0+4), 4 * (REG_REG0+5), 4 * (REG_REG0+6),
|
|
4 * (REG_REG0+7), 4 * (REG_REG0 ), 4 * (REG_REG0+1)
|
|
};
|
|
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, syscall_regs[i], &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(SH64)
|
|
int i;
|
|
/* Registers used by SH5 Linux system calls for parameters */
|
|
static const int syscall_regs[MAX_ARGS] = { 2, 3, 4, 5, 6, 7 };
|
|
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(I386)
|
|
(void)i;
|
|
(void)nargs;
|
|
tcp->u_arg[0] = i386_regs.ebx;
|
|
tcp->u_arg[1] = i386_regs.ecx;
|
|
tcp->u_arg[2] = i386_regs.edx;
|
|
tcp->u_arg[3] = i386_regs.esi;
|
|
tcp->u_arg[4] = i386_regs.edi;
|
|
tcp->u_arg[5] = i386_regs.ebp;
|
|
#elif defined(X86_64) || defined(X32)
|
|
(void)i;
|
|
(void)nargs;
|
|
if (x86_io.iov_len != sizeof(i386_regs)) {
|
|
/* x86-64 or x32 ABI */
|
|
tcp->u_arg[0] = x86_64_regs.rdi;
|
|
tcp->u_arg[1] = x86_64_regs.rsi;
|
|
tcp->u_arg[2] = x86_64_regs.rdx;
|
|
tcp->u_arg[3] = x86_64_regs.r10;
|
|
tcp->u_arg[4] = x86_64_regs.r8;
|
|
tcp->u_arg[5] = x86_64_regs.r9;
|
|
# ifdef X32
|
|
tcp->ext_arg[0] = x86_64_regs.rdi;
|
|
tcp->ext_arg[1] = x86_64_regs.rsi;
|
|
tcp->ext_arg[2] = x86_64_regs.rdx;
|
|
tcp->ext_arg[3] = x86_64_regs.r10;
|
|
tcp->ext_arg[4] = x86_64_regs.r8;
|
|
tcp->ext_arg[5] = x86_64_regs.r9;
|
|
# endif
|
|
} else {
|
|
/* i386 ABI */
|
|
/* Zero-extend from 32 bits */
|
|
/* Use widen_to_long(tcp->u_arg[N]) in syscall handlers
|
|
* if you need to use *sign-extended* parameter.
|
|
*/
|
|
tcp->u_arg[0] = (long)(uint32_t)i386_regs.ebx;
|
|
tcp->u_arg[1] = (long)(uint32_t)i386_regs.ecx;
|
|
tcp->u_arg[2] = (long)(uint32_t)i386_regs.edx;
|
|
tcp->u_arg[3] = (long)(uint32_t)i386_regs.esi;
|
|
tcp->u_arg[4] = (long)(uint32_t)i386_regs.edi;
|
|
tcp->u_arg[5] = (long)(uint32_t)i386_regs.ebp;
|
|
}
|
|
#elif defined(MICROBLAZE)
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, (5 + i) * 4, &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(CRISV10) || defined(CRISV32)
|
|
static const int crisregs[MAX_ARGS] = {
|
|
4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12,
|
|
4*PT_R13 , 4*PT_MOF, 4*PT_SRP
|
|
};
|
|
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, crisregs[i], &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(TILE)
|
|
for (i = 0; i < nargs; ++i)
|
|
tcp->u_arg[i] = tile_regs.regs[i];
|
|
#elif defined(M68K)
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, (i < 5 ? i : i + 2)*4, &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#elif defined(OR1K)
|
|
(void)nargs;
|
|
for (i = 0; i < 6; ++i)
|
|
tcp->u_arg[i] = or1k_regs.gpr[3 + i];
|
|
#elif defined(METAG)
|
|
for (i = 0; i < nargs; i++)
|
|
/* arguments go backwards from D1Ar1 (D1.3) */
|
|
tcp->u_arg[i] = ((unsigned long *)&metag_regs.dx[3][1])[-i];
|
|
#elif defined(XTENSA)
|
|
/* arg0: a6, arg1: a3, arg2: a4, arg3: a5, arg4: a8, arg5: a9 */
|
|
static const int xtensaregs[MAX_ARGS] = { 6, 3, 4, 5, 8, 9 };
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, REG_A_BASE + xtensaregs[i], &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
# elif defined(ARC)
|
|
long *arc_args = &arc_regs.scratch.r0;
|
|
for (i = 0; i < nargs; ++i)
|
|
tcp->u_arg[i] = *arc_args--;
|
|
|
|
#else /* Other architecture (32bits specific) */
|
|
for (i = 0; i < nargs; ++i)
|
|
if (upeek(tcp->pid, i*4, &tcp->u_arg[i]) < 0)
|
|
return -1;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
trace_syscall_entering(struct tcb *tcp)
|
|
{
|
|
int res, scno_good;
|
|
|
|
#if defined TCB_WAITEXECVE
|
|
if (tcp->flags & TCB_WAITEXECVE) {
|
|
/* This is the post-execve SIGTRAP. */
|
|
tcp->flags &= ~TCB_WAITEXECVE;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
scno_good = res = (get_regs_error ? -1 : get_scno(tcp));
|
|
if (res == 0)
|
|
return res;
|
|
if (res == 1) {
|
|
res = syscall_fixup_on_sysenter(tcp);
|
|
if (res == 0)
|
|
return res;
|
|
if (res == 1)
|
|
res = get_syscall_args(tcp);
|
|
}
|
|
|
|
if (res != 1) {
|
|
printleader(tcp);
|
|
if (scno_good != 1)
|
|
tprints("????" /* anti-trigraph gap */ "(");
|
|
else if (tcp->qual_flg & UNDEFINED_SCNO)
|
|
tprintf("%s(", undefined_scno_name(tcp));
|
|
else
|
|
tprintf("%s(", tcp->s_ent->sys_name);
|
|
/*
|
|
* " <unavailable>" will be added later by the code which
|
|
* detects ptrace errors.
|
|
*/
|
|
goto ret;
|
|
}
|
|
|
|
if ( sys_execve == tcp->s_ent->sys_func
|
|
# if defined(SPARC) || defined(SPARC64)
|
|
|| sys_execv == tcp->s_ent->sys_func
|
|
# endif
|
|
) {
|
|
hide_log_until_execve = 0;
|
|
}
|
|
|
|
#if defined(SYS_socket_subcall) || defined(SYS_ipc_subcall)
|
|
while (1) {
|
|
# ifdef SYS_socket_subcall
|
|
if (tcp->s_ent->sys_func == sys_socketcall) {
|
|
decode_socket_subcall(tcp);
|
|
break;
|
|
}
|
|
# endif
|
|
# ifdef SYS_ipc_subcall
|
|
if (tcp->s_ent->sys_func == sys_ipc) {
|
|
decode_ipc_subcall(tcp);
|
|
break;
|
|
}
|
|
# endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
if (need_fork_exec_workarounds)
|
|
syscall_fixup_for_fork_exec(tcp);
|
|
|
|
if (!(tcp->qual_flg & QUAL_TRACE)
|
|
|| (tracing_paths && !pathtrace_match(tcp))
|
|
) {
|
|
tcp->flags |= TCB_INSYSCALL | TCB_FILTERED;
|
|
return 0;
|
|
}
|
|
|
|
tcp->flags &= ~TCB_FILTERED;
|
|
|
|
if (cflag == CFLAG_ONLY_STATS || hide_log_until_execve) {
|
|
res = 0;
|
|
goto ret;
|
|
}
|
|
|
|
#ifdef USE_LIBUNWIND
|
|
if (stack_trace_enabled) {
|
|
if (tcp->s_ent->sys_flags & STACKTRACE_CAPTURE_ON_ENTER)
|
|
unwind_capture_stacktrace(tcp);
|
|
}
|
|
#endif
|
|
|
|
printleader(tcp);
|
|
if (tcp->qual_flg & UNDEFINED_SCNO)
|
|
tprintf("%s(", undefined_scno_name(tcp));
|
|
else
|
|
tprintf("%s(", tcp->s_ent->sys_name);
|
|
if ((tcp->qual_flg & QUAL_RAW) && tcp->s_ent->sys_func != sys_exit)
|
|
res = printargs(tcp);
|
|
else
|
|
res = tcp->s_ent->sys_func(tcp);
|
|
|
|
fflush(tcp->outf);
|
|
ret:
|
|
tcp->flags |= TCB_INSYSCALL;
|
|
/* Measure the entrance time as late as possible to avoid errors. */
|
|
if (Tflag || cflag)
|
|
gettimeofday(&tcp->etime, NULL);
|
|
return res;
|
|
}
|
|
|
|
/* Returns:
|
|
* 1: ok, continue in trace_syscall_exiting().
|
|
* -1: error, trace_syscall_exiting() should print error indicator
|
|
* ("????" etc) and bail out.
|
|
*/
|
|
static int
|
|
get_syscall_result(struct tcb *tcp)
|
|
{
|
|
#if defined(S390) || defined(S390X)
|
|
if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0)
|
|
return -1;
|
|
#elif defined(POWERPC)
|
|
/* already done by get_regs */
|
|
#elif defined(AVR32)
|
|
/* already done by get_regs */
|
|
#elif defined(BFIN)
|
|
if (upeek(tcp->pid, PT_R0, &bfin_r0) < 0)
|
|
return -1;
|
|
#elif defined(I386)
|
|
/* already done by get_regs */
|
|
#elif defined(X86_64) || defined(X32)
|
|
/* already done by get_regs */
|
|
#elif defined(IA64)
|
|
# define IA64_PSR_IS ((long)1 << 34)
|
|
long psr;
|
|
if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0)
|
|
ia64_ia32mode = ((psr & IA64_PSR_IS) != 0);
|
|
if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0)
|
|
return -1;
|
|
if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0)
|
|
return -1;
|
|
#elif defined(ARM)
|
|
/* already done by get_regs */
|
|
#elif defined(AARCH64)
|
|
/* register reading already done by get_regs */
|
|
|
|
/* Used to do this, but we did it on syscall entry already: */
|
|
/* We are in 64-bit mode (personality 1) if register struct is aarch64_regs,
|
|
* else it's personality 0.
|
|
*/
|
|
/*update_personality(tcp, aarch64_io.iov_len == sizeof(aarch64_regs));*/
|
|
#elif defined(M68K)
|
|
if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0)
|
|
return -1;
|
|
#elif defined(LINUX_MIPSN32)
|
|
unsigned long long regs[38];
|
|
|
|
if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0)
|
|
return -1;
|
|
mips_a3 = regs[REG_A3];
|
|
mips_r2 = regs[REG_V0];
|
|
#elif defined(MIPS)
|
|
if (upeek(tcp->pid, REG_A3, &mips_a3) < 0)
|
|
return -1;
|
|
if (upeek(tcp->pid, REG_V0, &mips_r2) < 0)
|
|
return -1;
|
|
#elif defined(ALPHA)
|
|
if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0)
|
|
return -1;
|
|
if (upeek(tcp->pid, REG_R0, &alpha_r0) < 0)
|
|
return -1;
|
|
#elif defined(SPARC) || defined(SPARC64)
|
|
/* already done by get_regs */
|
|
#elif defined(HPPA)
|
|
if (upeek(tcp->pid, PT_GR28, &hppa_r28) < 0)
|
|
return -1;
|
|
#elif defined(SH)
|
|
/* new syscall ABI returns result in R0 */
|
|
if (upeek(tcp->pid, 4*REG_REG0, (long *)&sh_r0) < 0)
|
|
return -1;
|
|
#elif defined(SH64)
|
|
/* ABI defines result returned in r9 */
|
|
if (upeek(tcp->pid, REG_GENERAL(9), (long *)&sh64_r9) < 0)
|
|
return -1;
|
|
#elif defined(CRISV10) || defined(CRISV32)
|
|
if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0)
|
|
return -1;
|
|
#elif defined(TILE)
|
|
/* already done by get_regs */
|
|
#elif defined(MICROBLAZE)
|
|
if (upeek(tcp->pid, 3 * 4, µblaze_r3) < 0)
|
|
return -1;
|
|
#elif defined(OR1K)
|
|
/* already done by get_regs */
|
|
#elif defined(METAG)
|
|
/* already done by get_regs */
|
|
#elif defined(XTENSA)
|
|
if (upeek(tcp->pid, REG_A_BASE + 2, &xtensa_a2) < 0)
|
|
return -1;
|
|
#elif defined(ARC)
|
|
/* already done by get_regs */
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/* Called at each syscall exit */
|
|
static void
|
|
syscall_fixup_on_sysexit(struct tcb *tcp)
|
|
{
|
|
#if defined(S390) || defined(S390X)
|
|
if ((tcp->flags & TCB_WAITEXECVE)
|
|
&& (s390_gpr2 == -ENOSYS || s390_gpr2 == tcp->scno)) {
|
|
/*
|
|
* Return from execve.
|
|
* Fake a return value of zero. We leave the TCB_WAITEXECVE
|
|
* flag set for the post-execve SIGTRAP to see and reset.
|
|
*/
|
|
s390_gpr2 = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check the syscall return value register value for whether it is
|
|
* a negated errno code indicating an error, or a success return value.
|
|
*/
|
|
static inline int
|
|
is_negated_errno(unsigned long int val)
|
|
{
|
|
unsigned long int max = -(long int) nerrnos;
|
|
#if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4
|
|
if (current_wordsize < sizeof(val)) {
|
|
val = (unsigned int) val;
|
|
max = (unsigned int) max;
|
|
}
|
|
#endif
|
|
return val > max;
|
|
}
|
|
|
|
#if defined(X32)
|
|
static inline int
|
|
is_negated_errno_x32(unsigned long long val)
|
|
{
|
|
unsigned long long max = -(long long) nerrnos;
|
|
/*
|
|
* current_wordsize is 4 even in personality 0 (native X32)
|
|
* but truncation _must not_ be done in it.
|
|
* can't check current_wordsize here!
|
|
*/
|
|
if (current_personality != 0) {
|
|
val = (uint32_t) val;
|
|
max = (uint32_t) max;
|
|
}
|
|
return val > max;
|
|
}
|
|
#endif
|
|
|
|
/* Returns:
|
|
* 1: ok, continue in trace_syscall_exiting().
|
|
* -1: error, trace_syscall_exiting() should print error indicator
|
|
* ("????" etc) and bail out.
|
|
*/
|
|
static void
|
|
get_error(struct tcb *tcp)
|
|
{
|
|
int u_error = 0;
|
|
int check_errno = 1;
|
|
if (tcp->s_ent->sys_flags & SYSCALL_NEVER_FAILS) {
|
|
check_errno = 0;
|
|
}
|
|
#if defined(S390) || defined(S390X)
|
|
if (check_errno && is_negated_errno(s390_gpr2)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -s390_gpr2;
|
|
}
|
|
else {
|
|
tcp->u_rval = s390_gpr2;
|
|
}
|
|
#elif defined(I386)
|
|
if (check_errno && is_negated_errno(i386_regs.eax)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -i386_regs.eax;
|
|
}
|
|
else {
|
|
tcp->u_rval = i386_regs.eax;
|
|
}
|
|
#elif defined(X86_64)
|
|
long rax;
|
|
if (x86_io.iov_len == sizeof(i386_regs)) {
|
|
/* Sign extend from 32 bits */
|
|
rax = (int32_t)i386_regs.eax;
|
|
} else {
|
|
rax = x86_64_regs.rax;
|
|
}
|
|
if (check_errno && is_negated_errno(rax)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -rax;
|
|
}
|
|
else {
|
|
tcp->u_rval = rax;
|
|
}
|
|
#elif defined(X32)
|
|
/* In X32, return value is 64-bit (llseek uses one).
|
|
* Using merely "long rax" would not work.
|
|
*/
|
|
long long rax;
|
|
if (x86_io.iov_len == sizeof(i386_regs)) {
|
|
/* Sign extend from 32 bits */
|
|
rax = (int32_t)i386_regs.eax;
|
|
} else {
|
|
rax = x86_64_regs.rax;
|
|
}
|
|
/* Careful: is_negated_errno() works only on longs */
|
|
if (check_errno && is_negated_errno_x32(rax)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -rax;
|
|
}
|
|
else {
|
|
tcp->u_rval = rax; /* truncating */
|
|
tcp->u_lrval = rax;
|
|
}
|
|
#elif defined(IA64)
|
|
if (ia64_ia32mode) {
|
|
int err;
|
|
|
|
err = (int)ia64_r8;
|
|
if (check_errno && is_negated_errno(err)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -err;
|
|
}
|
|
else {
|
|
tcp->u_rval = err;
|
|
}
|
|
} else {
|
|
if (check_errno && ia64_r10) {
|
|
tcp->u_rval = -1;
|
|
u_error = ia64_r8;
|
|
} else {
|
|
tcp->u_rval = ia64_r8;
|
|
}
|
|
}
|
|
#elif defined(MIPS)
|
|
if (check_errno && mips_a3) {
|
|
tcp->u_rval = -1;
|
|
u_error = mips_r2;
|
|
} else {
|
|
tcp->u_rval = mips_r2;
|
|
# if defined(LINUX_MIPSN32)
|
|
tcp->u_lrval = mips_r2;
|
|
# endif
|
|
}
|
|
#elif defined(POWERPC)
|
|
if (check_errno && (ppc_regs.ccr & 0x10000000)) {
|
|
tcp->u_rval = -1;
|
|
u_error = ppc_regs.gpr[3];
|
|
}
|
|
else {
|
|
tcp->u_rval = ppc_regs.gpr[3];
|
|
}
|
|
#elif defined(M68K)
|
|
if (check_errno && is_negated_errno(m68k_d0)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -m68k_d0;
|
|
}
|
|
else {
|
|
tcp->u_rval = m68k_d0;
|
|
}
|
|
#elif defined(ARM) || defined(AARCH64)
|
|
# if defined(AARCH64)
|
|
if (tcp->currpers == 1) {
|
|
if (check_errno && is_negated_errno(aarch64_regs.regs[0])) {
|
|
tcp->u_rval = -1;
|
|
u_error = -aarch64_regs.regs[0];
|
|
}
|
|
else {
|
|
tcp->u_rval = aarch64_regs.regs[0];
|
|
}
|
|
}
|
|
else
|
|
# endif
|
|
{
|
|
if (check_errno && is_negated_errno(arm_regs.ARM_r0)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -arm_regs.ARM_r0;
|
|
}
|
|
else {
|
|
tcp->u_rval = arm_regs.ARM_r0;
|
|
}
|
|
}
|
|
#elif defined(AVR32)
|
|
if (check_errno && avr32_regs.r12 && (unsigned) -avr32_regs.r12 < nerrnos) {
|
|
tcp->u_rval = -1;
|
|
u_error = -avr32_regs.r12;
|
|
}
|
|
else {
|
|
tcp->u_rval = avr32_regs.r12;
|
|
}
|
|
#elif defined(BFIN)
|
|
if (check_errno && is_negated_errno(bfin_r0)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -bfin_r0;
|
|
} else {
|
|
tcp->u_rval = bfin_r0;
|
|
}
|
|
#elif defined(ALPHA)
|
|
if (check_errno && alpha_a3) {
|
|
tcp->u_rval = -1;
|
|
u_error = alpha_r0;
|
|
}
|
|
else {
|
|
tcp->u_rval = alpha_r0;
|
|
}
|
|
#elif defined(SPARC)
|
|
if (check_errno && sparc_regs.psr & PSR_C) {
|
|
tcp->u_rval = -1;
|
|
u_error = sparc_regs.u_regs[U_REG_O0];
|
|
}
|
|
else {
|
|
tcp->u_rval = sparc_regs.u_regs[U_REG_O0];
|
|
}
|
|
#elif defined(SPARC64)
|
|
if (check_errno && sparc_regs.tstate & 0x1100000000UL) {
|
|
tcp->u_rval = -1;
|
|
u_error = sparc_regs.u_regs[U_REG_O0];
|
|
}
|
|
else {
|
|
tcp->u_rval = sparc_regs.u_regs[U_REG_O0];
|
|
}
|
|
#elif defined(HPPA)
|
|
if (check_errno && is_negated_errno(hppa_r28)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -hppa_r28;
|
|
}
|
|
else {
|
|
tcp->u_rval = hppa_r28;
|
|
}
|
|
#elif defined(SH)
|
|
if (check_errno && is_negated_errno(sh_r0)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -sh_r0;
|
|
}
|
|
else {
|
|
tcp->u_rval = sh_r0;
|
|
}
|
|
#elif defined(SH64)
|
|
if (check_errno && is_negated_errno(sh64_r9)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -sh64_r9;
|
|
}
|
|
else {
|
|
tcp->u_rval = sh64_r9;
|
|
}
|
|
#elif defined(METAG)
|
|
/* result pointer in D0Re0 (D0.0) */
|
|
if (check_errno && is_negated_errno(metag_regs.dx[0][0])) {
|
|
tcp->u_rval = -1;
|
|
u_error = -metag_regs.dx[0][0];
|
|
}
|
|
else {
|
|
tcp->u_rval = metag_regs.dx[0][0];
|
|
}
|
|
#elif defined(CRISV10) || defined(CRISV32)
|
|
if (check_errno && cris_r10 && (unsigned) -cris_r10 < nerrnos) {
|
|
tcp->u_rval = -1;
|
|
u_error = -cris_r10;
|
|
}
|
|
else {
|
|
tcp->u_rval = cris_r10;
|
|
}
|
|
#elif defined(TILE)
|
|
/*
|
|
* The standard tile calling convention returns the value (or negative
|
|
* errno) in r0, and zero (or positive errno) in r1.
|
|
* Until at least kernel 3.8, however, the r1 value is not reflected
|
|
* in ptregs at this point, so we use r0 here.
|
|
*/
|
|
if (check_errno && is_negated_errno(tile_regs.regs[0])) {
|
|
tcp->u_rval = -1;
|
|
u_error = -tile_regs.regs[0];
|
|
} else {
|
|
tcp->u_rval = tile_regs.regs[0];
|
|
}
|
|
#elif defined(MICROBLAZE)
|
|
if (check_errno && is_negated_errno(microblaze_r3)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -microblaze_r3;
|
|
}
|
|
else {
|
|
tcp->u_rval = microblaze_r3;
|
|
}
|
|
#elif defined(OR1K)
|
|
if (check_errno && is_negated_errno(or1k_regs.gpr[11])) {
|
|
tcp->u_rval = -1;
|
|
u_error = -or1k_regs.gpr[11];
|
|
}
|
|
else {
|
|
tcp->u_rval = or1k_regs.gpr[11];
|
|
}
|
|
#elif defined(XTENSA)
|
|
if (check_errno && is_negated_errno(xtensa_a2)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -xtensa_a2;
|
|
}
|
|
else {
|
|
tcp->u_rval = xtensa_a2;
|
|
}
|
|
#elif defined(ARC)
|
|
if (check_errno && is_negated_errno(arc_regs.scratch.r0)) {
|
|
tcp->u_rval = -1;
|
|
u_error = -arc_regs.scratch.r0;
|
|
}
|
|
else {
|
|
tcp->u_rval = arc_regs.scratch.r0;
|
|
}
|
|
#endif
|
|
tcp->u_error = u_error;
|
|
}
|
|
|
|
static void
|
|
dumpio(struct tcb *tcp)
|
|
{
|
|
int (*func)();
|
|
|
|
if (syserror(tcp))
|
|
return;
|
|
if ((unsigned long) tcp->u_arg[0] >= num_quals)
|
|
return;
|
|
func = tcp->s_ent->sys_func;
|
|
if (func == printargs)
|
|
return;
|
|
if (qual_flags[tcp->u_arg[0]] & QUAL_READ) {
|
|
if (func == sys_read ||
|
|
func == sys_pread ||
|
|
func == sys_recv ||
|
|
func == sys_recvfrom)
|
|
dumpstr(tcp, tcp->u_arg[1], tcp->u_rval);
|
|
else if (func == sys_readv)
|
|
dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
|
|
#if HAVE_SENDMSG
|
|
else if (func == sys_recvmsg)
|
|
dumpiov_in_msghdr(tcp, tcp->u_arg[1]);
|
|
else if (func == sys_recvmmsg)
|
|
dumpiov_in_mmsghdr(tcp, tcp->u_arg[1]);
|
|
#endif
|
|
return;
|
|
}
|
|
if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) {
|
|
if (func == sys_write ||
|
|
func == sys_pwrite ||
|
|
func == sys_send ||
|
|
func == sys_sendto)
|
|
dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]);
|
|
else if (func == sys_writev)
|
|
dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
|
|
#if HAVE_SENDMSG
|
|
else if (func == sys_sendmsg)
|
|
dumpiov_in_msghdr(tcp, tcp->u_arg[1]);
|
|
else if (func == sys_sendmmsg)
|
|
dumpiov_in_mmsghdr(tcp, tcp->u_arg[1]);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int
|
|
trace_syscall_exiting(struct tcb *tcp)
|
|
{
|
|
int sys_res;
|
|
struct timeval tv;
|
|
int res;
|
|
long u_error;
|
|
|
|
/* Measure the exit time as early as possible to avoid errors. */
|
|
if (Tflag || cflag)
|
|
gettimeofday(&tv, NULL);
|
|
|
|
#ifdef USE_LIBUNWIND
|
|
if (stack_trace_enabled) {
|
|
if (tcp->s_ent->sys_flags & STACKTRACE_INVALIDATE_CACHE)
|
|
unwind_cache_invalidate(tcp);
|
|
}
|
|
#endif
|
|
|
|
#if SUPPORTED_PERSONALITIES > 1
|
|
update_personality(tcp, tcp->currpers);
|
|
#endif
|
|
res = (get_regs_error ? -1 : get_syscall_result(tcp));
|
|
if (res == 1) {
|
|
syscall_fixup_on_sysexit(tcp); /* never fails */
|
|
get_error(tcp); /* never fails */
|
|
if (need_fork_exec_workarounds)
|
|
syscall_fixup_for_fork_exec(tcp);
|
|
if (filtered(tcp) || hide_log_until_execve)
|
|
goto ret;
|
|
}
|
|
|
|
if (cflag) {
|
|
count_syscall(tcp, &tv);
|
|
if (cflag == CFLAG_ONLY_STATS) {
|
|
goto ret;
|
|
}
|
|
}
|
|
|
|
/* If not in -ff mode, and printing_tcp != tcp,
|
|
* then the log currently does not end with output
|
|
* of _our syscall entry_, but with something else.
|
|
* We need to say which syscall's return is this.
|
|
*
|
|
* Forced reprinting via TCB_REPRINT is used only by
|
|
* "strace -ff -oLOG test/threaded_execve" corner case.
|
|
* It's the only case when -ff mode needs reprinting.
|
|
*/
|
|
if ((followfork < 2 && printing_tcp != tcp) || (tcp->flags & TCB_REPRINT)) {
|
|
tcp->flags &= ~TCB_REPRINT;
|
|
printleader(tcp);
|
|
if (tcp->qual_flg & UNDEFINED_SCNO)
|
|
tprintf("<... %s resumed> ", undefined_scno_name(tcp));
|
|
else
|
|
tprintf("<... %s resumed> ", tcp->s_ent->sys_name);
|
|
}
|
|
printing_tcp = tcp;
|
|
|
|
if (res != 1) {
|
|
/* There was error in one of prior ptrace ops */
|
|
tprints(") ");
|
|
tabto();
|
|
tprints("= ? <unavailable>\n");
|
|
line_ended();
|
|
tcp->flags &= ~TCB_INSYSCALL;
|
|
return res;
|
|
}
|
|
|
|
sys_res = 0;
|
|
if (tcp->qual_flg & QUAL_RAW) {
|
|
/* sys_res = printargs(tcp); - but it's nop on sysexit */
|
|
} else {
|
|
/* FIXME: not_failing_only (IOW, option -z) is broken:
|
|
* failure of syscall is known only after syscall return.
|
|
* Thus we end up with something like this on, say, ENOENT:
|
|
* open("doesnt_exist", O_RDONLY <unfinished ...>
|
|
* {next syscall decode}
|
|
* whereas the intended result is that open(...) line
|
|
* is not shown at all.
|
|
*/
|
|
if (not_failing_only && tcp->u_error)
|
|
goto ret; /* ignore failed syscalls */
|
|
sys_res = tcp->s_ent->sys_func(tcp);
|
|
}
|
|
|
|
tprints(") ");
|
|
tabto();
|
|
u_error = tcp->u_error;
|
|
if (tcp->qual_flg & QUAL_RAW) {
|
|
if (u_error)
|
|
tprintf("= -1 (errno %ld)", u_error);
|
|
else
|
|
tprintf("= %#lx", tcp->u_rval);
|
|
}
|
|
else if (!(sys_res & RVAL_NONE) && u_error) {
|
|
switch (u_error) {
|
|
/* Blocked signals do not interrupt any syscalls.
|
|
* In this case syscalls don't return ERESTARTfoo codes.
|
|
*
|
|
* Deadly signals set to SIG_DFL interrupt syscalls
|
|
* and kill the process regardless of which of the codes below
|
|
* is returned by the interrupted syscall.
|
|
* In some cases, kernel forces a kernel-generated deadly
|
|
* signal to be unblocked and set to SIG_DFL (and thus cause
|
|
* death) if it is blocked or SIG_IGNed: for example, SIGSEGV
|
|
* or SIGILL. (The alternative is to leave process spinning
|
|
* forever on the faulty instruction - not useful).
|
|
*
|
|
* SIG_IGNed signals and non-deadly signals set to SIG_DFL
|
|
* (for example, SIGCHLD, SIGWINCH) interrupt syscalls,
|
|
* but kernel will always restart them.
|
|
*/
|
|
case ERESTARTSYS:
|
|
/* Most common type of signal-interrupted syscall exit code.
|
|
* The system call will be restarted with the same arguments
|
|
* if SA_RESTART is set; otherwise, it will fail with EINTR.
|
|
*/
|
|
tprints("= ? ERESTARTSYS (To be restarted if SA_RESTART is set)");
|
|
break;
|
|
case ERESTARTNOINTR:
|
|
/* Rare. For example, fork() returns this if interrupted.
|
|
* SA_RESTART is ignored (assumed set): the restart is unconditional.
|
|
*/
|
|
tprints("= ? ERESTARTNOINTR (To be restarted)");
|
|
break;
|
|
case ERESTARTNOHAND:
|
|
/* pause(), rt_sigsuspend() etc use this code.
|
|
* SA_RESTART is ignored (assumed not set):
|
|
* syscall won't restart (will return EINTR instead)
|
|
* even after signal with SA_RESTART set. However,
|
|
* after SIG_IGN or SIG_DFL signal it will restart
|
|
* (thus the name "restart only if has no handler").
|
|
*/
|
|
tprints("= ? ERESTARTNOHAND (To be restarted if no handler)");
|
|
break;
|
|
case ERESTART_RESTARTBLOCK:
|
|
/* Syscalls like nanosleep(), poll() which can't be
|
|
* restarted with their original arguments use this
|
|
* code. Kernel will execute restart_syscall() instead,
|
|
* which changes arguments before restarting syscall.
|
|
* SA_RESTART is ignored (assumed not set) similarly
|
|
* to ERESTARTNOHAND. (Kernel can't honor SA_RESTART
|
|
* since restart data is saved in "restart block"
|
|
* in task struct, and if signal handler uses a syscall
|
|
* which in turn saves another such restart block,
|
|
* old data is lost and restart becomes impossible)
|
|
*/
|
|
tprints("= ? ERESTART_RESTARTBLOCK (Interrupted by signal)");
|
|
break;
|
|
default:
|
|
if (u_error < 0)
|
|
tprintf("= -1 E??? (errno %ld)", u_error);
|
|
else if ((unsigned long) u_error < nerrnos)
|
|
tprintf("= -1 %s (%s)", errnoent[u_error],
|
|
strerror(u_error));
|
|
else
|
|
tprintf("= -1 ERRNO_%ld (%s)", u_error,
|
|
strerror(u_error));
|
|
break;
|
|
}
|
|
if ((sys_res & RVAL_STR) && tcp->auxstr)
|
|
tprintf(" (%s)", tcp->auxstr);
|
|
}
|
|
else {
|
|
if (sys_res & RVAL_NONE)
|
|
tprints("= ?");
|
|
else {
|
|
switch (sys_res & RVAL_MASK) {
|
|
case RVAL_HEX:
|
|
tprintf("= %#lx", tcp->u_rval);
|
|
break;
|
|
case RVAL_OCTAL:
|
|
tprintf("= %#lo", tcp->u_rval);
|
|
break;
|
|
case RVAL_UDECIMAL:
|
|
tprintf("= %lu", tcp->u_rval);
|
|
break;
|
|
case RVAL_DECIMAL:
|
|
tprintf("= %ld", tcp->u_rval);
|
|
break;
|
|
case RVAL_FD:
|
|
if (show_fd_path) {
|
|
tprints("= ");
|
|
printfd(tcp, tcp->u_rval);
|
|
}
|
|
else
|
|
tprintf("= %ld", tcp->u_rval);
|
|
break;
|
|
#if defined(LINUX_MIPSN32) || defined(X32)
|
|
/*
|
|
case RVAL_LHEX:
|
|
tprintf("= %#llx", tcp->u_lrval);
|
|
break;
|
|
case RVAL_LOCTAL:
|
|
tprintf("= %#llo", tcp->u_lrval);
|
|
break;
|
|
*/
|
|
case RVAL_LUDECIMAL:
|
|
tprintf("= %llu", tcp->u_lrval);
|
|
break;
|
|
/*
|
|
case RVAL_LDECIMAL:
|
|
tprintf("= %lld", tcp->u_lrval);
|
|
break;
|
|
*/
|
|
#endif
|
|
default:
|
|
fprintf(stderr,
|
|
"invalid rval format\n");
|
|
break;
|
|
}
|
|
}
|
|
if ((sys_res & RVAL_STR) && tcp->auxstr)
|
|
tprintf(" (%s)", tcp->auxstr);
|
|
}
|
|
if (Tflag) {
|
|
tv_sub(&tv, &tv, &tcp->etime);
|
|
tprintf(" <%ld.%06ld>",
|
|
(long) tv.tv_sec, (long) tv.tv_usec);
|
|
}
|
|
tprints("\n");
|
|
dumpio(tcp);
|
|
line_ended();
|
|
|
|
#ifdef USE_LIBUNWIND
|
|
if (stack_trace_enabled)
|
|
unwind_print_stacktrace(tcp);
|
|
#endif
|
|
|
|
ret:
|
|
tcp->flags &= ~TCB_INSYSCALL;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
trace_syscall(struct tcb *tcp)
|
|
{
|
|
return exiting(tcp) ?
|
|
trace_syscall_exiting(tcp) : trace_syscall_entering(tcp);
|
|
}
|