strace/syscall.c
Dmitry V. Levin f677715a9b mips: fix compilation warning
* syscall.c (get_scno) [MIPS]: Fix harmless compilation warning
about comparison between signed and unsigned integer expressions.
2015-03-02 15:06:51 +00:00

2535 lines
62 KiB
C

/*
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
* Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
* Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Linux for s390 port by D.J. Barrow
* <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "defs.h"
#include <sys/param.h>
/* for struct iovec */
#include <sys/uio.h>
#include "regs.h"
#include "ptrace.h"
#if defined(SPARC64)
# undef PTRACE_GETREGS
# define PTRACE_GETREGS PTRACE_GETREGS64
# undef PTRACE_SETREGS
# define PTRACE_SETREGS PTRACE_SETREGS64
#endif
#if defined SPARC64
# include <asm/psrcompat.h>
#elif defined SPARC
# include <asm/psr.h>
#endif
#ifndef NT_PRSTATUS
# define NT_PRSTATUS 1
#endif
#ifndef NSIG
# warning: NSIG is not defined, using 32
# define NSIG 32
#endif
#include "syscall.h"
/* Define these shorthand notations to simplify the syscallent files. */
#define TD TRACE_DESC
#define TF TRACE_FILE
#define TI TRACE_IPC
#define TN TRACE_NETWORK
#define TP TRACE_PROCESS
#define TS TRACE_SIGNAL
#define TM TRACE_MEMORY
#define NF SYSCALL_NEVER_FAILS
#define MA MAX_ARGS
#define SI STACKTRACE_INVALIDATE_CACHE
#define SE STACKTRACE_CAPTURE_ON_ENTER
const struct_sysent sysent0[] = {
#include "syscallent.h"
};
#if SUPPORTED_PERSONALITIES > 1
static const struct_sysent sysent1[] = {
# include "syscallent1.h"
};
#endif
#if SUPPORTED_PERSONALITIES > 2
static const struct_sysent sysent2[] = {
# include "syscallent2.h"
};
#endif
/* Now undef them since short defines cause wicked namespace pollution. */
#undef TD
#undef TF
#undef TI
#undef TN
#undef TP
#undef TS
#undef TM
#undef NF
#undef MA
#undef SI
#undef SE
/*
* `ioctlent[012].h' files are automatically generated by the auxiliary
* program `ioctlsort', such that the list is sorted by the `code' field.
* This has the side-effect of resolving the _IO.. macros into
* plain integers, eliminating the need to include here everything
* in "/usr/include".
*/
const char *const errnoent0[] = {
#include "errnoent.h"
};
const char *const signalent0[] = {
#include "signalent.h"
};
const struct_ioctlent ioctlent0[] = {
#include "ioctlent0.h"
};
#if SUPPORTED_PERSONALITIES > 1
static const char *const errnoent1[] = {
# include "errnoent1.h"
};
static const char *const signalent1[] = {
# include "signalent1.h"
};
static const struct_ioctlent ioctlent1[] = {
# include "ioctlent1.h"
};
#endif
#if SUPPORTED_PERSONALITIES > 2
static const char *const errnoent2[] = {
# include "errnoent2.h"
};
static const char *const signalent2[] = {
# include "signalent2.h"
};
static const struct_ioctlent ioctlent2[] = {
# include "ioctlent2.h"
};
#endif
enum {
nsyscalls0 = ARRAY_SIZE(sysent0)
#if SUPPORTED_PERSONALITIES > 1
, nsyscalls1 = ARRAY_SIZE(sysent1)
# if SUPPORTED_PERSONALITIES > 2
, nsyscalls2 = ARRAY_SIZE(sysent2)
# endif
#endif
};
enum {
nerrnos0 = ARRAY_SIZE(errnoent0)
#if SUPPORTED_PERSONALITIES > 1
, nerrnos1 = ARRAY_SIZE(errnoent1)
# if SUPPORTED_PERSONALITIES > 2
, nerrnos2 = ARRAY_SIZE(errnoent2)
# endif
#endif
};
enum {
nsignals0 = ARRAY_SIZE(signalent0)
#if SUPPORTED_PERSONALITIES > 1
, nsignals1 = ARRAY_SIZE(signalent1)
# if SUPPORTED_PERSONALITIES > 2
, nsignals2 = ARRAY_SIZE(signalent2)
# endif
#endif
};
enum {
nioctlents0 = ARRAY_SIZE(ioctlent0)
#if SUPPORTED_PERSONALITIES > 1
, nioctlents1 = ARRAY_SIZE(ioctlent1)
# if SUPPORTED_PERSONALITIES > 2
, nioctlents2 = ARRAY_SIZE(ioctlent2)
# endif
#endif
};
#if SUPPORTED_PERSONALITIES > 1
const struct_sysent *sysent = sysent0;
const char *const *errnoent = errnoent0;
const char *const *signalent = signalent0;
const struct_ioctlent *ioctlent = ioctlent0;
#endif
unsigned nsyscalls = nsyscalls0;
unsigned nerrnos = nerrnos0;
unsigned nsignals = nsignals0;
unsigned nioctlents = nioctlents0;
unsigned num_quals;
qualbits_t *qual_vec[SUPPORTED_PERSONALITIES];
static const unsigned nsyscall_vec[SUPPORTED_PERSONALITIES] = {
nsyscalls0,
#if SUPPORTED_PERSONALITIES > 1
nsyscalls1,
#endif
#if SUPPORTED_PERSONALITIES > 2
nsyscalls2,
#endif
};
static const struct_sysent *const sysent_vec[SUPPORTED_PERSONALITIES] = {
sysent0,
#if SUPPORTED_PERSONALITIES > 1
sysent1,
#endif
#if SUPPORTED_PERSONALITIES > 2
sysent2,
#endif
};
enum {
MAX_NSYSCALLS1 = (nsyscalls0
#if SUPPORTED_PERSONALITIES > 1
> nsyscalls1 ? nsyscalls0 : nsyscalls1
#endif
),
MAX_NSYSCALLS2 = (MAX_NSYSCALLS1
#if SUPPORTED_PERSONALITIES > 2
> nsyscalls2 ? MAX_NSYSCALLS1 : nsyscalls2
#endif
),
MAX_NSYSCALLS = MAX_NSYSCALLS2,
/* We are ready for arches with up to 255 signals,
* even though the largest known signo is on MIPS and it is 128.
* The number of existing syscalls on all arches is
* larger that 255 anyway, so it is just a pedantic matter.
*/
MIN_QUALS = MAX_NSYSCALLS > 255 ? MAX_NSYSCALLS : 255
};
#if SUPPORTED_PERSONALITIES > 1
unsigned current_personality;
# ifndef current_wordsize
unsigned current_wordsize;
static const int personality_wordsize[SUPPORTED_PERSONALITIES] = {
PERSONALITY0_WORDSIZE,
PERSONALITY1_WORDSIZE,
# if SUPPORTED_PERSONALITIES > 2
PERSONALITY2_WORDSIZE,
# endif
};
# endif
void
set_personality(int personality)
{
nsyscalls = nsyscall_vec[personality];
sysent = sysent_vec[personality];
switch (personality) {
case 0:
errnoent = errnoent0;
nerrnos = nerrnos0;
ioctlent = ioctlent0;
nioctlents = nioctlents0;
signalent = signalent0;
nsignals = nsignals0;
break;
case 1:
errnoent = errnoent1;
nerrnos = nerrnos1;
ioctlent = ioctlent1;
nioctlents = nioctlents1;
signalent = signalent1;
nsignals = nsignals1;
break;
# if SUPPORTED_PERSONALITIES > 2
case 2:
errnoent = errnoent2;
nerrnos = nerrnos2;
ioctlent = ioctlent2;
nioctlents = nioctlents2;
signalent = signalent2;
nsignals = nsignals2;
break;
# endif
}
current_personality = personality;
# ifndef current_wordsize
current_wordsize = personality_wordsize[personality];
# endif
}
static void
update_personality(struct tcb *tcp, unsigned int personality)
{
if (personality == current_personality)
return;
set_personality(personality);
if (personality == tcp->currpers)
return;
tcp->currpers = personality;
# if defined(POWERPC64)
if (!qflag) {
static const char *const names[] = {"64 bit", "32 bit"};
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
tcp->pid, names[personality]);
}
# elif defined(X86_64)
if (!qflag) {
static const char *const names[] = {"64 bit", "32 bit", "x32"};
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
tcp->pid, names[personality]);
}
# elif defined(X32)
if (!qflag) {
static const char *const names[] = {"x32", "32 bit"};
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
tcp->pid, names[personality]);
}
# elif defined(AARCH64)
if (!qflag) {
static const char *const names[] = {"32-bit", "AArch64"};
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
tcp->pid, names[personality]);
}
# elif defined(TILE)
if (!qflag) {
static const char *const names[] = {"64-bit", "32-bit"};
fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
tcp->pid, names[personality]);
}
# endif
}
#endif
static int qual_syscall(), qual_signal(), qual_desc();
static const struct qual_options {
unsigned int bitflag;
const char *option_name;
int (*qualify)(const char *, int, int);
const char *argument_name;
} qual_options[] = {
{ QUAL_TRACE, "trace", qual_syscall, "system call" },
{ QUAL_TRACE, "t", qual_syscall, "system call" },
{ QUAL_ABBREV, "abbrev", qual_syscall, "system call" },
{ QUAL_ABBREV, "a", qual_syscall, "system call" },
{ QUAL_VERBOSE, "verbose", qual_syscall, "system call" },
{ QUAL_VERBOSE, "v", qual_syscall, "system call" },
{ QUAL_RAW, "raw", qual_syscall, "system call" },
{ QUAL_RAW, "x", qual_syscall, "system call" },
{ QUAL_SIGNAL, "signal", qual_signal, "signal" },
{ QUAL_SIGNAL, "signals", qual_signal, "signal" },
{ QUAL_SIGNAL, "s", qual_signal, "signal" },
{ QUAL_READ, "read", qual_desc, "descriptor" },
{ QUAL_READ, "reads", qual_desc, "descriptor" },
{ QUAL_READ, "r", qual_desc, "descriptor" },
{ QUAL_WRITE, "write", qual_desc, "descriptor" },
{ QUAL_WRITE, "writes", qual_desc, "descriptor" },
{ QUAL_WRITE, "w", qual_desc, "descriptor" },
{ 0, NULL, NULL, NULL },
};
static void
reallocate_qual(const unsigned int n)
{
unsigned p;
qualbits_t *qp;
for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
qp = qual_vec[p] = realloc(qual_vec[p], n * sizeof(qualbits_t));
if (!qp)
die_out_of_memory();
memset(&qp[num_quals], 0, (n - num_quals) * sizeof(qualbits_t));
}
num_quals = n;
}
static void
qualify_one(const unsigned int n, unsigned int bitflag, const int not, const int pers)
{
int p;
if (num_quals <= n)
reallocate_qual(n + 1);
for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
if (pers == p || pers < 0) {
if (not)
qual_vec[p][n] &= ~bitflag;
else
qual_vec[p][n] |= bitflag;
}
}
}
static int
qual_syscall(const char *s, const unsigned int bitflag, const int not)
{
int p;
unsigned int i;
int rc = -1;
if (*s >= '0' && *s <= '9') {
i = string_to_uint(s);
if (i >= MAX_NSYSCALLS)
return -1;
qualify_one(i, bitflag, not, -1);
return 0;
}
for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
for (i = 0; i < nsyscall_vec[p]; i++) {
if (sysent_vec[p][i].sys_name
&& strcmp(s, sysent_vec[p][i].sys_name) == 0
) {
qualify_one(i, bitflag, not, p);
rc = 0;
}
}
}
return rc;
}
static int
qual_signal(const char *s, const unsigned int bitflag, const int not)
{
unsigned int i;
if (*s >= '0' && *s <= '9') {
int signo = string_to_uint(s);
if (signo < 0 || signo > 255)
return -1;
qualify_one(signo, bitflag, not, -1);
return 0;
}
if (strncasecmp(s, "SIG", 3) == 0)
s += 3;
for (i = 0; i <= NSIG; i++) {
if (strcasecmp(s, signame(i) + 3) == 0) {
qualify_one(i, bitflag, not, -1);
return 0;
}
}
return -1;
}
static int
qual_desc(const char *s, const unsigned int bitflag, const int not)
{
if (*s >= '0' && *s <= '9') {
int desc = string_to_uint(s);
if (desc < 0 || desc > 0x7fff) /* paranoia */
return -1;
qualify_one(desc, bitflag, not, -1);
return 0;
}
return -1;
}
static int
lookup_class(const char *s)
{
if (strcmp(s, "file") == 0)
return TRACE_FILE;
if (strcmp(s, "ipc") == 0)
return TRACE_IPC;
if (strcmp(s, "network") == 0)
return TRACE_NETWORK;
if (strcmp(s, "process") == 0)
return TRACE_PROCESS;
if (strcmp(s, "signal") == 0)
return TRACE_SIGNAL;
if (strcmp(s, "desc") == 0)
return TRACE_DESC;
if (strcmp(s, "memory") == 0)
return TRACE_MEMORY;
return -1;
}
void
qualify(const char *s)
{
const struct qual_options *opt;
char *copy;
const char *p;
int not;
unsigned int i;
if (num_quals == 0)
reallocate_qual(MIN_QUALS);
opt = &qual_options[0];
for (i = 0; (p = qual_options[i].option_name); i++) {
unsigned int len = strlen(p);
if (strncmp(s, p, len) == 0 && s[len] == '=') {
opt = &qual_options[i];
s += len + 1;
break;
}
}
not = 0;
if (*s == '!') {
not = 1;
s++;
}
if (strcmp(s, "none") == 0) {
not = 1 - not;
s = "all";
}
if (strcmp(s, "all") == 0) {
for (i = 0; i < num_quals; i++) {
qualify_one(i, opt->bitflag, not, -1);
}
return;
}
for (i = 0; i < num_quals; i++) {
qualify_one(i, opt->bitflag, !not, -1);
}
copy = strdup(s);
if (!copy)
die_out_of_memory();
for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) {
int n;
if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) {
unsigned pers;
for (pers = 0; pers < SUPPORTED_PERSONALITIES; pers++) {
for (i = 0; i < nsyscall_vec[pers]; i++)
if (sysent_vec[pers][i].sys_flags & n)
qualify_one(i, opt->bitflag, not, pers);
}
continue;
}
if (opt->qualify(p, opt->bitflag, not)) {
error_msg_and_die("invalid %s '%s'",
opt->argument_name, p);
}
}
free(copy);
return;
}
#ifdef SYS_socket_subcall
static void
decode_socket_subcall(struct tcb *tcp)
{
unsigned long addr;
unsigned int i, n, size;
if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_socket_nsubcalls)
return;
tcp->scno = SYS_socket_subcall + tcp->u_arg[0];
tcp->qual_flg = qual_flags[tcp->scno];
tcp->s_ent = &sysent[tcp->scno];
addr = tcp->u_arg[1];
size = current_wordsize;
n = tcp->s_ent->nargs;
for (i = 0; i < n; ++i) {
if (size == sizeof(int)) {
unsigned int arg;
if (umove(tcp, addr, &arg) < 0)
arg = 0;
tcp->u_arg[i] = arg;
}
else {
unsigned long arg;
if (umove(tcp, addr, &arg) < 0)
arg = 0;
tcp->u_arg[i] = arg;
}
addr += size;
}
}
#endif
#ifdef SYS_ipc_subcall
static void
decode_ipc_subcall(struct tcb *tcp)
{
unsigned int i, n;
if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_ipc_nsubcalls)
return;
tcp->scno = SYS_ipc_subcall + tcp->u_arg[0];
tcp->qual_flg = qual_flags[tcp->scno];
tcp->s_ent = &sysent[tcp->scno];
n = tcp->s_ent->nargs;
for (i = 0; i < n; i++)
tcp->u_arg[i] = tcp->u_arg[i + 1];
}
#endif
int
printargs(struct tcb *tcp)
{
if (entering(tcp)) {
int i;
int n = tcp->s_ent->nargs;
for (i = 0; i < n; i++)
tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]);
}
return 0;
}
int
printargs_lu(struct tcb *tcp)
{
if (entering(tcp)) {
int i;
int n = tcp->s_ent->nargs;
for (i = 0; i < n; i++)
tprintf("%s%lu", i ? ", " : "", tcp->u_arg[i]);
}
return 0;
}
int
printargs_ld(struct tcb *tcp)
{
if (entering(tcp)) {
int i;
int n = tcp->s_ent->nargs;
for (i = 0; i < n; i++)
tprintf("%s%ld", i ? ", " : "", tcp->u_arg[i]);
}
return 0;
}
#if defined(SPARC) || defined(SPARC64) || defined(IA64) || defined(SH)
long
getrval2(struct tcb *tcp)
{
long val;
# if defined(SPARC) || defined(SPARC64)
val = sparc_regs.u_regs[U_REG_O1];
# elif defined(SH)
if (upeek(tcp->pid, 4*(REG_REG0+1), &val) < 0)
return -1;
# elif defined(IA64)
if (upeek(tcp->pid, PT_R9, &val) < 0)
return -1;
# endif
return val;
}
#endif
#if defined(I386)
static struct user_regs_struct i386_regs;
long *const i386_esp_ptr = &i386_regs.esp;
# define ARCH_REGS_FOR_GETREGS i386_regs
#elif defined(X86_64) || defined(X32)
/*
* On i386, pt_regs and user_regs_struct are the same,
* but on 64 bit x86, user_regs_struct has six more fields:
* fs_base, gs_base, ds, es, fs, gs.
* PTRACE_GETREGS fills them too, so struct pt_regs would overflow.
*/
struct i386_user_regs_struct {
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t esi;
uint32_t edi;
uint32_t ebp;
uint32_t eax;
uint32_t xds;
uint32_t xes;
uint32_t xfs;
uint32_t xgs;
uint32_t orig_eax;
uint32_t eip;
uint32_t xcs;
uint32_t eflags;
uint32_t esp;
uint32_t xss;
};
static union {
struct user_regs_struct x86_64_r;
struct i386_user_regs_struct i386_r;
} x86_regs_union;
# define x86_64_regs x86_regs_union.x86_64_r
# define i386_regs x86_regs_union.i386_r
uint32_t *const i386_esp_ptr = &i386_regs.esp;
static struct iovec x86_io = {
.iov_base = &x86_regs_union
};
# define ARCH_REGS_FOR_GETREGSET x86_regs_union
# define ARCH_IOVEC_FOR_GETREGSET x86_io
#elif defined(IA64)
static bool ia64_ia32mode;
static long ia64_r8, ia64_r10;
#elif defined(POWERPC)
struct pt_regs ppc_regs; /* not static */
# define ARCH_REGS_FOR_GETREGS ppc_regs
#elif defined(M68K)
static long m68k_d0;
#elif defined(BFIN)
static long bfin_r0;
#elif defined(ARM)
struct pt_regs arm_regs; /* not static */
# define ARCH_REGS_FOR_GETREGS arm_regs
#elif defined(AARCH64)
struct arm_pt_regs {
int uregs[18];
};
# define ARM_cpsr uregs[16]
# define ARM_pc uregs[15]
# define ARM_lr uregs[14]
# define ARM_sp uregs[13]
# define ARM_ip uregs[12]
# define ARM_fp uregs[11]
# define ARM_r10 uregs[10]
# define ARM_r9 uregs[9]
# define ARM_r8 uregs[8]
# define ARM_r7 uregs[7]
# define ARM_r6 uregs[6]
# define ARM_r5 uregs[5]
# define ARM_r4 uregs[4]
# define ARM_r3 uregs[3]
# define ARM_r2 uregs[2]
# define ARM_r1 uregs[1]
# define ARM_r0 uregs[0]
# define ARM_ORIG_r0 uregs[17]
static union {
struct user_pt_regs aarch64_r;
struct arm_pt_regs arm_r;
} arm_regs_union;
# define aarch64_regs arm_regs_union.aarch64_r
# define arm_regs arm_regs_union.arm_r
static struct iovec aarch64_io = {
.iov_base = &arm_regs_union
};
# define ARCH_REGS_FOR_GETREGSET arm_regs_union
# define ARCH_IOVEC_FOR_GETREGSET aarch64_io
#elif defined(ALPHA)
static long alpha_r0;
static long alpha_a3;
#elif defined(AVR32)
static struct pt_regs avr32_regs;
# define ARCH_REGS_FOR_GETREGS avr32_regs
#elif defined(SPARC) || defined(SPARC64)
struct pt_regs sparc_regs; /* not static */
# define ARCH_REGS_FOR_GETREGS sparc_regs
#elif defined(MIPS)
struct mips_regs mips_regs; /* not static */
/* PTRACE_GETREGS on MIPS is available since linux v2.6.15. */
# define ARCH_REGS_FOR_GETREGS mips_regs
#elif defined(S390) || defined(S390X)
static long s390_gpr2;
#elif defined(HPPA)
static long hppa_r28;
#elif defined(SH)
static long sh_r0;
#elif defined(SH64)
static long sh64_r9;
#elif defined(CRISV10) || defined(CRISV32)
static long cris_r10;
#elif defined(TILE)
struct pt_regs tile_regs; /* not static */
# define ARCH_REGS_FOR_GETREGS tile_regs
#elif defined(MICROBLAZE)
static long microblaze_r3;
#elif defined(OR1K)
static struct user_regs_struct or1k_regs;
# define ARCH_REGS_FOR_GETREGSET or1k_regs
#elif defined(METAG)
static struct user_gp_regs metag_regs;
# define ARCH_REGS_FOR_GETREGSET metag_regs
#elif defined(XTENSA)
static long xtensa_a2;
# elif defined(ARC)
static struct user_regs_struct arc_regs;
# define ARCH_REGS_FOR_GETREGSET arc_regs
#endif
static long get_regs_error;
void
print_pc(struct tcb *tcp)
{
const char *fmt;
const char *bad;
#ifdef current_wordsize
# define pc_wordsize current_wordsize
#else
# define pc_wordsize personality_wordsize[tcp->currpers]
#endif
if (pc_wordsize == 4) {
fmt = "[%08lx] ";
bad = "[????????] ";
} else {
fmt = "[%016lx] ";
bad = "[????????????????] ";
}
#undef pc_wordsize
#define PRINTBADPC tprints(bad)
if (get_regs_error) {
PRINTBADPC;
return;
}
#if defined(I386)
tprintf(fmt, i386_regs.eip);
#elif defined(X86_64) || defined(X32)
if (x86_io.iov_len == sizeof(i386_regs))
tprintf(fmt, (unsigned long) i386_regs.eip);
else
tprintf(fmt, (unsigned long) x86_64_regs.rip);
#elif defined(S390) || defined(S390X)
long psw;
if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, psw);
#elif defined(IA64)
long ip;
if (upeek(tcp->pid, PT_B0, &ip) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, ip);
#elif defined(POWERPC)
tprintf(fmt, ppc_regs.nip);
#elif defined(M68K)
long pc;
if (upeek(tcp->pid, 4*PT_PC, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined(ALPHA)
long pc;
if (upeek(tcp->pid, REG_PC, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined(SPARC)
tprintf(fmt, sparc_regs.pc);
#elif defined(SPARC64)
tprintf(fmt, sparc_regs.tpc);
#elif defined(HPPA)
long pc;
if (upeek(tcp->pid, PT_IAOQ0, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined MIPS
tprintf(fmt, (unsigned long) mips_REG_EPC);
#elif defined(SH)
long pc;
if (upeek(tcp->pid, 4*REG_PC, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined(SH64)
long pc;
if (upeek(tcp->pid, REG_PC, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined(AARCH64)
if (aarch64_io.iov_len == sizeof(arm_regs))
tprintf(fmt, (unsigned long) arm_regs.ARM_pc);
else
tprintf(fmt, (unsigned long) aarch64_regs.pc);
#elif defined(ARM)
tprintf(fmt, arm_regs.ARM_pc);
#elif defined(AVR32)
tprintf(fmt, avr32_regs.pc);
#elif defined(BFIN)
long pc;
if (upeek(tcp->pid, PT_PC, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined(CRISV10)
long pc;
if (upeek(tcp->pid, 4*PT_IRP, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined(CRISV32)
long pc;
if (upeek(tcp->pid, 4*PT_ERP, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined(TILE)
tprintf(fmt, (unsigned long) tile_regs.pc);
#elif defined(OR1K)
tprintf(fmt, or1k_regs.pc);
#elif defined(METAG)
tprintf(fmt, metag_regs.pc);
#elif defined(XTENSA)
long pc;
if (upeek(tcp->pid, REG_PC, &pc) < 0) {
PRINTBADPC;
return;
}
tprintf(fmt, pc);
#elif defined(ARC)
tprintf(fmt, arc_regs.efa);
#else
# warning print_pc is not implemented for this architecture
PRINTBADPC;
#endif /* architecture */
}
/*
* Shuffle syscall numbers so that we don't have huge gaps in syscall table.
* The shuffling should be an involution: shuffle_scno(shuffle_scno(n)) == n.
*/
#if defined(ARM) || defined(AARCH64) /* So far only 32-bit ARM needs this */
static long
shuffle_scno(unsigned long scno)
{
if (scno < ARM_FIRST_SHUFFLED_SYSCALL)
return scno;
/* __ARM_NR_cmpxchg? Swap with LAST_ORDINARY+1 */
if (scno == ARM_FIRST_SHUFFLED_SYSCALL)
return 0x000ffff0;
if (scno == 0x000ffff0)
return ARM_FIRST_SHUFFLED_SYSCALL;
#define ARM_SECOND_SHUFFLED_SYSCALL (ARM_FIRST_SHUFFLED_SYSCALL + 1)
/*
* Is it ARM specific syscall?
* Swap [0x000f0000, 0x000f0000 + LAST_SPECIAL] range
* with [SECOND_SHUFFLED, SECOND_SHUFFLED + LAST_SPECIAL] range.
*/
if (scno >= 0x000f0000 &&
scno <= 0x000f0000 + ARM_LAST_SPECIAL_SYSCALL) {
return scno - 0x000f0000 + ARM_SECOND_SHUFFLED_SYSCALL;
}
if (scno <= ARM_SECOND_SHUFFLED_SYSCALL + ARM_LAST_SPECIAL_SYSCALL) {
return scno + 0x000f0000 - ARM_SECOND_SHUFFLED_SYSCALL;
}
return scno;
}
#else
# define shuffle_scno(scno) ((long)(scno))
#endif
static char*
undefined_scno_name(struct tcb *tcp)
{
static char buf[sizeof("syscall_%lu") + sizeof(long)*3];
sprintf(buf, "syscall_%lu", shuffle_scno(tcp->scno));
return buf;
}
#ifdef POWERPC
/*
* PTRACE_GETREGS was added to the PowerPC kernel in v2.6.23,
* we provide a slow fallback for old kernels.
*/
static int powerpc_getregs_old(pid_t pid)
{
int i;
long r;
if (iflag) {
r = upeek(pid, sizeof(long) * PT_NIP, (long *)&ppc_regs.nip);
if (r)
goto out;
}
#ifdef POWERPC64 /* else we never use it */
r = upeek(pid, sizeof(long) * PT_MSR, (long *)&ppc_regs.msr);
if (r)
goto out;
#endif
r = upeek(pid, sizeof(long) * PT_CCR, (long *)&ppc_regs.ccr);
if (r)
goto out;
r = upeek(pid, sizeof(long) * PT_ORIG_R3, (long *)&ppc_regs.orig_gpr3);
if (r)
goto out;
for (i = 0; i <= 8; i++) {
r = upeek(pid, sizeof(long) * (PT_R0 + i),
(long *)&ppc_regs.gpr[i]);
if (r)
goto out;
}
out:
return r;
}
#endif
void
clear_regs(void)
{
get_regs_error = -1;
}
#if defined ARCH_REGS_FOR_GETREGSET
static long
get_regset(pid_t pid)
{
# ifdef ARCH_IOVEC_FOR_GETREGSET
/* variable iovec */
ARCH_IOVEC_FOR_GETREGSET.iov_len = sizeof(ARCH_REGS_FOR_GETREGSET);
return ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS,
&ARCH_IOVEC_FOR_GETREGSET);
# else
/* constant iovec */
static struct iovec io = {
.iov_base = &ARCH_REGS_FOR_GETREGSET,
.iov_len = sizeof(ARCH_REGS_FOR_GETREGSET)
};
return ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &io);
# endif
}
#endif /* ARCH_REGS_FOR_GETREGSET */
void
get_regs(pid_t pid)
{
#ifdef ARCH_REGS_FOR_GETREGSET
# ifdef X86_64
/* Try PTRACE_GETREGSET first, fallback to PTRACE_GETREGS. */
static int getregset_support;
if (getregset_support >= 0) {
get_regs_error = get_regset(pid);
if (getregset_support > 0)
return;
if (get_regs_error >= 0) {
getregset_support = 1;
return;
}
if (errno == EPERM || errno == ESRCH)
return;
getregset_support = -1;
}
/* Use old method, with unreliable heuristical detection of 32-bitness. */
x86_io.iov_len = sizeof(x86_64_regs);
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &x86_64_regs);
if (!get_regs_error && x86_64_regs.cs == 0x23) {
x86_io.iov_len = sizeof(i386_regs);
/*
* The order is important: i386_regs and x86_64_regs
* are overlaid in memory!
*/
i386_regs.ebx = x86_64_regs.rbx;
i386_regs.ecx = x86_64_regs.rcx;
i386_regs.edx = x86_64_regs.rdx;
i386_regs.esi = x86_64_regs.rsi;
i386_regs.edi = x86_64_regs.rdi;
i386_regs.ebp = x86_64_regs.rbp;
i386_regs.eax = x86_64_regs.rax;
/* i386_regs.xds = x86_64_regs.ds; unused by strace */
/* i386_regs.xes = x86_64_regs.es; ditto... */
/* i386_regs.xfs = x86_64_regs.fs; */
/* i386_regs.xgs = x86_64_regs.gs; */
i386_regs.orig_eax = x86_64_regs.orig_rax;
i386_regs.eip = x86_64_regs.rip;
/* i386_regs.xcs = x86_64_regs.cs; */
/* i386_regs.eflags = x86_64_regs.eflags; */
i386_regs.esp = x86_64_regs.rsp;
/* i386_regs.xss = x86_64_regs.ss; */
}
# else /* !X86_64 */
/* Assume that PTRACE_GETREGSET works. */
get_regs_error = get_regset(pid);
# endif
#elif defined ARCH_REGS_FOR_GETREGS
# if defined SPARC || defined SPARC64
/* SPARC systems have the meaning of data and addr reversed */
get_regs_error = ptrace(PTRACE_GETREGS, pid, (char *)&ARCH_REGS_FOR_GETREGS, 0);
# elif defined POWERPC
static bool old_kernel = 0;
if (old_kernel)
goto old;
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &ARCH_REGS_FOR_GETREGS);
if (get_regs_error && errno == EIO) {
old_kernel = 1;
old:
get_regs_error = powerpc_getregs_old(pid);
}
# else
/* Assume that PTRACE_GETREGS works. */
get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &ARCH_REGS_FOR_GETREGS);
# endif
#else /* !ARCH_REGS_FOR_GETREGSET && !ARCH_REGS_FOR_GETREGS */
# warning get_regs is not implemented for this architecture yet
get_regs_error = 0;
#endif
}
/* Returns:
* 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently.
* 1: ok, continue in trace_syscall_entering().
* other: error, trace_syscall_entering() should print error indicator
* ("????" etc) and bail out.
*/
static int
get_scno(struct tcb *tcp)
{
long scno = 0;
#if defined(S390) || defined(S390X)
if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0)
return -1;
if (s390_gpr2 != -ENOSYS) {
/*
* Since kernel version 2.5.44 the scno gets passed in gpr2.
*/
scno = s390_gpr2;
} else {
/*
* Old style of "passing" the scno via the SVC instruction.
*/
long psw;
long opcode, offset_reg, tmp;
void *svc_addr;
static const int gpr_offset[16] = {
PT_GPR0, PT_GPR1, PT_ORIGGPR2, PT_GPR3,
PT_GPR4, PT_GPR5, PT_GPR6, PT_GPR7,
PT_GPR8, PT_GPR9, PT_GPR10, PT_GPR11,
PT_GPR12, PT_GPR13, PT_GPR14, PT_GPR15
};
if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0)
return -1;
errno = 0;
opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(psw - sizeof(long)), 0);
if (errno) {
perror_msg("peektext(psw-oneword)");
return -1;
}
/*
* We have to check if the SVC got executed directly or via an
* EXECUTE instruction. In case of EXECUTE it is necessary to do
* instruction decoding to derive the system call number.
* Unfortunately the opcode sizes of EXECUTE and SVC are differently,
* so that this doesn't work if a SVC opcode is part of an EXECUTE
* opcode. Since there is no way to find out the opcode size this
* is the best we can do...
*/
if ((opcode & 0xff00) == 0x0a00) {
/* SVC opcode */
scno = opcode & 0xff;
}
else {
/* SVC got executed by EXECUTE instruction */
/*
* Do instruction decoding of EXECUTE. If you really want to
* understand this, read the Principles of Operations.
*/
svc_addr = (void *) (opcode & 0xfff);
tmp = 0;
offset_reg = (opcode & 0x000f0000) >> 16;
if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
return -1;
svc_addr += tmp;
tmp = 0;
offset_reg = (opcode & 0x0000f000) >> 12;
if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
return -1;
svc_addr += tmp;
scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0);
if (errno)
return -1;
# if defined(S390X)
scno >>= 48;
# else
scno >>= 16;
# endif
tmp = 0;
offset_reg = (opcode & 0x00f00000) >> 20;
if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
return -1;
scno = (scno | tmp) & 0xff;
}
}
#elif defined(POWERPC)
scno = ppc_regs.gpr[0];
# ifdef POWERPC64
unsigned int currpers;
/*
* Check for 64/32 bit mode.
* Embedded implementations covered by Book E extension of PPC use
* bit 0 (CM) of 32-bit Machine state register (MSR).
* Other implementations use bit 0 (SF) of 64-bit MSR.
*/
currpers = (ppc_regs.msr & 0x8000000080000000) ? 0 : 1;
update_personality(tcp, currpers);
# endif
#elif defined(AVR32)
scno = avr32_regs.r8;
#elif defined(BFIN)
if (upeek(tcp->pid, PT_ORIG_P0, &scno))
return -1;
#elif defined(I386)
scno = i386_regs.orig_eax;
#elif defined(X86_64) || defined(X32)
# ifndef __X32_SYSCALL_BIT
# define __X32_SYSCALL_BIT 0x40000000
# endif
unsigned int currpers;
# if 1
/* GETREGSET of NT_PRSTATUS tells us regset size,
* which unambiguously detects i386.
*
* Linux kernel distinguishes x86-64 and x32 processes
* solely by looking at __X32_SYSCALL_BIT:
* arch/x86/include/asm/compat.h::is_x32_task():
* if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)
* return true;
*/
if (x86_io.iov_len == sizeof(i386_regs)) {
scno = i386_regs.orig_eax;
currpers = 1;
} else {
scno = x86_64_regs.orig_rax;
currpers = 0;
if (scno & __X32_SYSCALL_BIT) {
/*
* Syscall number -1 requires special treatment:
* it might be a side effect of SECCOMP_RET_ERRNO
* filtering that sets orig_rax to -1
* in some versions of linux kernel.
* If that is the case, then
* __X32_SYSCALL_BIT logic does not apply.
*/
if ((long long) x86_64_regs.orig_rax != -1) {
scno -= __X32_SYSCALL_BIT;
currpers = 2;
} else {
# ifdef X32
currpers = 2;
# endif
}
}
}
# elif 0
/* cs = 0x33 for long mode (native 64 bit and x32)
* cs = 0x23 for compatibility mode (32 bit)
* ds = 0x2b for x32 mode (x86-64 in 32 bit)
*/
scno = x86_64_regs.orig_rax;
switch (x86_64_regs.cs) {
case 0x23: currpers = 1; break;
case 0x33:
if (x86_64_regs.ds == 0x2b) {
currpers = 2;
scno &= ~__X32_SYSCALL_BIT;
} else
currpers = 0;
break;
default:
fprintf(stderr, "Unknown value CS=0x%08X while "
"detecting personality of process "
"PID=%d\n", (int)x86_64_regs.cs, tcp->pid);
currpers = current_personality;
break;
}
# elif 0
/* This version analyzes the opcode of a syscall instruction.
* (int 0x80 on i386 vs. syscall on x86-64)
* It works, but is too complicated, and strictly speaking, unreliable.
*/
unsigned long call, rip = x86_64_regs.rip;
/* sizeof(syscall) == sizeof(int 0x80) == 2 */
rip -= 2;
errno = 0;
call = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)rip, (char *)0);
if (errno)
fprintf(stderr, "ptrace_peektext failed: %s\n",
strerror(errno));
switch (call & 0xffff) {
/* x86-64: syscall = 0x0f 0x05 */
case 0x050f: currpers = 0; break;
/* i386: int 0x80 = 0xcd 0x80 */
case 0x80cd: currpers = 1; break;
default:
currpers = current_personality;
fprintf(stderr,
"Unknown syscall opcode (0x%04X) while "
"detecting personality of process "
"PID=%d\n", (int)call, tcp->pid);
break;
}
# endif
# ifdef X32
/* If we are built for a x32 system, then personality 0 is x32
* (not x86_64), and stracing of x86_64 apps is not supported.
* Stracing of i386 apps is still supported.
*/
if (currpers == 0) {
fprintf(stderr, "syscall_%lu(...) in unsupported "
"64-bit mode of process PID=%d\n",
scno, tcp->pid);
return 0;
}
currpers &= ~2; /* map 2,1 to 0,1 */
# endif
update_personality(tcp, currpers);
#elif defined(IA64)
# define IA64_PSR_IS ((long)1 << 34)
long psr;
if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0)
ia64_ia32mode = ((psr & IA64_PSR_IS) != 0);
if (ia64_ia32mode) {
if (upeek(tcp->pid, PT_R1, &scno) < 0)
return -1;
} else {
if (upeek(tcp->pid, PT_R15, &scno) < 0)
return -1;
}
#elif defined(AARCH64)
switch (aarch64_io.iov_len) {
case sizeof(aarch64_regs):
/* We are in 64-bit mode */
scno = aarch64_regs.regs[8];
update_personality(tcp, 1);
break;
case sizeof(arm_regs):
/* We are in 32-bit mode */
/* Note: we don't support OABI, unlike 32-bit ARM build */
scno = arm_regs.ARM_r7;
scno = shuffle_scno(scno);
update_personality(tcp, 0);
break;
}
#elif defined(ARM)
if (arm_regs.ARM_ip != 0) {
/* It is not a syscall entry */
fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid);
tcp->flags |= TCB_INSYSCALL;
return 0;
}
/* Note: we support only 32-bit CPUs, not 26-bit */
# if !defined(__ARM_EABI__) || ENABLE_ARM_OABI
if (arm_regs.ARM_cpsr & 0x20)
/* Thumb mode */
goto scno_in_r7;
/* ARM mode */
/* Check EABI/OABI by examining SVC insn's low 24 bits */
errno = 0;
scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(arm_regs.ARM_pc - 4), NULL);
if (errno)
return -1;
/* EABI syscall convention? */
if ((unsigned long) scno != 0xef000000) {
/* No, it's OABI */
if ((scno & 0x0ff00000) != 0x0f900000) {
fprintf(stderr, "pid %d unknown syscall trap 0x%08lx\n",
tcp->pid, scno);
return -1;
}
/* Fixup the syscall number */
scno &= 0x000fffff;
} else {
scno_in_r7:
scno = arm_regs.ARM_r7;
}
# else /* __ARM_EABI__ || !ENABLE_ARM_OABI */
scno = arm_regs.ARM_r7;
# endif
scno = shuffle_scno(scno);
#elif defined(M68K)
if (upeek(tcp->pid, 4*PT_ORIG_D0, &scno) < 0)
return -1;
#elif defined(MIPS)
scno = mips_REG_V0;
if (!SCNO_IN_RANGE(scno)) {
if (mips_REG_A3 == 0 || mips_REG_A3 == (uint64_t) -1) {
if (debug_flag)
fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno);
return 0;
}
}
#elif defined(ALPHA)
if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0)
return -1;
if (upeek(tcp->pid, REG_R0, &scno) < 0)
return -1;
/*
* Do some sanity checks to figure out if it's
* really a syscall entry
*/
if (!SCNO_IN_RANGE(scno)) {
if (alpha_a3 == 0 || alpha_a3 == -1) {
if (debug_flag)
fprintf(stderr, "stray syscall exit: r0 = %ld\n", scno);
return 0;
}
}
#elif defined(SPARC) || defined(SPARC64)
/* Disassemble the syscall trap. */
/* Retrieve the syscall trap instruction. */
unsigned long trap;
errno = 0;
# if defined(SPARC64)
trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.tpc, 0);
trap >>= 32;
# else
trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.pc, 0);
# endif
if (errno)
return -1;
/* Disassemble the trap to see what personality to use. */
switch (trap) {
case 0x91d02010:
/* Linux/SPARC syscall trap. */
update_personality(tcp, 0);
break;
case 0x91d0206d:
/* Linux/SPARC64 syscall trap. */
update_personality(tcp, 2);
break;
case 0x91d02000:
/* SunOS syscall trap. (pers 1) */
fprintf(stderr, "syscall: SunOS no support\n");
return -1;
case 0x91d02008:
/* Solaris 2.x syscall trap. (per 2) */
update_personality(tcp, 1);
break;
case 0x91d02009:
/* NetBSD/FreeBSD syscall trap. */
fprintf(stderr, "syscall: NetBSD/FreeBSD not supported\n");
return -1;
case 0x91d02027:
/* Solaris 2.x gettimeofday */
update_personality(tcp, 1);
break;
default:
# if defined(SPARC64)
fprintf(stderr, "syscall: unknown syscall trap %08lx %016lx\n", trap, sparc_regs.tpc);
# else
fprintf(stderr, "syscall: unknown syscall trap %08lx %08lx\n", trap, sparc_regs.pc);
# endif
return -1;
}
/* Extract the system call number from the registers. */
if (trap == 0x91d02027)
scno = 156;
else
scno = sparc_regs.u_regs[U_REG_G1];
if (scno == 0) {
scno = sparc_regs.u_regs[U_REG_O0];
memmove(&sparc_regs.u_regs[U_REG_O0], &sparc_regs.u_regs[U_REG_O1], 7*sizeof(sparc_regs.u_regs[0]));
}
#elif defined(HPPA)
if (upeek(tcp->pid, PT_GR20, &scno) < 0)
return -1;
#elif defined(SH)
/*
* In the new syscall ABI, the system call number is in R3.
*/
if (upeek(tcp->pid, 4*(REG_REG0+3), &scno) < 0)
return -1;
if (scno < 0) {
/* Odd as it may seem, a glibc bug has been known to cause
glibc to issue bogus negative syscall numbers. So for
our purposes, make strace print what it *should* have been */
long correct_scno = (scno & 0xff);
if (debug_flag)
fprintf(stderr,
"Detected glibc bug: bogus system call"
" number = %ld, correcting to %ld\n",
scno,
correct_scno);
scno = correct_scno;
}
#elif defined(SH64)
if (upeek(tcp->pid, REG_SYSCALL, &scno) < 0)
return -1;
scno &= 0xFFFF;
#elif defined(CRISV10) || defined(CRISV32)
if (upeek(tcp->pid, 4*PT_R9, &scno) < 0)
return -1;
#elif defined(TILE)
unsigned int currpers;
scno = tile_regs.regs[10];
# ifdef __tilepro__
currpers = 1;
# else
# ifndef PT_FLAGS_COMPAT
# define PT_FLAGS_COMPAT 0x10000 /* from Linux 3.8 on */
# endif
if (tile_regs.flags & PT_FLAGS_COMPAT)
currpers = 1;
else
currpers = 0;
# endif
update_personality(tcp, currpers);
#elif defined(MICROBLAZE)
if (upeek(tcp->pid, 0, &scno) < 0)
return -1;
#elif defined(OR1K)
scno = or1k_regs.gpr[11];
#elif defined(METAG)
scno = metag_regs.dx[0][1]; /* syscall number in D1Re0 (D1.0) */
#elif defined(XTENSA)
if (upeek(tcp->pid, SYSCALL_NR, &scno) < 0)
return -1;
# elif defined(ARC)
scno = arc_regs.scratch.r8;
#endif
tcp->scno = scno;
if (SCNO_IS_VALID(tcp->scno)) {
tcp->s_ent = &sysent[scno];
tcp->qual_flg = qual_flags[scno];
} else {
static const struct_sysent unknown = {
.nargs = MAX_ARGS,
.sys_flags = 0,
.sys_func = printargs,
.sys_name = "unknown", /* not used */
};
tcp->s_ent = &unknown;
tcp->qual_flg = UNDEFINED_SCNO | QUAL_RAW | DEFAULT_QUAL_FLAGS;
}
return 1;
}
/*
* Cannot rely on __kernel_[u]long_t being defined,
* it is quite a recent feature of <asm/posix_types.h>.
*/
#ifdef __kernel_long_t
typedef __kernel_long_t kernel_long_t;
typedef __kernel_ulong_t kernel_ulong_t;
#else
# ifdef X32
typedef long long kernel_long_t;
typedef unsigned long long kernel_ulong_t;
# else
typedef long kernel_long_t;
typedef unsigned long kernel_ulong_t;
# endif
#endif
/*
* Check the syscall return value register value for whether it is
* a negated errno code indicating an error, or a success return value.
*/
static inline bool
is_negated_errno(kernel_ulong_t val)
{
/* Linux kernel defines MAX_ERRNO to 4095. */
kernel_ulong_t max = -(kernel_long_t) 4095;
#if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4
if (current_wordsize < sizeof(val)) {
val = (uint32_t) val;
max = (uint32_t) max;
}
#elif defined X32
/*
* current_wordsize is 4 even in personality 0 (native X32)
* but truncation _must not_ be done in it.
* can't check current_wordsize here!
*/
if (current_personality != 0) {
val = (uint32_t) val;
max = (uint32_t) max;
}
#endif
return val >= max;
}
/* Return -1 on error or 1 on success (never 0!) */
static int
get_syscall_args(struct tcb *tcp)
{
int i, nargs;
nargs = tcp->s_ent->nargs;
#if defined(S390) || defined(S390X)
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, i==0 ? PT_ORIGGPR2 : PT_GPR2 + i*sizeof(long), &tcp->u_arg[i]) < 0)
return -1;
#elif defined(ALPHA)
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, REG_A0+i, &tcp->u_arg[i]) < 0)
return -1;
#elif defined(IA64)
if (!ia64_ia32mode) {
unsigned long *out0, cfm, sof, sol;
long rbs_end;
/* be backwards compatible with kernel < 2.4.4... */
# ifndef PT_RBS_END
# define PT_RBS_END PT_AR_BSP
# endif
if (upeek(tcp->pid, PT_RBS_END, &rbs_end) < 0)
return -1;
if (upeek(tcp->pid, PT_CFM, (long *) &cfm) < 0)
return -1;
sof = (cfm >> 0) & 0x7f;
sol = (cfm >> 7) & 0x7f;
out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol);
for (i = 0; i < nargs; ++i) {
if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i),
sizeof(long), (char *) &tcp->u_arg[i]) < 0)
return -1;
}
} else {
static const int argreg[MAX_ARGS] = { PT_R11 /* EBX = out0 */,
PT_R9 /* ECX = out1 */,
PT_R10 /* EDX = out2 */,
PT_R14 /* ESI = out3 */,
PT_R15 /* EDI = out4 */,
PT_R13 /* EBP = out5 */};
for (i = 0; i < nargs; ++i) {
if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0)
return -1;
/* truncate away IVE sign-extension */
tcp->u_arg[i] &= 0xffffffff;
}
}
#elif defined LINUX_MIPSN64
(void)i;
(void)nargs;
tcp->u_arg[0] = mips_REG_A0;
tcp->u_arg[1] = mips_REG_A1;
tcp->u_arg[2] = mips_REG_A2;
tcp->u_arg[3] = mips_REG_A3;
tcp->u_arg[4] = mips_REG_A4;
tcp->u_arg[5] = mips_REG_A5;
#elif defined LINUX_MIPSN32
(void)i;
(void)nargs;
tcp->u_arg[0] = tcp->ext_arg[0] = mips_REG_A0;
tcp->u_arg[1] = tcp->ext_arg[1] = mips_REG_A1;
tcp->u_arg[2] = tcp->ext_arg[2] = mips_REG_A2;
tcp->u_arg[3] = tcp->ext_arg[3] = mips_REG_A3;
tcp->u_arg[4] = tcp->ext_arg[4] = mips_REG_A4;
tcp->u_arg[5] = tcp->ext_arg[5] = mips_REG_A5;
#elif defined LINUX_MIPSO32
(void)i;
(void)nargs;
tcp->u_arg[0] = mips_REG_A0;
tcp->u_arg[1] = mips_REG_A1;
tcp->u_arg[2] = mips_REG_A2;
tcp->u_arg[3] = mips_REG_A3;
if (nargs > 4) {
umoven(tcp, mips_REG_SP + 4 * 4,
(nargs - 4) * sizeof(tcp->u_arg[0]),
(char *)(tcp->u_arg + 4));
}
#elif defined(POWERPC)
(void)i;
(void)nargs;
tcp->u_arg[0] = ppc_regs.orig_gpr3;
tcp->u_arg[1] = ppc_regs.gpr[4];
tcp->u_arg[2] = ppc_regs.gpr[5];
tcp->u_arg[3] = ppc_regs.gpr[6];
tcp->u_arg[4] = ppc_regs.gpr[7];
tcp->u_arg[5] = ppc_regs.gpr[8];
#elif defined(SPARC) || defined(SPARC64)
for (i = 0; i < nargs; ++i)
tcp->u_arg[i] = sparc_regs.u_regs[U_REG_O0 + i];
#elif defined(HPPA)
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, PT_GR26-4*i, &tcp->u_arg[i]) < 0)
return -1;
#elif defined(ARM) || defined(AARCH64)
# if defined(AARCH64)
if (tcp->currpers == 1)
for (i = 0; i < nargs; ++i)
tcp->u_arg[i] = aarch64_regs.regs[i];
else
# endif
for (i = 0; i < nargs; ++i)
tcp->u_arg[i] = arm_regs.uregs[i];
#elif defined(AVR32)
(void)i;
(void)nargs;
tcp->u_arg[0] = avr32_regs.r12;
tcp->u_arg[1] = avr32_regs.r11;
tcp->u_arg[2] = avr32_regs.r10;
tcp->u_arg[3] = avr32_regs.r9;
tcp->u_arg[4] = avr32_regs.r5;
tcp->u_arg[5] = avr32_regs.r3;
#elif defined(BFIN)
static const int argreg[MAX_ARGS] = { PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5 };
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0)
return -1;
#elif defined(SH)
static const int syscall_regs[MAX_ARGS] = {
4 * (REG_REG0+4), 4 * (REG_REG0+5), 4 * (REG_REG0+6),
4 * (REG_REG0+7), 4 * (REG_REG0 ), 4 * (REG_REG0+1)
};
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, syscall_regs[i], &tcp->u_arg[i]) < 0)
return -1;
#elif defined(SH64)
int i;
/* Registers used by SH5 Linux system calls for parameters */
static const int syscall_regs[MAX_ARGS] = { 2, 3, 4, 5, 6, 7 };
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0)
return -1;
#elif defined(I386)
(void)i;
(void)nargs;
tcp->u_arg[0] = i386_regs.ebx;
tcp->u_arg[1] = i386_regs.ecx;
tcp->u_arg[2] = i386_regs.edx;
tcp->u_arg[3] = i386_regs.esi;
tcp->u_arg[4] = i386_regs.edi;
tcp->u_arg[5] = i386_regs.ebp;
#elif defined(X86_64) || defined(X32)
(void)i;
(void)nargs;
if (x86_io.iov_len != sizeof(i386_regs)) {
/* x86-64 or x32 ABI */
tcp->u_arg[0] = x86_64_regs.rdi;
tcp->u_arg[1] = x86_64_regs.rsi;
tcp->u_arg[2] = x86_64_regs.rdx;
tcp->u_arg[3] = x86_64_regs.r10;
tcp->u_arg[4] = x86_64_regs.r8;
tcp->u_arg[5] = x86_64_regs.r9;
# ifdef X32
tcp->ext_arg[0] = x86_64_regs.rdi;
tcp->ext_arg[1] = x86_64_regs.rsi;
tcp->ext_arg[2] = x86_64_regs.rdx;
tcp->ext_arg[3] = x86_64_regs.r10;
tcp->ext_arg[4] = x86_64_regs.r8;
tcp->ext_arg[5] = x86_64_regs.r9;
# endif
} else {
/* i386 ABI */
/* Zero-extend from 32 bits */
/* Use widen_to_long(tcp->u_arg[N]) in syscall handlers
* if you need to use *sign-extended* parameter.
*/
tcp->u_arg[0] = (long)(uint32_t)i386_regs.ebx;
tcp->u_arg[1] = (long)(uint32_t)i386_regs.ecx;
tcp->u_arg[2] = (long)(uint32_t)i386_regs.edx;
tcp->u_arg[3] = (long)(uint32_t)i386_regs.esi;
tcp->u_arg[4] = (long)(uint32_t)i386_regs.edi;
tcp->u_arg[5] = (long)(uint32_t)i386_regs.ebp;
}
#elif defined(MICROBLAZE)
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, (5 + i) * 4, &tcp->u_arg[i]) < 0)
return -1;
#elif defined(CRISV10) || defined(CRISV32)
static const int crisregs[MAX_ARGS] = {
4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12,
4*PT_R13 , 4*PT_MOF, 4*PT_SRP
};
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, crisregs[i], &tcp->u_arg[i]) < 0)
return -1;
#elif defined(TILE)
for (i = 0; i < nargs; ++i)
tcp->u_arg[i] = tile_regs.regs[i];
#elif defined(M68K)
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, (i < 5 ? i : i + 2)*4, &tcp->u_arg[i]) < 0)
return -1;
#elif defined(OR1K)
(void)nargs;
for (i = 0; i < 6; ++i)
tcp->u_arg[i] = or1k_regs.gpr[3 + i];
#elif defined(METAG)
for (i = 0; i < nargs; i++)
/* arguments go backwards from D1Ar1 (D1.3) */
tcp->u_arg[i] = ((unsigned long *)&metag_regs.dx[3][1])[-i];
#elif defined(XTENSA)
/* arg0: a6, arg1: a3, arg2: a4, arg3: a5, arg4: a8, arg5: a9 */
static const int xtensaregs[MAX_ARGS] = { 6, 3, 4, 5, 8, 9 };
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, REG_A_BASE + xtensaregs[i], &tcp->u_arg[i]) < 0)
return -1;
# elif defined(ARC)
long *arc_args = &arc_regs.scratch.r0;
for (i = 0; i < nargs; ++i)
tcp->u_arg[i] = *arc_args--;
#else /* Other architecture (32bits specific) */
for (i = 0; i < nargs; ++i)
if (upeek(tcp->pid, i*4, &tcp->u_arg[i]) < 0)
return -1;
#endif
return 1;
}
static int
trace_syscall_entering(struct tcb *tcp)
{
int res, scno_good;
scno_good = res = (get_regs_error ? -1 : get_scno(tcp));
if (res == 0)
return res;
if (res == 1)
res = get_syscall_args(tcp);
if (res != 1) {
printleader(tcp);
if (scno_good != 1)
tprints("????" /* anti-trigraph gap */ "(");
else if (tcp->qual_flg & UNDEFINED_SCNO)
tprintf("%s(", undefined_scno_name(tcp));
else
tprintf("%s(", tcp->s_ent->sys_name);
/*
* " <unavailable>" will be added later by the code which
* detects ptrace errors.
*/
goto ret;
}
if ( sys_execve == tcp->s_ent->sys_func
# if defined(SPARC) || defined(SPARC64)
|| sys_execv == tcp->s_ent->sys_func
# endif
) {
hide_log_until_execve = 0;
}
#if defined(SYS_socket_subcall) || defined(SYS_ipc_subcall)
while (1) {
# ifdef SYS_socket_subcall
if (tcp->s_ent->sys_func == sys_socketcall) {
decode_socket_subcall(tcp);
break;
}
# endif
# ifdef SYS_ipc_subcall
if (tcp->s_ent->sys_func == sys_ipc) {
decode_ipc_subcall(tcp);
break;
}
# endif
break;
}
#endif
if (!(tcp->qual_flg & QUAL_TRACE)
|| (tracing_paths && !pathtrace_match(tcp))
) {
tcp->flags |= TCB_INSYSCALL | TCB_FILTERED;
return 0;
}
tcp->flags &= ~TCB_FILTERED;
if (cflag == CFLAG_ONLY_STATS || hide_log_until_execve) {
res = 0;
goto ret;
}
#ifdef USE_LIBUNWIND
if (stack_trace_enabled) {
if (tcp->s_ent->sys_flags & STACKTRACE_CAPTURE_ON_ENTER)
unwind_capture_stacktrace(tcp);
}
#endif
printleader(tcp);
if (tcp->qual_flg & UNDEFINED_SCNO)
tprintf("%s(", undefined_scno_name(tcp));
else
tprintf("%s(", tcp->s_ent->sys_name);
if ((tcp->qual_flg & QUAL_RAW) && tcp->s_ent->sys_func != sys_exit)
res = printargs(tcp);
else
res = tcp->s_ent->sys_func(tcp);
fflush(tcp->outf);
ret:
tcp->flags |= TCB_INSYSCALL;
/* Measure the entrance time as late as possible to avoid errors. */
if (Tflag || cflag)
gettimeofday(&tcp->etime, NULL);
return res;
}
/* Returns:
* 1: ok, continue in trace_syscall_exiting().
* -1: error, trace_syscall_exiting() should print error indicator
* ("????" etc) and bail out.
*/
static int
get_syscall_result(struct tcb *tcp)
{
#if defined ARCH_REGS_FOR_GETREGSET || defined ARCH_REGS_FOR_GETREGS
/* already done by get_regs */
#elif defined(S390) || defined(S390X)
if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0)
return -1;
#elif defined(BFIN)
if (upeek(tcp->pid, PT_R0, &bfin_r0) < 0)
return -1;
#elif defined(IA64)
# define IA64_PSR_IS ((long)1 << 34)
long psr;
if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0)
ia64_ia32mode = ((psr & IA64_PSR_IS) != 0);
if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0)
return -1;
if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0)
return -1;
#elif defined(M68K)
if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0)
return -1;
#elif defined(ALPHA)
if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0)
return -1;
if (upeek(tcp->pid, REG_R0, &alpha_r0) < 0)
return -1;
#elif defined(HPPA)
if (upeek(tcp->pid, PT_GR28, &hppa_r28) < 0)
return -1;
#elif defined(SH)
/* new syscall ABI returns result in R0 */
if (upeek(tcp->pid, 4*REG_REG0, (long *)&sh_r0) < 0)
return -1;
#elif defined(SH64)
/* ABI defines result returned in r9 */
if (upeek(tcp->pid, REG_GENERAL(9), (long *)&sh64_r9) < 0)
return -1;
#elif defined(CRISV10) || defined(CRISV32)
if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0)
return -1;
#elif defined(MICROBLAZE)
if (upeek(tcp->pid, 3 * 4, &microblaze_r3) < 0)
return -1;
#elif defined(XTENSA)
if (upeek(tcp->pid, REG_A_BASE + 2, &xtensa_a2) < 0)
return -1;
#else
# error get_syscall_result is not implemented for this architecture
#endif
return 1;
}
/* Returns:
* 1: ok, continue in trace_syscall_exiting().
* -1: error, trace_syscall_exiting() should print error indicator
* ("????" etc) and bail out.
*/
static void
get_error(struct tcb *tcp)
{
int u_error = 0;
int check_errno = 1;
if (tcp->s_ent->sys_flags & SYSCALL_NEVER_FAILS) {
check_errno = 0;
}
#if defined(S390) || defined(S390X)
if (check_errno && is_negated_errno(s390_gpr2)) {
tcp->u_rval = -1;
u_error = -s390_gpr2;
}
else {
tcp->u_rval = s390_gpr2;
}
#elif defined(I386)
if (check_errno && is_negated_errno(i386_regs.eax)) {
tcp->u_rval = -1;
u_error = -i386_regs.eax;
}
else {
tcp->u_rval = i386_regs.eax;
}
#elif defined(X86_64) || defined(X32)
/*
* In X32, return value is 64-bit (llseek uses one).
* Using merely "long rax" would not work.
*/
kernel_long_t rax;
if (x86_io.iov_len == sizeof(i386_regs)) {
/* Sign extend from 32 bits */
rax = (int32_t) i386_regs.eax;
} else {
rax = x86_64_regs.rax;
}
if (check_errno && is_negated_errno(rax)) {
tcp->u_rval = -1;
u_error = -rax;
}
else {
tcp->u_rval = rax;
# ifdef X32
/* tcp->u_rval contains a truncated value */
tcp->u_lrval = rax;
# endif
}
#elif defined(IA64)
if (ia64_ia32mode) {
int err;
err = (int)ia64_r8;
if (check_errno && is_negated_errno(err)) {
tcp->u_rval = -1;
u_error = -err;
}
else {
tcp->u_rval = err;
}
} else {
if (check_errno && ia64_r10) {
tcp->u_rval = -1;
u_error = ia64_r8;
} else {
tcp->u_rval = ia64_r8;
}
}
#elif defined(MIPS)
if (check_errno && mips_REG_A3) {
tcp->u_rval = -1;
u_error = mips_REG_V0;
} else {
# if defined LINUX_MIPSN32
tcp->u_lrval = mips_REG_V0;
# endif
tcp->u_rval = mips_REG_V0;
}
#elif defined(POWERPC)
if (check_errno && (ppc_regs.ccr & 0x10000000)) {
tcp->u_rval = -1;
u_error = ppc_regs.gpr[3];
}
else {
tcp->u_rval = ppc_regs.gpr[3];
}
#elif defined(M68K)
if (check_errno && is_negated_errno(m68k_d0)) {
tcp->u_rval = -1;
u_error = -m68k_d0;
}
else {
tcp->u_rval = m68k_d0;
}
#elif defined(ARM) || defined(AARCH64)
# if defined(AARCH64)
if (tcp->currpers == 1) {
if (check_errno && is_negated_errno(aarch64_regs.regs[0])) {
tcp->u_rval = -1;
u_error = -aarch64_regs.regs[0];
}
else {
tcp->u_rval = aarch64_regs.regs[0];
}
}
else
# endif
{
if (check_errno && is_negated_errno(arm_regs.ARM_r0)) {
tcp->u_rval = -1;
u_error = -arm_regs.ARM_r0;
}
else {
tcp->u_rval = arm_regs.ARM_r0;
}
}
#elif defined(AVR32)
if (check_errno && avr32_regs.r12 && (unsigned) -avr32_regs.r12 < nerrnos) {
tcp->u_rval = -1;
u_error = -avr32_regs.r12;
}
else {
tcp->u_rval = avr32_regs.r12;
}
#elif defined(BFIN)
if (check_errno && is_negated_errno(bfin_r0)) {
tcp->u_rval = -1;
u_error = -bfin_r0;
} else {
tcp->u_rval = bfin_r0;
}
#elif defined(ALPHA)
if (check_errno && alpha_a3) {
tcp->u_rval = -1;
u_error = alpha_r0;
}
else {
tcp->u_rval = alpha_r0;
}
#elif defined(SPARC)
if (check_errno && sparc_regs.psr & PSR_C) {
tcp->u_rval = -1;
u_error = sparc_regs.u_regs[U_REG_O0];
}
else {
tcp->u_rval = sparc_regs.u_regs[U_REG_O0];
}
#elif defined(SPARC64)
if (check_errno && sparc_regs.tstate & 0x1100000000UL) {
tcp->u_rval = -1;
u_error = sparc_regs.u_regs[U_REG_O0];
}
else {
tcp->u_rval = sparc_regs.u_regs[U_REG_O0];
}
#elif defined(HPPA)
if (check_errno && is_negated_errno(hppa_r28)) {
tcp->u_rval = -1;
u_error = -hppa_r28;
}
else {
tcp->u_rval = hppa_r28;
}
#elif defined(SH)
if (check_errno && is_negated_errno(sh_r0)) {
tcp->u_rval = -1;
u_error = -sh_r0;
}
else {
tcp->u_rval = sh_r0;
}
#elif defined(SH64)
if (check_errno && is_negated_errno(sh64_r9)) {
tcp->u_rval = -1;
u_error = -sh64_r9;
}
else {
tcp->u_rval = sh64_r9;
}
#elif defined(METAG)
/* result pointer in D0Re0 (D0.0) */
if (check_errno && is_negated_errno(metag_regs.dx[0][0])) {
tcp->u_rval = -1;
u_error = -metag_regs.dx[0][0];
}
else {
tcp->u_rval = metag_regs.dx[0][0];
}
#elif defined(CRISV10) || defined(CRISV32)
if (check_errno && cris_r10 && (unsigned) -cris_r10 < nerrnos) {
tcp->u_rval = -1;
u_error = -cris_r10;
}
else {
tcp->u_rval = cris_r10;
}
#elif defined(TILE)
/*
* The standard tile calling convention returns the value (or negative
* errno) in r0, and zero (or positive errno) in r1.
* Until at least kernel 3.8, however, the r1 value is not reflected
* in ptregs at this point, so we use r0 here.
*/
if (check_errno && is_negated_errno(tile_regs.regs[0])) {
tcp->u_rval = -1;
u_error = -tile_regs.regs[0];
} else {
tcp->u_rval = tile_regs.regs[0];
}
#elif defined(MICROBLAZE)
if (check_errno && is_negated_errno(microblaze_r3)) {
tcp->u_rval = -1;
u_error = -microblaze_r3;
}
else {
tcp->u_rval = microblaze_r3;
}
#elif defined(OR1K)
if (check_errno && is_negated_errno(or1k_regs.gpr[11])) {
tcp->u_rval = -1;
u_error = -or1k_regs.gpr[11];
}
else {
tcp->u_rval = or1k_regs.gpr[11];
}
#elif defined(XTENSA)
if (check_errno && is_negated_errno(xtensa_a2)) {
tcp->u_rval = -1;
u_error = -xtensa_a2;
}
else {
tcp->u_rval = xtensa_a2;
}
#elif defined(ARC)
if (check_errno && is_negated_errno(arc_regs.scratch.r0)) {
tcp->u_rval = -1;
u_error = -arc_regs.scratch.r0;
}
else {
tcp->u_rval = arc_regs.scratch.r0;
}
#endif
tcp->u_error = u_error;
}
static void
dumpio(struct tcb *tcp)
{
int (*func)();
if (syserror(tcp))
return;
if ((unsigned long) tcp->u_arg[0] >= num_quals)
return;
func = tcp->s_ent->sys_func;
if (func == printargs)
return;
if (qual_flags[tcp->u_arg[0]] & QUAL_READ) {
if (func == sys_read ||
func == sys_pread ||
func == sys_recv ||
func == sys_recvfrom) {
dumpstr(tcp, tcp->u_arg[1], tcp->u_rval);
return;
} else if (func == sys_readv) {
dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
return;
#if HAVE_SENDMSG
} else if (func == sys_recvmsg) {
dumpiov_in_msghdr(tcp, tcp->u_arg[1]);
return;
} else if (func == sys_recvmmsg) {
dumpiov_in_mmsghdr(tcp, tcp->u_arg[1]);
return;
#endif
}
}
if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) {
if (func == sys_write ||
func == sys_pwrite ||
func == sys_send ||
func == sys_sendto)
dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]);
else if (func == sys_writev)
dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
#if HAVE_SENDMSG
else if (func == sys_sendmsg)
dumpiov_in_msghdr(tcp, tcp->u_arg[1]);
else if (func == sys_sendmmsg)
dumpiov_in_mmsghdr(tcp, tcp->u_arg[1]);
#endif
}
}
static int
trace_syscall_exiting(struct tcb *tcp)
{
int sys_res;
struct timeval tv;
int res;
long u_error;
/* Measure the exit time as early as possible to avoid errors. */
if (Tflag || cflag)
gettimeofday(&tv, NULL);
#ifdef USE_LIBUNWIND
if (stack_trace_enabled) {
if (tcp->s_ent->sys_flags & STACKTRACE_INVALIDATE_CACHE)
unwind_cache_invalidate(tcp);
}
#endif
#if SUPPORTED_PERSONALITIES > 1
update_personality(tcp, tcp->currpers);
#endif
res = (get_regs_error ? -1 : get_syscall_result(tcp));
if (res == 1) {
get_error(tcp); /* never fails */
if (filtered(tcp) || hide_log_until_execve)
goto ret;
}
if (cflag) {
count_syscall(tcp, &tv);
if (cflag == CFLAG_ONLY_STATS) {
goto ret;
}
}
/* If not in -ff mode, and printing_tcp != tcp,
* then the log currently does not end with output
* of _our syscall entry_, but with something else.
* We need to say which syscall's return is this.
*
* Forced reprinting via TCB_REPRINT is used only by
* "strace -ff -oLOG test/threaded_execve" corner case.
* It's the only case when -ff mode needs reprinting.
*/
if ((followfork < 2 && printing_tcp != tcp) || (tcp->flags & TCB_REPRINT)) {
tcp->flags &= ~TCB_REPRINT;
printleader(tcp);
if (tcp->qual_flg & UNDEFINED_SCNO)
tprintf("<... %s resumed> ", undefined_scno_name(tcp));
else
tprintf("<... %s resumed> ", tcp->s_ent->sys_name);
}
printing_tcp = tcp;
if (res != 1) {
/* There was error in one of prior ptrace ops */
tprints(") ");
tabto();
tprints("= ? <unavailable>\n");
line_ended();
tcp->flags &= ~TCB_INSYSCALL;
return res;
}
sys_res = 0;
if (tcp->qual_flg & QUAL_RAW) {
/* sys_res = printargs(tcp); - but it's nop on sysexit */
} else {
/* FIXME: not_failing_only (IOW, option -z) is broken:
* failure of syscall is known only after syscall return.
* Thus we end up with something like this on, say, ENOENT:
* open("doesnt_exist", O_RDONLY <unfinished ...>
* {next syscall decode}
* whereas the intended result is that open(...) line
* is not shown at all.
*/
if (not_failing_only && tcp->u_error)
goto ret; /* ignore failed syscalls */
sys_res = tcp->s_ent->sys_func(tcp);
}
tprints(") ");
tabto();
u_error = tcp->u_error;
if (tcp->qual_flg & QUAL_RAW) {
if (u_error)
tprintf("= -1 (errno %ld)", u_error);
else
tprintf("= %#lx", tcp->u_rval);
}
else if (!(sys_res & RVAL_NONE) && u_error) {
switch (u_error) {
/* Blocked signals do not interrupt any syscalls.
* In this case syscalls don't return ERESTARTfoo codes.
*
* Deadly signals set to SIG_DFL interrupt syscalls
* and kill the process regardless of which of the codes below
* is returned by the interrupted syscall.
* In some cases, kernel forces a kernel-generated deadly
* signal to be unblocked and set to SIG_DFL (and thus cause
* death) if it is blocked or SIG_IGNed: for example, SIGSEGV
* or SIGILL. (The alternative is to leave process spinning
* forever on the faulty instruction - not useful).
*
* SIG_IGNed signals and non-deadly signals set to SIG_DFL
* (for example, SIGCHLD, SIGWINCH) interrupt syscalls,
* but kernel will always restart them.
*/
case ERESTARTSYS:
/* Most common type of signal-interrupted syscall exit code.
* The system call will be restarted with the same arguments
* if SA_RESTART is set; otherwise, it will fail with EINTR.
*/
tprints("= ? ERESTARTSYS (To be restarted if SA_RESTART is set)");
break;
case ERESTARTNOINTR:
/* Rare. For example, fork() returns this if interrupted.
* SA_RESTART is ignored (assumed set): the restart is unconditional.
*/
tprints("= ? ERESTARTNOINTR (To be restarted)");
break;
case ERESTARTNOHAND:
/* pause(), rt_sigsuspend() etc use this code.
* SA_RESTART is ignored (assumed not set):
* syscall won't restart (will return EINTR instead)
* even after signal with SA_RESTART set. However,
* after SIG_IGN or SIG_DFL signal it will restart
* (thus the name "restart only if has no handler").
*/
tprints("= ? ERESTARTNOHAND (To be restarted if no handler)");
break;
case ERESTART_RESTARTBLOCK:
/* Syscalls like nanosleep(), poll() which can't be
* restarted with their original arguments use this
* code. Kernel will execute restart_syscall() instead,
* which changes arguments before restarting syscall.
* SA_RESTART is ignored (assumed not set) similarly
* to ERESTARTNOHAND. (Kernel can't honor SA_RESTART
* since restart data is saved in "restart block"
* in task struct, and if signal handler uses a syscall
* which in turn saves another such restart block,
* old data is lost and restart becomes impossible)
*/
tprints("= ? ERESTART_RESTARTBLOCK (Interrupted by signal)");
break;
default:
if ((unsigned long) u_error < nerrnos
&& errnoent[u_error])
tprintf("= -1 %s (%s)", errnoent[u_error],
strerror(u_error));
else
tprintf("= -1 ERRNO_%lu (%s)", u_error,
strerror(u_error));
break;
}
if ((sys_res & RVAL_STR) && tcp->auxstr)
tprintf(" (%s)", tcp->auxstr);
}
else {
if (sys_res & RVAL_NONE)
tprints("= ?");
else {
switch (sys_res & RVAL_MASK) {
case RVAL_HEX:
#if SUPPORTED_PERSONALITIES > 1
if (current_wordsize < sizeof(long))
tprintf("= %#x",
(unsigned int) tcp->u_rval);
else
#endif
tprintf("= %#lx", tcp->u_rval);
break;
case RVAL_OCTAL:
tprintf("= %#lo", tcp->u_rval);
break;
case RVAL_UDECIMAL:
tprintf("= %lu", tcp->u_rval);
break;
case RVAL_DECIMAL:
tprintf("= %ld", tcp->u_rval);
break;
case RVAL_FD:
if (show_fd_path) {
tprints("= ");
printfd(tcp, tcp->u_rval);
}
else
tprintf("= %ld", tcp->u_rval);
break;
#if defined(LINUX_MIPSN32) || defined(X32)
/*
case RVAL_LHEX:
tprintf("= %#llx", tcp->u_lrval);
break;
case RVAL_LOCTAL:
tprintf("= %#llo", tcp->u_lrval);
break;
*/
case RVAL_LUDECIMAL:
tprintf("= %llu", tcp->u_lrval);
break;
/*
case RVAL_LDECIMAL:
tprintf("= %lld", tcp->u_lrval);
break;
*/
#endif
default:
fprintf(stderr,
"invalid rval format\n");
break;
}
}
if ((sys_res & RVAL_STR) && tcp->auxstr)
tprintf(" (%s)", tcp->auxstr);
}
if (Tflag) {
tv_sub(&tv, &tv, &tcp->etime);
tprintf(" <%ld.%06ld>",
(long) tv.tv_sec, (long) tv.tv_usec);
}
tprints("\n");
dumpio(tcp);
line_ended();
#ifdef USE_LIBUNWIND
if (stack_trace_enabled)
unwind_print_stacktrace(tcp);
#endif
ret:
tcp->flags &= ~TCB_INSYSCALL;
return 0;
}
int
trace_syscall(struct tcb *tcp)
{
return exiting(tcp) ?
trace_syscall_exiting(tcp) : trace_syscall_entering(tcp);
}