strace/signal.c
Chris Metcalf 0b99a8ac3b Add tilegx support to strace
tilegx support has been in the kernel since 3.0.
In addition, fix some issues with the tilepro support already
present in strace, primarily the decision to use the
<asm/unistd.h> numbering space for system calls.

* defs.h [TILE]: Include <asm/ptrace.h> and provide an extern
struct pt_regs tile_regs for efficiency.  Provide compat 32-bit
personality via SUPPORTED_PERSONALITIES, PERSONALITY0_WORDSIZE,
PERSONALITY1_WORDSIZE, and DEFAULT_PERSONALITY.
* linux/tile/errnoent1.h: New file, includes linux/errnoent.h.
* linux/tile/ioctlent1.h: New file, includes linux/ioctlent.h.
* linux/tile/signalent1.h: New file, includes linux/signalent.h.
* linux/tile/syscallent.h: Update with new asm-generic syscalls.
The version previously committed was the from the first tile patch
to LKML, which subsequently was changed to use <asm-generic/unistd.h>.
* linux/tile/syscallent1.h: Copy from linux/tile/syscallent.h.
* mem.c (addtileflags) [TILE]: use %ld properly for a "long" variable.
* process.c [TILE]: Choose clone arguments correctly and properly
suppress all "struct user" related offsets in user_struct_offsets.
* signal.c [TILE]: Use tile_regs not upeek.
* syscall.c (update_personality) [TILE]: Print mode.
(PT_FLAGS_COMPAT) [TILE]: Provide if not in system headers.
(tile_regs) [TILE]: Define 'struct pt_regs' variable to hold state.
(get_regs) [TILE]: use PTRACE_GETREGS to set tile_regs rather than using upeek.
(get_scno) [TILE]: Set personality.
(get_syscall_args) [TILE]: Use tile_regs.
(get_syscall_result) [TILE]: Update tile_regs.
(get_error) [TILE]: Use tile_regs.
(printcall) [TILE]: Print pc.
(arg0_offset, arg1_offset, restore_arg0, restore_arg1) [TILE]:
Properly handle tile call semantics and support tilegx.

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2013-02-05 17:48:33 +01:00

1529 lines
36 KiB
C

/*
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
* Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
* Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Linux for s390 port by D.J. Barrow
* <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "defs.h"
#include <sys/user.h>
#include <fcntl.h>
#ifdef HAVE_SYS_REG_H
# include <sys/reg.h>
# ifndef PTRACE_PEEKUSR
# define PTRACE_PEEKUSR PTRACE_PEEKUSER
# endif
# ifndef PTRACE_POKEUSR
# define PTRACE_POKEUSR PTRACE_POKEUSER
# endif
#elif defined(HAVE_LINUX_PTRACE_H)
# undef PTRACE_SYSCALL
# ifdef HAVE_STRUCT_IA64_FPREG
# define ia64_fpreg XXX_ia64_fpreg
# endif
# ifdef HAVE_STRUCT_PT_ALL_USER_REGS
# define pt_all_user_regs XXX_pt_all_user_regs
# endif
# include <linux/ptrace.h>
# undef ia64_fpreg
# undef pt_all_user_regs
#endif
#ifdef IA64
# include <asm/ptrace_offsets.h>
#endif
#if defined(SPARC) || defined(SPARC64) || defined(MIPS)
typedef struct {
struct pt_regs si_regs;
int si_mask;
} m_siginfo_t;
#elif defined HAVE_ASM_SIGCONTEXT_H
# if !defined(IA64) && !defined(X86_64) && !defined(X32)
# include <asm/sigcontext.h>
# endif
#else /* !HAVE_ASM_SIGCONTEXT_H */
# if defined I386 && !defined HAVE_STRUCT_SIGCONTEXT_STRUCT
struct sigcontext_struct {
unsigned short gs, __gsh;
unsigned short fs, __fsh;
unsigned short es, __esh;
unsigned short ds, __dsh;
unsigned long edi;
unsigned long esi;
unsigned long ebp;
unsigned long esp;
unsigned long ebx;
unsigned long edx;
unsigned long ecx;
unsigned long eax;
unsigned long trapno;
unsigned long err;
unsigned long eip;
unsigned short cs, __csh;
unsigned long eflags;
unsigned long esp_at_signal;
unsigned short ss, __ssh;
unsigned long i387;
unsigned long oldmask;
unsigned long cr2;
};
# else /* !I386 */
# if defined M68K && !defined HAVE_STRUCT_SIGCONTEXT
struct sigcontext
{
unsigned long sc_mask;
unsigned long sc_usp;
unsigned long sc_d0;
unsigned long sc_d1;
unsigned long sc_a0;
unsigned long sc_a1;
unsigned short sc_sr;
unsigned long sc_pc;
unsigned short sc_formatvec;
};
# endif /* M68K */
# endif /* !I386 */
#endif /* !HAVE_ASM_SIGCONTEXT_H */
#ifndef NSIG
# warning: NSIG is not defined, using 32
# define NSIG 32
#endif
#ifdef ARM
/* Ugh. Is this really correct? ARM has no RT signals?! */
# undef NSIG
# define NSIG 32
#endif
#ifdef HAVE_SIGACTION
#if defined I386 || defined X86_64 || defined X32
/* The libc headers do not define this constant since it should only be
used by the implementation. So we define it here. */
# ifndef SA_RESTORER
# define SA_RESTORER 0x04000000
# endif
#endif
static const struct xlat sigact_flags[] = {
#ifdef SA_RESTORER
{ SA_RESTORER, "SA_RESTORER" },
#endif
#ifdef SA_STACK
{ SA_STACK, "SA_STACK" },
#endif
#ifdef SA_RESTART
{ SA_RESTART, "SA_RESTART" },
#endif
#ifdef SA_INTERRUPT
{ SA_INTERRUPT, "SA_INTERRUPT" },
#endif
#ifdef SA_NODEFER
{ SA_NODEFER, "SA_NODEFER" },
#endif
#if defined SA_NOMASK && SA_NODEFER != SA_NOMASK
{ SA_NOMASK, "SA_NOMASK" },
#endif
#ifdef SA_RESETHAND
{ SA_RESETHAND, "SA_RESETHAND" },
#endif
#if defined SA_ONESHOT && SA_ONESHOT != SA_RESETHAND
{ SA_ONESHOT, "SA_ONESHOT" },
#endif
#ifdef SA_SIGINFO
{ SA_SIGINFO, "SA_SIGINFO" },
#endif
#ifdef SA_RESETHAND
{ SA_RESETHAND, "SA_RESETHAND" },
#endif
#ifdef SA_ONSTACK
{ SA_ONSTACK, "SA_ONSTACK" },
#endif
#ifdef SA_NODEFER
{ SA_NODEFER, "SA_NODEFER" },
#endif
#ifdef SA_NOCLDSTOP
{ SA_NOCLDSTOP, "SA_NOCLDSTOP" },
#endif
#ifdef SA_NOCLDWAIT
{ SA_NOCLDWAIT, "SA_NOCLDWAIT" },
#endif
#ifdef _SA_BSDCALL
{ _SA_BSDCALL, "_SA_BSDCALL" },
#endif
#ifdef SA_NOPTRACE
{ SA_NOPTRACE, "SA_NOPTRACE" },
#endif
{ 0, NULL },
};
static const struct xlat sigprocmaskcmds[] = {
{ SIG_BLOCK, "SIG_BLOCK" },
{ SIG_UNBLOCK, "SIG_UNBLOCK" },
{ SIG_SETMASK, "SIG_SETMASK" },
#ifdef SIG_SETMASK32
{ SIG_SETMASK32,"SIG_SETMASK32" },
#endif
{ 0, NULL },
};
#endif /* HAVE_SIGACTION */
/* Anonymous realtime signals. */
/* Under glibc 2.1, SIGRTMIN et al are functions, but __SIGRTMIN is a
constant. This is what we want. Otherwise, just use SIGRTMIN. */
#ifdef SIGRTMIN
#ifndef __SIGRTMIN
#define __SIGRTMIN SIGRTMIN
#define __SIGRTMAX SIGRTMAX /* likewise */
#endif
#endif
/* Note on the size of sigset_t:
*
* In glibc, sigset_t is an array with space for 1024 bits (!),
* even though all arches supported by Linux have only 64 signals
* except MIPS, which has 128. IOW, it is 128 bytes long.
*
* In-kernel sigset_t is sized correctly (it is either 64 or 128 bit long).
* However, some old syscall return only 32 lower bits (one word).
* Example: sys_sigpending vs sys_rt_sigpending.
*
* Be aware of this fact when you try to
* memcpy(&tcp->u_arg[1], &something, sizeof(sigset_t))
* - sizeof(sigset_t) is much bigger than you think,
* it may overflow tcp->u_arg[] array, and it may try to copy more data
* than is really available in <something>.
* Similarly,
* umoven(tcp, addr, sizeof(sigset_t), &sigset)
* may be a bad idea: it'll try to read much more data than needed
* to fetch a sigset_t.
* Use (NSIG / 8) as a size instead.
*/
const char *
signame(int sig)
{
static char buf[sizeof("SIGRT_%d") + sizeof(int)*3];
if (sig >= 0 && sig < nsignals)
return signalent[sig];
#ifdef SIGRTMIN
if (sig >= __SIGRTMIN && sig <= __SIGRTMAX) {
sprintf(buf, "SIGRT_%d", (int)(sig - __SIGRTMIN));
return buf;
}
#endif
sprintf(buf, "%d", sig);
return buf;
}
static void
long_to_sigset(long l, sigset_t *s)
{
sigemptyset(s);
*(long *)s = l;
}
static int
copy_sigset_len(struct tcb *tcp, long addr, sigset_t *s, int len)
{
if (len > sizeof(*s))
len = sizeof(*s);
sigemptyset(s);
if (umoven(tcp, addr, len, (char *)s) < 0)
return -1;
return 0;
}
/* Original sigset is unsigned long */
#define copy_sigset(tcp, addr, s) copy_sigset_len(tcp, addr, s, sizeof(long))
static const char *
sprintsigmask(const char *str, sigset_t *mask, int rt)
/* set might include realtime sigs */
{
/* Was [8 * sizeof(sigset_t) * 8], but
* glibc sigset_t is huge (1024 bits = 128 *bytes*),
* and we were ending up with 8k (!) buffer here.
*
* No Unix system can have sig > 255
* (waitpid API won't be able to indicate death from one)
* and sig 0 doesn't exist either.
* Therefore max possible no of sigs is 255: 1..255
*/
static char outstr[8 * (255 * 2 / 3)];
int i, nsigs;
int maxsigs;
int show_members;
char sep;
char *s;
maxsigs = nsignals;
#ifdef __SIGRTMAX
if (rt)
maxsigs = __SIGRTMAX; /* instead */
#endif
s = stpcpy(outstr, str);
nsigs = 0;
for (i = 1; i < maxsigs; i++) {
if (sigismember(mask, i) == 1)
nsigs++;
}
/* 1: show mask members, 0: show those which are NOT in mask */
show_members = (nsigs < nsignals * 2 / 3);
if (!show_members)
*s++ = '~';
sep = '[';
for (i = 1; i < maxsigs; i++) {
if (sigismember(mask, i) == show_members) {
/* real-time signals on solaris don't have
* signalent entries
*/
char tsig[40];
*s++ = sep;
if (i < nsignals) {
s = stpcpy(s, signalent[i] + 3);
}
#ifdef SIGRTMIN
else if (i >= __SIGRTMIN && i <= __SIGRTMAX) {
sprintf(tsig, "RT_%u", i - __SIGRTMIN);
s = stpcpy(s, tsig);
}
#endif /* SIGRTMIN */
else {
sprintf(tsig, "%u", i);
s = stpcpy(s, tsig);
}
sep = ' ';
}
}
if (sep == '[')
*s++ = sep;
*s++ = ']';
*s = '\0';
return outstr;
}
static void
printsigmask(sigset_t *mask, int rt)
{
tprints(sprintsigmask("", mask, rt));
}
void
printsignal(int nr)
{
tprints(signame(nr));
}
void
print_sigset(struct tcb *tcp, long addr, int rt)
{
sigset_t ss;
if (!addr)
tprints("NULL");
else if (copy_sigset(tcp, addr, &ss) < 0)
tprintf("%#lx", addr);
else
printsigmask(&ss, rt);
}
#ifndef ILL_ILLOPC
#define ILL_ILLOPC 1 /* illegal opcode */
#define ILL_ILLOPN 2 /* illegal operand */
#define ILL_ILLADR 3 /* illegal addressing mode */
#define ILL_ILLTRP 4 /* illegal trap */
#define ILL_PRVOPC 5 /* privileged opcode */
#define ILL_PRVREG 6 /* privileged register */
#define ILL_COPROC 7 /* coprocessor error */
#define ILL_BADSTK 8 /* internal stack error */
#define FPE_INTDIV 1 /* integer divide by zero */
#define FPE_INTOVF 2 /* integer overflow */
#define FPE_FLTDIV 3 /* floating point divide by zero */
#define FPE_FLTOVF 4 /* floating point overflow */
#define FPE_FLTUND 5 /* floating point underflow */
#define FPE_FLTRES 6 /* floating point inexact result */
#define FPE_FLTINV 7 /* floating point invalid operation */
#define FPE_FLTSUB 8 /* subscript out of range */
#define SEGV_MAPERR 1 /* address not mapped to object */
#define SEGV_ACCERR 2 /* invalid permissions for mapped object */
#define BUS_ADRALN 1 /* invalid address alignment */
#define BUS_ADRERR 2 /* non-existant physical address */
#define BUS_OBJERR 3 /* object specific hardware error */
#define TRAP_BRKPT 1 /* process breakpoint */
#define TRAP_TRACE 2 /* process trace trap */
#define CLD_EXITED 1 /* child has exited */
#define CLD_KILLED 2 /* child was killed */
#define CLD_DUMPED 3 /* child terminated abnormally */
#define CLD_TRAPPED 4 /* traced child has trapped */
#define CLD_STOPPED 5 /* child has stopped */
#define CLD_CONTINUED 6 /* stopped child has continued */
#define POLL_IN 1 /* data input available */
#define POLL_OUT 2 /* output buffers available */
#define POLL_MSG 3 /* input message available */
#define POLL_ERR 4 /* i/o error */
#define POLL_PRI 5 /* high priority input available */
#define POLL_HUP 6 /* device disconnected */
#define SI_KERNEL 0x80 /* sent by kernel */
#define SI_USER 0 /* sent by kill, sigsend, raise */
#define SI_QUEUE -1 /* sent by sigqueue */
#define SI_TIMER -2 /* sent by timer expiration */
#define SI_MESGQ -3 /* sent by real time mesq state change */
#define SI_ASYNCIO -4 /* sent by AIO completion */
#define SI_SIGIO -5 /* sent by SIGIO */
#define SI_TKILL -6 /* sent by tkill */
#define SI_ASYNCNL -60 /* sent by asynch name lookup completion */
#endif
#ifndef SI_FROMUSER
# define SI_FROMUSER(sip) ((sip)->si_code <= 0)
#endif
#if defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ < 1))
/* Type for data associated with a signal. */
typedef union sigval
{
int sival_int;
void *sival_ptr;
} sigval_t;
# define __SI_MAX_SIZE 128
# define __SI_PAD_SIZE ((__SI_MAX_SIZE / sizeof(int)) - 3)
typedef struct siginfo
{
int si_signo; /* Signal number. */
int si_errno; /* If non-zero, an errno value associated with
this signal, as defined in <errno.h>. */
int si_code; /* Signal code. */
union
{
int _pad[__SI_PAD_SIZE];
/* kill(). */
struct
{
__pid_t si_pid; /* Sending process ID. */
__uid_t si_uid; /* Real user ID of sending process. */
} _kill;
/* POSIX.1b timers. */
struct
{
unsigned int _timer1;
unsigned int _timer2;
} _timer;
/* POSIX.1b signals. */
struct
{
__pid_t si_pid; /* Sending process ID. */
__uid_t si_uid; /* Real user ID of sending process. */
sigval_t si_sigval; /* Signal value. */
} _rt;
/* SIGCHLD. */
struct
{
__pid_t si_pid; /* Which child. */
int si_status; /* Exit value or signal. */
__clock_t si_utime;
__clock_t si_stime;
} _sigchld;
/* SIGILL, SIGFPE, SIGSEGV, SIGBUS. */
struct
{
void *si_addr; /* Faulting insn/memory ref. */
} _sigfault;
/* SIGPOLL. */
struct
{
int si_band; /* Band event for SIGPOLL. */
int si_fd;
} _sigpoll;
} _sifields;
} siginfo_t;
#define si_pid _sifields._kill.si_pid
#define si_uid _sifields._kill.si_uid
#define si_status _sifields._sigchld.si_status
#define si_utime _sifields._sigchld.si_utime
#define si_stime _sifields._sigchld.si_stime
#define si_value _sifields._rt.si_sigval
#define si_int _sifields._rt.si_sigval.sival_int
#define si_ptr _sifields._rt.si_sigval.sival_ptr
#define si_addr _sifields._sigfault.si_addr
#define si_band _sifields._sigpoll.si_band
#define si_fd _sifields._sigpoll.si_fd
#endif
static const struct xlat siginfo_codes[] = {
#ifdef SI_KERNEL
{ SI_KERNEL, "SI_KERNEL" },
#endif
#ifdef SI_USER
{ SI_USER, "SI_USER" },
#endif
#ifdef SI_QUEUE
{ SI_QUEUE, "SI_QUEUE" },
#endif
#ifdef SI_TIMER
{ SI_TIMER, "SI_TIMER" },
#endif
#ifdef SI_MESGQ
{ SI_MESGQ, "SI_MESGQ" },
#endif
#ifdef SI_ASYNCIO
{ SI_ASYNCIO, "SI_ASYNCIO" },
#endif
#ifdef SI_SIGIO
{ SI_SIGIO, "SI_SIGIO" },
#endif
#ifdef SI_TKILL
{ SI_TKILL, "SI_TKILL" },
#endif
#ifdef SI_ASYNCNL
{ SI_ASYNCNL, "SI_ASYNCNL" },
#endif
#ifdef SI_NOINFO
{ SI_NOINFO, "SI_NOINFO" },
#endif
#ifdef SI_LWP
{ SI_LWP, "SI_LWP" },
#endif
{ 0, NULL },
};
static const struct xlat sigill_codes[] = {
{ ILL_ILLOPC, "ILL_ILLOPC" },
{ ILL_ILLOPN, "ILL_ILLOPN" },
{ ILL_ILLADR, "ILL_ILLADR" },
{ ILL_ILLTRP, "ILL_ILLTRP" },
{ ILL_PRVOPC, "ILL_PRVOPC" },
{ ILL_PRVREG, "ILL_PRVREG" },
{ ILL_COPROC, "ILL_COPROC" },
{ ILL_BADSTK, "ILL_BADSTK" },
{ 0, NULL },
};
static const struct xlat sigfpe_codes[] = {
{ FPE_INTDIV, "FPE_INTDIV" },
{ FPE_INTOVF, "FPE_INTOVF" },
{ FPE_FLTDIV, "FPE_FLTDIV" },
{ FPE_FLTOVF, "FPE_FLTOVF" },
{ FPE_FLTUND, "FPE_FLTUND" },
{ FPE_FLTRES, "FPE_FLTRES" },
{ FPE_FLTINV, "FPE_FLTINV" },
{ FPE_FLTSUB, "FPE_FLTSUB" },
{ 0, NULL },
};
static const struct xlat sigtrap_codes[] = {
{ TRAP_BRKPT, "TRAP_BRKPT" },
{ TRAP_TRACE, "TRAP_TRACE" },
{ 0, NULL },
};
static const struct xlat sigchld_codes[] = {
{ CLD_EXITED, "CLD_EXITED" },
{ CLD_KILLED, "CLD_KILLED" },
{ CLD_DUMPED, "CLD_DUMPED" },
{ CLD_TRAPPED, "CLD_TRAPPED" },
{ CLD_STOPPED, "CLD_STOPPED" },
{ CLD_CONTINUED,"CLD_CONTINUED" },
{ 0, NULL },
};
static const struct xlat sigpoll_codes[] = {
{ POLL_IN, "POLL_IN" },
{ POLL_OUT, "POLL_OUT" },
{ POLL_MSG, "POLL_MSG" },
{ POLL_ERR, "POLL_ERR" },
{ POLL_PRI, "POLL_PRI" },
{ POLL_HUP, "POLL_HUP" },
{ 0, NULL },
};
static const struct xlat sigprof_codes[] = {
#ifdef PROF_SIG
{ PROF_SIG, "PROF_SIG" },
#endif
{ 0, NULL },
};
#ifdef SIGEMT
static const struct xlat sigemt_codes[] = {
#ifdef EMT_TAGOVF
{ EMT_TAGOVF, "EMT_TAGOVF" },
#endif
{ 0, NULL },
};
#endif
static const struct xlat sigsegv_codes[] = {
{ SEGV_MAPERR, "SEGV_MAPERR" },
{ SEGV_ACCERR, "SEGV_ACCERR" },
{ 0, NULL },
};
static const struct xlat sigbus_codes[] = {
{ BUS_ADRALN, "BUS_ADRALN" },
{ BUS_ADRERR, "BUS_ADRERR" },
{ BUS_OBJERR, "BUS_OBJERR" },
{ 0, NULL },
};
void
printsiginfo(siginfo_t *sip, int verbose)
{
const char *code;
if (sip->si_signo == 0) {
tprints("{}");
return;
}
tprints("{si_signo=");
printsignal(sip->si_signo);
code = xlookup(siginfo_codes, sip->si_code);
if (!code) {
switch (sip->si_signo) {
case SIGTRAP:
code = xlookup(sigtrap_codes, sip->si_code);
break;
case SIGCHLD:
code = xlookup(sigchld_codes, sip->si_code);
break;
case SIGPOLL:
code = xlookup(sigpoll_codes, sip->si_code);
break;
case SIGPROF:
code = xlookup(sigprof_codes, sip->si_code);
break;
case SIGILL:
code = xlookup(sigill_codes, sip->si_code);
break;
#ifdef SIGEMT
case SIGEMT:
code = xlookup(sigemt_codes, sip->si_code);
break;
#endif
case SIGFPE:
code = xlookup(sigfpe_codes, sip->si_code);
break;
case SIGSEGV:
code = xlookup(sigsegv_codes, sip->si_code);
break;
case SIGBUS:
code = xlookup(sigbus_codes, sip->si_code);
break;
}
}
if (code)
tprintf(", si_code=%s", code);
else
tprintf(", si_code=%#x", sip->si_code);
#ifdef SI_NOINFO
if (sip->si_code != SI_NOINFO)
#endif
{
if (sip->si_errno) {
if (sip->si_errno < 0 || sip->si_errno >= nerrnos)
tprintf(", si_errno=%d", sip->si_errno);
else
tprintf(", si_errno=%s",
errnoent[sip->si_errno]);
}
#ifdef SI_FROMUSER
if (SI_FROMUSER(sip)) {
tprintf(", si_pid=%lu, si_uid=%lu",
(unsigned long) sip->si_pid,
(unsigned long) sip->si_uid);
switch (sip->si_code) {
#ifdef SI_USER
case SI_USER:
break;
#endif
#ifdef SI_TKILL
case SI_TKILL:
break;
#endif
#ifdef SI_TIMER
case SI_TIMER:
tprintf(", si_value=%d", sip->si_int);
break;
#endif
default:
if (!sip->si_ptr)
break;
if (!verbose)
tprints(", ...");
else
tprintf(", si_value={int=%u, ptr=%#lx}",
sip->si_int,
(unsigned long) sip->si_ptr);
break;
}
}
else
#endif /* SI_FROMUSER */
{
switch (sip->si_signo) {
case SIGCHLD:
tprintf(", si_pid=%ld, si_status=",
(long) sip->si_pid);
if (sip->si_code == CLD_EXITED)
tprintf("%d", sip->si_status);
else
printsignal(sip->si_status);
if (!verbose)
tprints(", ...");
else
tprintf(", si_utime=%llu, si_stime=%llu",
(unsigned long long) sip->si_utime,
(unsigned long long) sip->si_stime);
break;
case SIGILL: case SIGFPE:
case SIGSEGV: case SIGBUS:
tprintf(", si_addr=%#lx",
(unsigned long) sip->si_addr);
break;
case SIGPOLL:
switch (sip->si_code) {
case POLL_IN: case POLL_OUT: case POLL_MSG:
tprintf(", si_band=%ld",
(long) sip->si_band);
break;
}
break;
default:
if (sip->si_pid || sip->si_uid)
tprintf(", si_pid=%lu, si_uid=%lu",
(unsigned long) sip->si_pid,
(unsigned long) sip->si_uid);
if (!sip->si_ptr)
break;
if (!verbose)
tprints(", ...");
else {
tprintf(", si_value={int=%u, ptr=%#lx}",
sip->si_int,
(unsigned long) sip->si_ptr);
}
}
}
}
tprints("}");
}
int
sys_sigsetmask(struct tcb *tcp)
{
if (entering(tcp)) {
sigset_t sigm;
long_to_sigset(tcp->u_arg[0], &sigm);
printsigmask(&sigm, 0);
}
else if (!syserror(tcp)) {
sigset_t sigm;
long_to_sigset(tcp->u_rval, &sigm);
tcp->auxstr = sprintsigmask("old mask ", &sigm, 0);
return RVAL_HEX | RVAL_STR;
}
return 0;
}
#ifdef HAVE_SIGACTION
struct old_sigaction {
__sighandler_t __sa_handler;
unsigned long sa_mask;
unsigned long sa_flags;
void (*sa_restorer)(void);
};
#define SA_HANDLER __sa_handler
#ifndef SA_HANDLER
#define SA_HANDLER sa_handler
#endif
int
sys_sigaction(struct tcb *tcp)
{
long addr;
sigset_t sigset;
struct old_sigaction sa;
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
addr = tcp->u_arg[1];
} else
addr = tcp->u_arg[2];
if (addr == 0)
tprints("NULL");
else if (!verbose(tcp))
tprintf("%#lx", addr);
else if (umove(tcp, addr, &sa) < 0)
tprints("{...}");
else {
/* Architectures using function pointers, like
* hppa, may need to manipulate the function pointer
* to compute the result of a comparison. However,
* the SA_HANDLER function pointer exists only in
* the address space of the traced process, and can't
* be manipulated by strace. In order to prevent the
* compiler from generating code to manipulate
* SA_HANDLER we cast the function pointers to long. */
if ((long)sa.SA_HANDLER == (long)SIG_ERR)
tprints("{SIG_ERR, ");
else if ((long)sa.SA_HANDLER == (long)SIG_DFL)
tprints("{SIG_DFL, ");
else if ((long)sa.SA_HANDLER == (long)SIG_IGN)
tprints("{SIG_IGN, ");
else
tprintf("{%#lx, ", (long) sa.SA_HANDLER);
long_to_sigset(sa.sa_mask, &sigset);
printsigmask(&sigset, 0);
tprints(", ");
printflags(sigact_flags, sa.sa_flags, "SA_???");
#ifdef SA_RESTORER
if (sa.sa_flags & SA_RESTORER)
tprintf(", %p", sa.sa_restorer);
#endif
tprints("}");
}
if (entering(tcp))
tprints(", ");
else
tprintf(", %#lx", (unsigned long) sa.sa_restorer);
return 0;
}
int
sys_signal(struct tcb *tcp)
{
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
switch (tcp->u_arg[1]) {
case (long) SIG_ERR:
tprints("SIG_ERR");
break;
case (long) SIG_DFL:
tprints("SIG_DFL");
break;
case (long) SIG_IGN:
tprints("SIG_IGN");
break;
default:
tprintf("%#lx", tcp->u_arg[1]);
}
return 0;
}
else if (!syserror(tcp)) {
switch (tcp->u_rval) {
case (long) SIG_ERR:
tcp->auxstr = "SIG_ERR"; break;
case (long) SIG_DFL:
tcp->auxstr = "SIG_DFL"; break;
case (long) SIG_IGN:
tcp->auxstr = "SIG_IGN"; break;
default:
tcp->auxstr = NULL;
}
return RVAL_HEX | RVAL_STR;
}
return 0;
}
#endif /* HAVE_SIGACTION */
int
sys_sigreturn(struct tcb *tcp)
{
#if defined(ARM)
if (entering(tcp)) {
struct sigcontext_struct sc;
sigset_t sigm;
if (umove(tcp, regs.ARM_sp, &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(S390) || defined(S390X)
if (entering(tcp)) {
long usp;
struct sigcontext_struct sc;
if (upeek(tcp, PT_GPR15, &usp) < 0)
return 0;
if (umove(tcp, usp + __SIGNAL_FRAMESIZE, &sc) < 0)
return 0;
tprints(sprintsigmask(") (mask ", (sigset_t *)&sc.oldmask[0], 0));
}
#elif defined(I386)
if (entering(tcp)) {
struct sigcontext_struct sc;
/* Note: on i386, sc is followed on stack by struct fpstate
* and after it an additional u32 extramask[1] which holds
* upper half of the mask. We can fetch it there
* if/when we'd want to display the full mask...
*/
sigset_t sigm;
if (umove(tcp, i386_regs.esp, &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(IA64)
if (entering(tcp)) {
struct sigcontext sc;
long sp;
sigset_t sigm;
/* offset of sigcontext in the kernel's sigframe structure: */
# define SIGFRAME_SC_OFFSET 0x90
if (upeek(tcp, PT_R12, &sp) < 0)
return 0;
if (umove(tcp, sp + 16 + SIGFRAME_SC_OFFSET, &sc) < 0)
return 0;
sigemptyset(&sigm);
memcpy(&sigm, &sc.sc_mask, NSIG / 8);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(POWERPC)
if (entering(tcp)) {
long esp;
struct sigcontext_struct sc;
sigset_t sigm;
if (upeek(tcp, sizeof(unsigned long) * PT_R1, &esp) < 0)
return 0;
/* Skip dummy stack frame. */
#ifdef POWERPC64
if (current_personality == 0)
esp += 128;
else
esp += 64;
#else
esp += 64;
#endif
if (umove(tcp, esp, &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(M68K)
if (entering(tcp)) {
long usp;
struct sigcontext sc;
sigset_t sigm;
if (upeek(tcp, 4*PT_USP, &usp) < 0)
return 0;
if (umove(tcp, usp, &sc) < 0)
return 0;
long_to_sigset(sc.sc_mask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(ALPHA)
if (entering(tcp)) {
long fp;
struct sigcontext_struct sc;
sigset_t sigm;
if (upeek(tcp, REG_FP, &fp) < 0)
return 0;
if (umove(tcp, fp, &sc) < 0)
return 0;
long_to_sigset(sc.sc_mask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(SPARC) || defined(SPARC64)
if (entering(tcp)) {
long i1;
m_siginfo_t si;
sigset_t sigm;
i1 = regs.u_regs[U_REG_O1];
if (umove(tcp, i1, &si) < 0) {
perror_msg("%s", "sigreturn: umove");
return 0;
}
long_to_sigset(si.si_mask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(LINUX_MIPSN32) || defined(LINUX_MIPSN64)
/* This decodes rt_sigreturn. The 64-bit ABIs do not have
sigreturn. */
if (entering(tcp)) {
long sp;
struct ucontext uc;
sigset_t sigm;
if (upeek(tcp, REG_SP, &sp) < 0)
return 0;
/* There are six words followed by a 128-byte siginfo. */
sp = sp + 6 * 4 + 128;
if (umove(tcp, sp, &uc) < 0)
return 0;
long_to_sigset(*(long *) &uc.uc_sigmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(MIPS)
if (entering(tcp)) {
long sp;
struct pt_regs regs;
m_siginfo_t si;
sigset_t sigm;
if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)&regs, 0) < 0) {
perror_msg("%s", "sigreturn: PTRACE_GETREGS");
return 0;
}
sp = regs.regs[29];
if (umove(tcp, sp, &si) < 0)
return 0;
long_to_sigset(si.si_mask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(CRISV10) || defined(CRISV32)
if (entering(tcp)) {
struct sigcontext sc;
long regs[PT_MAX+1];
sigset_t sigm;
if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long)regs) < 0) {
perror_msg("%s", "sigreturn: PTRACE_GETREGS");
return 0;
}
if (umove(tcp, regs[PT_USP], &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(TILE)
if (entering(tcp)) {
struct ucontext uc;
sigset_t sigm;
/* offset of ucontext in the kernel's sigframe structure */
# define SIGFRAME_UC_OFFSET C_ABI_SAVE_AREA_SIZE + sizeof(struct siginfo)
if (umove(tcp, tile_regs.sp + SIGFRAME_UC_OFFSET, &uc) < 0)
return 0;
sigemptyset(&sigm);
memcpy(&sigm, &uc.uc_sigmask, NSIG / 8);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(MICROBLAZE)
/* TODO: Verify that this is correct... */
if (entering(tcp)) {
struct sigcontext sc;
long sp;
sigset_t sigm;
/* Read r1, the stack pointer. */
if (upeek(tcp, 1 * 4, &sp) < 0)
return 0;
if (umove(tcp, sp, &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
#elif defined(X86_64)
/* no need to remind */
#else
# warning No sys_sigreturn() for this architecture
# warning (no problem, just a reminder :-)
#endif
return 0;
}
int
sys_siggetmask(struct tcb *tcp)
{
if (exiting(tcp)) {
sigset_t sigm;
long_to_sigset(tcp->u_rval, &sigm);
tcp->auxstr = sprintsigmask("mask ", &sigm, 0);
}
return RVAL_HEX | RVAL_STR;
}
int
sys_sigsuspend(struct tcb *tcp)
{
if (entering(tcp)) {
sigset_t sigm;
long_to_sigset(tcp->u_arg[2], &sigm);
printsigmask(&sigm, 0);
}
return 0;
}
#if !defined SS_ONSTACK
#define SS_ONSTACK 1
#define SS_DISABLE 2
#if defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ < 1))
typedef struct
{
__ptr_t ss_sp;
int ss_flags;
size_t ss_size;
} stack_t;
#endif
#endif
static const struct xlat sigaltstack_flags[] = {
{ SS_ONSTACK, "SS_ONSTACK" },
{ SS_DISABLE, "SS_DISABLE" },
{ 0, NULL },
};
static int
print_stack_t(struct tcb *tcp, unsigned long addr)
{
stack_t ss;
if (umove(tcp, addr, &ss) < 0)
return -1;
tprintf("{ss_sp=%#lx, ss_flags=", (unsigned long) ss.ss_sp);
printflags(sigaltstack_flags, ss.ss_flags, "SS_???");
tprintf(", ss_size=%lu}", (unsigned long) ss.ss_size);
return 0;
}
int
sys_sigaltstack(struct tcb *tcp)
{
if (entering(tcp)) {
if (tcp->u_arg[0] == 0)
tprints("NULL");
else if (print_stack_t(tcp, tcp->u_arg[0]) < 0)
return -1;
}
else {
tprints(", ");
if (tcp->u_arg[1] == 0)
tprints("NULL");
else if (print_stack_t(tcp, tcp->u_arg[1]) < 0)
return -1;
}
return 0;
}
#ifdef HAVE_SIGACTION
int
sys_sigprocmask(struct tcb *tcp)
{
#ifdef ALPHA
sigset_t ss;
if (entering(tcp)) {
/*
* Alpha/OSF is different: it doesn't pass in two pointers,
* but rather passes in the new bitmask as an argument and
* then returns the old bitmask. This "works" because we
* only have 64 signals to worry about. If you want more,
* use of the rt_sigprocmask syscall is required.
* Alpha:
* old = osf_sigprocmask(how, new);
* Everyone else:
* ret = sigprocmask(how, &new, &old, ...);
*/
memcpy(&ss, &tcp->u_arg[1], sizeof(long));
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprints(", ");
printsigmask(&ss, 0);
}
else if (!syserror(tcp)) {
memcpy(&ss, &tcp->u_rval, sizeof(long));
tcp->auxstr = sprintsigmask("old mask ", &ss, 0);
return RVAL_HEX | RVAL_STR;
}
#else /* !ALPHA */
if (entering(tcp)) {
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprints(", ");
print_sigset(tcp, tcp->u_arg[1], 0);
tprints(", ");
}
else {
if (!tcp->u_arg[2])
tprints("NULL");
else if (syserror(tcp))
tprintf("%#lx", tcp->u_arg[2]);
else
print_sigset(tcp, tcp->u_arg[2], 0);
}
#endif /* !ALPHA */
return 0;
}
#endif /* HAVE_SIGACTION */
int
sys_kill(struct tcb *tcp)
{
if (entering(tcp)) {
long pid = tcp->u_arg[0];
#if SUPPORTED_PERSONALITIES > 1
/* Sign-extend a 32-bit value when that's what it is. */
if (current_wordsize < sizeof pid)
pid = (long) (int) pid;
#endif
tprintf("%ld, %s", pid, signame(tcp->u_arg[1]));
}
return 0;
}
int
sys_tgkill(struct tcb *tcp)
{
if (entering(tcp)) {
tprintf("%ld, %ld, %s",
tcp->u_arg[0], tcp->u_arg[1], signame(tcp->u_arg[2]));
}
return 0;
}
int
sys_sigpending(struct tcb *tcp)
{
sigset_t sigset;
if (exiting(tcp)) {
if (syserror(tcp))
tprintf("%#lx", tcp->u_arg[0]);
else if (copy_sigset(tcp, tcp->u_arg[0], &sigset) < 0)
tprints("[?]");
else
printsigmask(&sigset, 0);
}
return 0;
}
int
sys_rt_sigprocmask(struct tcb *tcp)
{
sigset_t sigset;
/* Note: arg[3] is the length of the sigset. */
if (entering(tcp)) {
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprints(", ");
if (!tcp->u_arg[1])
tprints("NULL, ");
else if (copy_sigset_len(tcp, tcp->u_arg[1], &sigset, tcp->u_arg[3]) < 0)
tprintf("%#lx, ", tcp->u_arg[1]);
else {
printsigmask(&sigset, 1);
tprints(", ");
}
}
else {
if (!tcp->u_arg[2])
tprints("NULL");
else if (syserror(tcp))
tprintf("%#lx", tcp->u_arg[2]);
else if (copy_sigset_len(tcp, tcp->u_arg[2], &sigset, tcp->u_arg[3]) < 0)
tprints("[?]");
else
printsigmask(&sigset, 1);
tprintf(", %lu", tcp->u_arg[3]);
}
return 0;
}
/* Structure describing the action to be taken when a signal arrives. */
struct new_sigaction
{
__sighandler_t __sa_handler;
unsigned long sa_flags;
void (*sa_restorer) (void);
/* Kernel treats sa_mask as an array of longs. */
unsigned long sa_mask[NSIG / sizeof(long) ? NSIG / sizeof(long) : 1];
};
/* Same for i386-on-x86_64 and similar cases */
struct new_sigaction32
{
uint32_t __sa_handler;
uint32_t sa_flags;
uint32_t sa_restorer;
uint32_t sa_mask[2 * (NSIG / sizeof(long) ? NSIG / sizeof(long) : 1)];
};
int
sys_rt_sigaction(struct tcb *tcp)
{
struct new_sigaction sa;
sigset_t sigset;
long addr;
int r;
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
addr = tcp->u_arg[1];
} else
addr = tcp->u_arg[2];
if (addr == 0) {
tprints("NULL");
goto after_sa;
}
if (!verbose(tcp)) {
tprintf("%#lx", addr);
goto after_sa;
}
#if SUPPORTED_PERSONALITIES > 1
#if SIZEOF_LONG > 4
if (current_wordsize != sizeof(sa.sa_flags) && current_wordsize == 4) {
struct new_sigaction32 sa32;
r = umove(tcp, addr, &sa32);
if (r >= 0) {
memset(&sa, 0, sizeof(sa));
sa.__sa_handler = (void*)(unsigned long)sa32.__sa_handler;
sa.sa_flags = sa32.sa_flags;
sa.sa_restorer = (void*)(unsigned long)sa32.sa_restorer;
/* Kernel treats sa_mask as an array of longs.
* For 32-bit process, "long" is uint32_t, thus, for example,
* 32th bit in sa_mask will end up as bit 0 in sa_mask[1].
* But for (64-bit) kernel, 32th bit in sa_mask is
* 32th bit in 0th (64-bit) long!
* For little-endian, it's the same.
* For big-endian, we swap 32-bit words.
*/
sa.sa_mask[0] = sa32.sa_mask[0] + ((long)(sa32.sa_mask[1]) << 32);
}
} else
#endif
#endif
{
r = umove(tcp, addr, &sa);
}
if (r < 0) {
tprints("{...}");
goto after_sa;
}
/* Architectures using function pointers, like
* hppa, may need to manipulate the function pointer
* to compute the result of a comparison. However,
* the SA_HANDLER function pointer exists only in
* the address space of the traced process, and can't
* be manipulated by strace. In order to prevent the
* compiler from generating code to manipulate
* SA_HANDLER we cast the function pointers to long. */
if ((long)sa.__sa_handler == (long)SIG_ERR)
tprints("{SIG_ERR, ");
else if ((long)sa.__sa_handler == (long)SIG_DFL)
tprints("{SIG_DFL, ");
else if ((long)sa.__sa_handler == (long)SIG_IGN)
tprints("{SIG_IGN, ");
else
tprintf("{%#lx, ", (long) sa.__sa_handler);
/* Questionable code below.
* Kernel won't handle sys_rt_sigaction
* with wrong sigset size (just returns EINVAL)
* therefore tcp->u_arg[3(4)] _must_ be NSIG / 8 here,
* and we always use smaller memcpy. */
sigemptyset(&sigset);
#ifdef LINUXSPARC
if (tcp->u_arg[4] <= sizeof(sigset))
memcpy(&sigset, &sa.sa_mask, tcp->u_arg[4]);
#else
if (tcp->u_arg[3] <= sizeof(sigset))
memcpy(&sigset, &sa.sa_mask, tcp->u_arg[3]);
#endif
else
memcpy(&sigset, &sa.sa_mask, sizeof(sigset));
printsigmask(&sigset, 1);
tprints(", ");
printflags(sigact_flags, sa.sa_flags, "SA_???");
#ifdef SA_RESTORER
if (sa.sa_flags & SA_RESTORER)
tprintf(", %p", sa.sa_restorer);
#endif
tprints("}");
after_sa:
if (entering(tcp))
tprints(", ");
else
#ifdef LINUXSPARC
tprintf(", %#lx, %lu", tcp->u_arg[3], tcp->u_arg[4]);
#elif defined(ALPHA)
tprintf(", %lu, %#lx", tcp->u_arg[3], tcp->u_arg[4]);
#else
tprintf(", %lu", tcp->u_arg[3]);
#endif
return 0;
}
int
sys_rt_sigpending(struct tcb *tcp)
{
sigset_t sigset;
if (exiting(tcp)) {
if (syserror(tcp))
tprintf("%#lx", tcp->u_arg[0]);
else if (copy_sigset_len(tcp, tcp->u_arg[0],
&sigset, tcp->u_arg[1]) < 0)
tprints("[?]");
else
printsigmask(&sigset, 1);
}
return 0;
}
int
sys_rt_sigsuspend(struct tcb *tcp)
{
if (entering(tcp)) {
sigset_t sigm;
if (copy_sigset_len(tcp, tcp->u_arg[0], &sigm, tcp->u_arg[1]) < 0)
tprints("[?]");
else
printsigmask(&sigm, 1);
}
return 0;
}
static void
print_sigqueueinfo(struct tcb *tcp, int sig, unsigned long uinfo)
{
siginfo_t si;
printsignal(sig);
tprints(", ");
if (umove(tcp, uinfo, &si) < 0)
tprintf("%#lx", uinfo);
else
printsiginfo(&si, verbose(tcp));
}
int
sys_rt_sigqueueinfo(struct tcb *tcp)
{
if (entering(tcp)) {
tprintf("%lu, ", tcp->u_arg[0]);
print_sigqueueinfo(tcp, tcp->u_arg[1], tcp->u_arg[2]);
}
return 0;
}
int
sys_rt_tgsigqueueinfo(struct tcb *tcp)
{
if (entering(tcp)) {
tprintf("%lu, %lu, ", tcp->u_arg[0], tcp->u_arg[1]);
print_sigqueueinfo(tcp, tcp->u_arg[2], tcp->u_arg[3]);
}
return 0;
}
int sys_rt_sigtimedwait(struct tcb *tcp)
{
if (entering(tcp)) {
sigset_t sigset;
if (copy_sigset_len(tcp, tcp->u_arg[0],
&sigset, tcp->u_arg[3]) < 0)
tprints("[?]");
else
printsigmask(&sigset, 1);
tprints(", ");
/* This is the only "return" parameter, */
if (tcp->u_arg[1] != 0)
return 0;
/* ... if it's NULL, can decode all on entry */
tprints("NULL, ");
}
else if (tcp->u_arg[1] != 0) {
/* syscall exit, and u_arg[1] wasn't NULL */
if (syserror(tcp))
tprintf("%#lx, ", tcp->u_arg[1]);
else {
siginfo_t si;
if (umove(tcp, tcp->u_arg[1], &si) < 0)
tprintf("%#lx, ", tcp->u_arg[1]);
else {
printsiginfo(&si, verbose(tcp));
tprints(", ");
}
}
}
else {
/* syscall exit, and u_arg[1] was NULL */
return 0;
}
print_timespec(tcp, tcp->u_arg[2]);
tprintf(", %d", (int) tcp->u_arg[3]);
return 0;
};
int
sys_restart_syscall(struct tcb *tcp)
{
if (entering(tcp))
tprints("<... resuming interrupted call ...>");
return 0;
}
static int
do_signalfd(struct tcb *tcp, int flags_arg)
{
if (entering(tcp)) {
printfd(tcp, tcp->u_arg[0]);
tprints(", ");
print_sigset(tcp, tcp->u_arg[1], 1);
tprintf(", %lu", tcp->u_arg[2]);
if (flags_arg >= 0) {
tprints(", ");
printflags(open_mode_flags, tcp->u_arg[flags_arg], "O_???");
}
}
return 0;
}
int
sys_signalfd(struct tcb *tcp)
{
return do_signalfd(tcp, -1);
}
int
sys_signalfd4(struct tcb *tcp)
{
return do_signalfd(tcp, 3);
}