linux/sound/soc/fsl/fsl_micfil.c

1246 lines
34 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
// Copyright 2018 NXP
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/kobject.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/dma/imx-dma.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include <sound/core.h>
#include "fsl_micfil.h"
#include "fsl_utils.h"
#define MICFIL_OSR_DEFAULT 16
enum quality {
QUALITY_HIGH,
QUALITY_MEDIUM,
QUALITY_LOW,
QUALITY_VLOW0,
QUALITY_VLOW1,
QUALITY_VLOW2,
};
struct fsl_micfil {
struct platform_device *pdev;
struct regmap *regmap;
const struct fsl_micfil_soc_data *soc;
struct clk *busclk;
struct clk *mclk;
struct clk *pll8k_clk;
struct clk *pll11k_clk;
struct snd_dmaengine_dai_dma_data dma_params_rx;
struct sdma_peripheral_config sdmacfg;
struct snd_soc_card *card;
unsigned int dataline;
char name[32];
int irq[MICFIL_IRQ_LINES];
enum quality quality;
int dc_remover;
int vad_init_mode;
int vad_enabled;
int vad_detected;
};
struct fsl_micfil_soc_data {
unsigned int fifos;
unsigned int fifo_depth;
unsigned int dataline;
bool imx;
bool use_edma;
u64 formats;
};
static struct fsl_micfil_soc_data fsl_micfil_imx8mm = {
.imx = true,
.fifos = 8,
.fifo_depth = 8,
.dataline = 0xf,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
};
static struct fsl_micfil_soc_data fsl_micfil_imx8mp = {
.imx = true,
.fifos = 8,
.fifo_depth = 32,
.dataline = 0xf,
.formats = SNDRV_PCM_FMTBIT_S32_LE,
};
static struct fsl_micfil_soc_data fsl_micfil_imx93 = {
.imx = true,
.fifos = 8,
.fifo_depth = 32,
.dataline = 0xf,
.formats = SNDRV_PCM_FMTBIT_S32_LE,
.use_edma = true,
};
static const struct of_device_id fsl_micfil_dt_ids[] = {
{ .compatible = "fsl,imx8mm-micfil", .data = &fsl_micfil_imx8mm },
{ .compatible = "fsl,imx8mp-micfil", .data = &fsl_micfil_imx8mp },
{ .compatible = "fsl,imx93-micfil", .data = &fsl_micfil_imx93 },
{}
};
MODULE_DEVICE_TABLE(of, fsl_micfil_dt_ids);
static const char * const micfil_quality_select_texts[] = {
[QUALITY_HIGH] = "High",
[QUALITY_MEDIUM] = "Medium",
[QUALITY_LOW] = "Low",
[QUALITY_VLOW0] = "VLow0",
[QUALITY_VLOW1] = "Vlow1",
[QUALITY_VLOW2] = "Vlow2",
};
static const struct soc_enum fsl_micfil_quality_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_quality_select_texts),
micfil_quality_select_texts);
static DECLARE_TLV_DB_SCALE(gain_tlv, 0, 100, 0);
static int micfil_set_quality(struct fsl_micfil *micfil)
{
u32 qsel;
switch (micfil->quality) {
case QUALITY_HIGH:
qsel = MICFIL_QSEL_HIGH_QUALITY;
break;
case QUALITY_MEDIUM:
qsel = MICFIL_QSEL_MEDIUM_QUALITY;
break;
case QUALITY_LOW:
qsel = MICFIL_QSEL_LOW_QUALITY;
break;
case QUALITY_VLOW0:
qsel = MICFIL_QSEL_VLOW0_QUALITY;
break;
case QUALITY_VLOW1:
qsel = MICFIL_QSEL_VLOW1_QUALITY;
break;
case QUALITY_VLOW2:
qsel = MICFIL_QSEL_VLOW2_QUALITY;
break;
}
return regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2,
MICFIL_CTRL2_QSEL,
FIELD_PREP(MICFIL_CTRL2_QSEL, qsel));
}
static int micfil_quality_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(cmpnt);
ucontrol->value.integer.value[0] = micfil->quality;
return 0;
}
static int micfil_quality_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(cmpnt);
micfil->quality = ucontrol->value.integer.value[0];
return micfil_set_quality(micfil);
}
static const char * const micfil_hwvad_enable[] = {
"Disable (Record only)",
"Enable (Record with Vad)",
};
static const char * const micfil_hwvad_init_mode[] = {
"Envelope mode", "Energy mode",
};
static const char * const micfil_hwvad_hpf_texts[] = {
"Filter bypass",
"Cut-off @1750Hz",
"Cut-off @215Hz",
"Cut-off @102Hz",
};
/*
* DC Remover Control
* Filter Bypassed 1 1
* Cut-off @21Hz 0 0
* Cut-off @83Hz 0 1
* Cut-off @152HZ 1 0
*/
static const char * const micfil_dc_remover_texts[] = {
"Cut-off @21Hz", "Cut-off @83Hz",
"Cut-off @152Hz", "Bypass",
};
static const struct soc_enum hwvad_enable_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_enable),
micfil_hwvad_enable);
static const struct soc_enum hwvad_init_mode_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_init_mode),
micfil_hwvad_init_mode);
static const struct soc_enum hwvad_hpf_enum =
SOC_ENUM_SINGLE(REG_MICFIL_VAD0_CTRL2, 0,
ARRAY_SIZE(micfil_hwvad_hpf_texts),
micfil_hwvad_hpf_texts);
static const struct soc_enum fsl_micfil_dc_remover_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_dc_remover_texts),
micfil_dc_remover_texts);
static int micfil_put_dc_remover_state(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
unsigned int *item = ucontrol->value.enumerated.item;
int val = snd_soc_enum_item_to_val(e, item[0]);
int i = 0, ret = 0;
u32 reg_val = 0;
if (val < 0 || val > 3)
return -EINVAL;
micfil->dc_remover = val;
/* Calculate total value for all channels */
for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++)
reg_val |= val << MICFIL_DC_CHX_SHIFT(i);
/* Update DC Remover mode for all channels */
ret = snd_soc_component_update_bits(comp, REG_MICFIL_DC_CTRL,
MICFIL_DC_CTRL_CONFIG, reg_val);
if (ret < 0)
return ret;
return 0;
}
static int micfil_get_dc_remover_state(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->dc_remover;
return 0;
}
static int hwvad_put_enable(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
int val = snd_soc_enum_item_to_val(e, item[0]);
micfil->vad_enabled = val;
return 0;
}
static int hwvad_get_enable(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_enabled;
return 0;
}
static int hwvad_put_init_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
int val = snd_soc_enum_item_to_val(e, item[0]);
/* 0 - Envelope-based Mode
* 1 - Energy-based Mode
*/
micfil->vad_init_mode = val;
return 0;
}
static int hwvad_get_init_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_init_mode;
return 0;
}
static int hwvad_detected(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_detected;
return 0;
}
static const struct snd_kcontrol_new fsl_micfil_snd_controls[] = {
SOC_SINGLE_SX_TLV("CH0 Volume", REG_MICFIL_OUT_CTRL,
MICFIL_OUTGAIN_CHX_SHIFT(0), 0xF, 0x7, gain_tlv),
SOC_SINGLE_SX_TLV("CH1 Volume", REG_MICFIL_OUT_CTRL,
MICFIL_OUTGAIN_CHX_SHIFT(1), 0xF, 0x7, gain_tlv),
SOC_SINGLE_SX_TLV("CH2 Volume", REG_MICFIL_OUT_CTRL,
MICFIL_OUTGAIN_CHX_SHIFT(2), 0xF, 0x7, gain_tlv),
SOC_SINGLE_SX_TLV("CH3 Volume", REG_MICFIL_OUT_CTRL,
MICFIL_OUTGAIN_CHX_SHIFT(3), 0xF, 0x7, gain_tlv),
SOC_SINGLE_SX_TLV("CH4 Volume", REG_MICFIL_OUT_CTRL,
MICFIL_OUTGAIN_CHX_SHIFT(4), 0xF, 0x7, gain_tlv),
SOC_SINGLE_SX_TLV("CH5 Volume", REG_MICFIL_OUT_CTRL,
MICFIL_OUTGAIN_CHX_SHIFT(5), 0xF, 0x7, gain_tlv),
SOC_SINGLE_SX_TLV("CH6 Volume", REG_MICFIL_OUT_CTRL,
MICFIL_OUTGAIN_CHX_SHIFT(6), 0xF, 0x7, gain_tlv),
SOC_SINGLE_SX_TLV("CH7 Volume", REG_MICFIL_OUT_CTRL,
MICFIL_OUTGAIN_CHX_SHIFT(7), 0xF, 0x7, gain_tlv),
SOC_ENUM_EXT("MICFIL Quality Select",
fsl_micfil_quality_enum,
micfil_quality_get, micfil_quality_set),
SOC_ENUM_EXT("HWVAD Enablement Switch", hwvad_enable_enum,
hwvad_get_enable, hwvad_put_enable),
SOC_ENUM_EXT("HWVAD Initialization Mode", hwvad_init_mode_enum,
hwvad_get_init_mode, hwvad_put_init_mode),
SOC_ENUM("HWVAD High-Pass Filter", hwvad_hpf_enum),
SOC_SINGLE("HWVAD ZCD Switch", REG_MICFIL_VAD0_ZCD, 0, 1, 0),
SOC_SINGLE("HWVAD ZCD Auto Threshold Switch",
REG_MICFIL_VAD0_ZCD, 2, 1, 0),
SOC_ENUM_EXT("MICFIL DC Remover Control", fsl_micfil_dc_remover_enum,
micfil_get_dc_remover_state, micfil_put_dc_remover_state),
SOC_SINGLE("HWVAD Input Gain", REG_MICFIL_VAD0_CTRL2, 8, 15, 0),
SOC_SINGLE("HWVAD Sound Gain", REG_MICFIL_VAD0_SCONFIG, 0, 15, 0),
SOC_SINGLE("HWVAD Noise Gain", REG_MICFIL_VAD0_NCONFIG, 0, 15, 0),
SOC_SINGLE_RANGE("HWVAD Detector Frame Time", REG_MICFIL_VAD0_CTRL2, 16, 0, 63, 0),
SOC_SINGLE("HWVAD Detector Initialization Time", REG_MICFIL_VAD0_CTRL1, 8, 31, 0),
SOC_SINGLE("HWVAD Noise Filter Adjustment", REG_MICFIL_VAD0_NCONFIG, 8, 31, 0),
SOC_SINGLE("HWVAD ZCD Threshold", REG_MICFIL_VAD0_ZCD, 16, 1023, 0),
SOC_SINGLE("HWVAD ZCD Adjustment", REG_MICFIL_VAD0_ZCD, 8, 15, 0),
SOC_SINGLE("HWVAD ZCD And Behavior Switch",
REG_MICFIL_VAD0_ZCD, 4, 1, 0),
SOC_SINGLE_BOOL_EXT("VAD Detected", 0, hwvad_detected, NULL),
};
/* The SRES is a self-negated bit which provides the CPU with the
* capability to initialize the PDM Interface module through the
* slave-bus interface. This bit always reads as zero, and this
* bit is only effective when MDIS is cleared
*/
static int fsl_micfil_reset(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_MDIS);
if (ret)
return ret;
ret = regmap_set_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_SRES);
if (ret)
return ret;
/*
* SRES is self-cleared bit, but REG_MICFIL_CTRL1 is defined
* as non-volatile register, so SRES still remain in regmap
* cache after set, that every update of REG_MICFIL_CTRL1,
* software reset happens. so clear it explicitly.
*/
ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_SRES);
if (ret)
return ret;
/*
* Set SRES should clear CHnF flags, But even add delay here
* the CHnF may not be cleared sometimes, so clear CHnF explicitly.
*/
ret = regmap_write_bits(micfil->regmap, REG_MICFIL_STAT, 0xFF, 0xFF);
if (ret)
return ret;
return 0;
}
static int fsl_micfil_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
if (!micfil) {
dev_err(dai->dev, "micfil dai priv_data not set\n");
return -EINVAL;
}
return 0;
}
/* Enable/disable hwvad interrupts */
static int fsl_micfil_configure_hwvad_interrupts(struct fsl_micfil *micfil, int enable)
{
u32 vadie_reg = enable ? MICFIL_VAD0_CTRL1_IE : 0;
u32 vaderie_reg = enable ? MICFIL_VAD0_CTRL1_ERIE : 0;
/* Voice Activity Detector Error Interruption */
regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_ERIE, vaderie_reg);
/* Voice Activity Detector Interruption */
regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_IE, vadie_reg);
return 0;
}
/* Configuration done only in energy-based initialization mode */
static int fsl_micfil_init_hwvad_energy_mode(struct fsl_micfil *micfil)
{
/* Keep the VADFRENDIS bitfield cleared. */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_FRENDIS);
/* Keep the VADPREFEN bitfield cleared. */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_PREFEN);
/* Keep the VADSFILEN bitfield cleared. */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SFILEN);
/* Keep the VADSMAXEN bitfield cleared. */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SMAXEN);
/* Keep the VADNFILAUTO bitfield asserted. */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NFILAUT);
/* Keep the VADNMINEN bitfield cleared. */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NMINEN);
/* Keep the VADNDECEN bitfield cleared. */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NDECEN);
/* Keep the VADNOREN bitfield cleared. */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NOREN);
return 0;
}
/* Configuration done only in envelope-based initialization mode */
static int fsl_micfil_init_hwvad_envelope_mode(struct fsl_micfil *micfil)
{
/* Assert the VADFRENDIS bitfield */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_FRENDIS);
/* Assert the VADPREFEN bitfield. */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_PREFEN);
/* Assert the VADSFILEN bitfield. */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SFILEN);
/* Assert the VADSMAXEN bitfield. */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SMAXEN);
/* Clear the VADNFILAUTO bitfield */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NFILAUT);
/* Assert the VADNMINEN bitfield. */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NMINEN);
/* Assert the VADNDECEN bitfield. */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NDECEN);
/* Assert VADNOREN bitfield. */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NOREN);
return 0;
}
/*
* Hardware Voice Active Detection: The HWVAD takes data from the input
* of a selected PDM microphone to detect if there is any
* voice activity. When a voice activity is detected, an interrupt could
* be delivered to the system. Initialization in section 8.4:
* Can work in two modes:
* -> Eneveope-based mode (section 8.4.1)
* -> Energy-based mode (section 8.4.2)
*
* It is important to remark that the HWVAD detector could be enabled
* or reset only when the MICFIL isn't running i.e. when the BSY_FIL
* bit in STAT register is cleared
*/
static int fsl_micfil_hwvad_enable(struct fsl_micfil *micfil)
{
int ret;
micfil->vad_detected = 0;
/* envelope-based specific initialization */
if (micfil->vad_init_mode == MICFIL_HWVAD_ENVELOPE_MODE)
ret = fsl_micfil_init_hwvad_envelope_mode(micfil);
else
ret = fsl_micfil_init_hwvad_energy_mode(micfil);
if (ret)
return ret;
/* Voice Activity Detector Internal Filters Initialization*/
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_ST10);
/* Voice Activity Detector Internal Filter */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_ST10);
/* Enable Interrupts */
ret = fsl_micfil_configure_hwvad_interrupts(micfil, 1);
if (ret)
return ret;
/* Voice Activity Detector Reset */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_RST);
/* Voice Activity Detector Enabled */
regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_EN);
return 0;
}
static int fsl_micfil_hwvad_disable(struct fsl_micfil *micfil)
{
struct device *dev = &micfil->pdev->dev;
int ret = 0;
/* Disable HWVAD */
regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_EN);
/* Disable hwvad interrupts */
ret = fsl_micfil_configure_hwvad_interrupts(micfil, 0);
if (ret)
dev_err(dev, "Failed to disable interrupts\n");
return ret;
}
static int fsl_micfil_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
struct device *dev = &micfil->pdev->dev;
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ret = fsl_micfil_reset(dev);
if (ret) {
dev_err(dev, "failed to soft reset\n");
return ret;
}
/* DMA Interrupt Selection - DISEL bits
* 00 - DMA and IRQ disabled
* 01 - DMA req enabled
* 10 - IRQ enabled
* 11 - reserved
*/
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_DISEL,
FIELD_PREP(MICFIL_CTRL1_DISEL, MICFIL_CTRL1_DISEL_DMA));
if (ret)
return ret;
/* Enable the module */
ret = regmap_set_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN);
if (ret)
return ret;
if (micfil->vad_enabled)
fsl_micfil_hwvad_enable(micfil);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (micfil->vad_enabled)
fsl_micfil_hwvad_disable(micfil);
/* Disable the module */
ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN);
if (ret)
return ret;
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_DISEL,
FIELD_PREP(MICFIL_CTRL1_DISEL, MICFIL_CTRL1_DISEL_DISABLE));
if (ret)
return ret;
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_micfil_reparent_rootclk(struct fsl_micfil *micfil, unsigned int sample_rate)
{
struct device *dev = &micfil->pdev->dev;
u64 ratio = sample_rate;
struct clk *clk;
int ret;
/* Get root clock */
clk = micfil->mclk;
/* Disable clock first, for it was enabled by pm_runtime */
clk_disable_unprepare(clk);
fsl_asoc_reparent_pll_clocks(dev, clk, micfil->pll8k_clk,
micfil->pll11k_clk, ratio);
ret = clk_prepare_enable(clk);
if (ret)
return ret;
return 0;
}
static int fsl_micfil_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
unsigned int channels = params_channels(params);
unsigned int rate = params_rate(params);
int clk_div = 8;
int osr = MICFIL_OSR_DEFAULT;
int ret;
/* 1. Disable the module */
ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN);
if (ret)
return ret;
/* enable channels */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
0xFF, ((1 << channels) - 1));
if (ret)
return ret;
ret = fsl_micfil_reparent_rootclk(micfil, rate);
if (ret)
return ret;
ret = clk_set_rate(micfil->mclk, rate * clk_div * osr * 8);
if (ret)
return ret;
ret = micfil_set_quality(micfil);
if (ret)
return ret;
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2,
MICFIL_CTRL2_CLKDIV | MICFIL_CTRL2_CICOSR,
FIELD_PREP(MICFIL_CTRL2_CLKDIV, clk_div) |
FIELD_PREP(MICFIL_CTRL2_CICOSR, 16 - osr));
/* Configure CIC OSR in VADCICOSR */
regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_CICOSR,
FIELD_PREP(MICFIL_VAD0_CTRL1_CICOSR, 16 - osr));
/* Configure source channel in VADCHSEL */
regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_CHSEL,
FIELD_PREP(MICFIL_VAD0_CTRL1_CHSEL, (channels - 1)));
micfil->dma_params_rx.peripheral_config = &micfil->sdmacfg;
micfil->dma_params_rx.peripheral_size = sizeof(micfil->sdmacfg);
micfil->sdmacfg.n_fifos_src = channels;
micfil->sdmacfg.sw_done = true;
micfil->dma_params_rx.maxburst = channels * MICFIL_DMA_MAXBURST_RX;
if (micfil->soc->use_edma)
micfil->dma_params_rx.maxburst = channels;
return 0;
}
static const struct snd_soc_dai_ops fsl_micfil_dai_ops = {
.startup = fsl_micfil_startup,
.trigger = fsl_micfil_trigger,
.hw_params = fsl_micfil_hw_params,
};
static int fsl_micfil_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct fsl_micfil *micfil = dev_get_drvdata(cpu_dai->dev);
struct device *dev = cpu_dai->dev;
unsigned int val = 0;
int ret, i;
micfil->quality = QUALITY_VLOW0;
micfil->card = cpu_dai->component->card;
/* set default gain to 2 */
regmap_write(micfil->regmap, REG_MICFIL_OUT_CTRL, 0x22222222);
/* set DC Remover in bypass mode*/
for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++)
val |= MICFIL_DC_BYPASS << MICFIL_DC_CHX_SHIFT(i);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_DC_CTRL,
MICFIL_DC_CTRL_CONFIG, val);
if (ret) {
dev_err(dev, "failed to set DC Remover mode bits\n");
return ret;
}
micfil->dc_remover = MICFIL_DC_BYPASS;
snd_soc_dai_init_dma_data(cpu_dai, NULL,
&micfil->dma_params_rx);
/* FIFO Watermark Control - FIFOWMK*/
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_FIFO_CTRL,
MICFIL_FIFO_CTRL_FIFOWMK,
FIELD_PREP(MICFIL_FIFO_CTRL_FIFOWMK, micfil->soc->fifo_depth - 1));
if (ret)
return ret;
return 0;
}
static struct snd_soc_dai_driver fsl_micfil_dai = {
.probe = fsl_micfil_dai_probe,
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &fsl_micfil_dai_ops,
};
static const struct snd_soc_component_driver fsl_micfil_component = {
.name = "fsl-micfil-dai",
.controls = fsl_micfil_snd_controls,
.num_controls = ARRAY_SIZE(fsl_micfil_snd_controls),
.legacy_dai_naming = 1,
};
/* REGMAP */
static const struct reg_default fsl_micfil_reg_defaults[] = {
{REG_MICFIL_CTRL1, 0x00000000},
{REG_MICFIL_CTRL2, 0x00000000},
{REG_MICFIL_STAT, 0x00000000},
{REG_MICFIL_FIFO_CTRL, 0x00000007},
{REG_MICFIL_FIFO_STAT, 0x00000000},
{REG_MICFIL_DATACH0, 0x00000000},
{REG_MICFIL_DATACH1, 0x00000000},
{REG_MICFIL_DATACH2, 0x00000000},
{REG_MICFIL_DATACH3, 0x00000000},
{REG_MICFIL_DATACH4, 0x00000000},
{REG_MICFIL_DATACH5, 0x00000000},
{REG_MICFIL_DATACH6, 0x00000000},
{REG_MICFIL_DATACH7, 0x00000000},
{REG_MICFIL_DC_CTRL, 0x00000000},
{REG_MICFIL_OUT_CTRL, 0x00000000},
{REG_MICFIL_OUT_STAT, 0x00000000},
{REG_MICFIL_VAD0_CTRL1, 0x00000000},
{REG_MICFIL_VAD0_CTRL2, 0x000A0000},
{REG_MICFIL_VAD0_STAT, 0x00000000},
{REG_MICFIL_VAD0_SCONFIG, 0x00000000},
{REG_MICFIL_VAD0_NCONFIG, 0x80000000},
{REG_MICFIL_VAD0_NDATA, 0x00000000},
{REG_MICFIL_VAD0_ZCD, 0x00000004},
};
static bool fsl_micfil_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_MICFIL_CTRL1:
case REG_MICFIL_CTRL2:
case REG_MICFIL_STAT:
case REG_MICFIL_FIFO_CTRL:
case REG_MICFIL_FIFO_STAT:
case REG_MICFIL_DATACH0:
case REG_MICFIL_DATACH1:
case REG_MICFIL_DATACH2:
case REG_MICFIL_DATACH3:
case REG_MICFIL_DATACH4:
case REG_MICFIL_DATACH5:
case REG_MICFIL_DATACH6:
case REG_MICFIL_DATACH7:
case REG_MICFIL_DC_CTRL:
case REG_MICFIL_OUT_CTRL:
case REG_MICFIL_OUT_STAT:
case REG_MICFIL_VAD0_CTRL1:
case REG_MICFIL_VAD0_CTRL2:
case REG_MICFIL_VAD0_STAT:
case REG_MICFIL_VAD0_SCONFIG:
case REG_MICFIL_VAD0_NCONFIG:
case REG_MICFIL_VAD0_NDATA:
case REG_MICFIL_VAD0_ZCD:
return true;
default:
return false;
}
}
static bool fsl_micfil_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_MICFIL_CTRL1:
case REG_MICFIL_CTRL2:
case REG_MICFIL_STAT: /* Write 1 to Clear */
case REG_MICFIL_FIFO_CTRL:
case REG_MICFIL_FIFO_STAT: /* Write 1 to Clear */
case REG_MICFIL_DC_CTRL:
case REG_MICFIL_OUT_CTRL:
case REG_MICFIL_OUT_STAT: /* Write 1 to Clear */
case REG_MICFIL_VAD0_CTRL1:
case REG_MICFIL_VAD0_CTRL2:
case REG_MICFIL_VAD0_STAT: /* Write 1 to Clear */
case REG_MICFIL_VAD0_SCONFIG:
case REG_MICFIL_VAD0_NCONFIG:
case REG_MICFIL_VAD0_ZCD:
return true;
default:
return false;
}
}
static bool fsl_micfil_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_MICFIL_STAT:
case REG_MICFIL_DATACH0:
case REG_MICFIL_DATACH1:
case REG_MICFIL_DATACH2:
case REG_MICFIL_DATACH3:
case REG_MICFIL_DATACH4:
case REG_MICFIL_DATACH5:
case REG_MICFIL_DATACH6:
case REG_MICFIL_DATACH7:
case REG_MICFIL_VAD0_STAT:
case REG_MICFIL_VAD0_NDATA:
return true;
default:
return false;
}
}
static const struct regmap_config fsl_micfil_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = REG_MICFIL_VAD0_ZCD,
.reg_defaults = fsl_micfil_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(fsl_micfil_reg_defaults),
.readable_reg = fsl_micfil_readable_reg,
.volatile_reg = fsl_micfil_volatile_reg,
.writeable_reg = fsl_micfil_writeable_reg,
.cache_type = REGCACHE_RBTREE,
};
/* END OF REGMAP */
static irqreturn_t micfil_isr(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct platform_device *pdev = micfil->pdev;
u32 stat_reg;
u32 fifo_stat_reg;
u32 ctrl1_reg;
bool dma_enabled;
int i;
regmap_read(micfil->regmap, REG_MICFIL_STAT, &stat_reg);
regmap_read(micfil->regmap, REG_MICFIL_CTRL1, &ctrl1_reg);
regmap_read(micfil->regmap, REG_MICFIL_FIFO_STAT, &fifo_stat_reg);
dma_enabled = FIELD_GET(MICFIL_CTRL1_DISEL, ctrl1_reg) == MICFIL_CTRL1_DISEL_DMA;
/* Channel 0-7 Output Data Flags */
for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++) {
if (stat_reg & MICFIL_STAT_CHXF(i))
dev_dbg(&pdev->dev,
"Data available in Data Channel %d\n", i);
/* if DMA is not enabled, field must be written with 1
* to clear
*/
if (!dma_enabled)
regmap_write_bits(micfil->regmap,
REG_MICFIL_STAT,
MICFIL_STAT_CHXF(i),
1);
}
for (i = 0; i < MICFIL_FIFO_NUM; i++) {
if (fifo_stat_reg & MICFIL_FIFO_STAT_FIFOX_OVER(i))
dev_dbg(&pdev->dev,
"FIFO Overflow Exception flag for channel %d\n",
i);
if (fifo_stat_reg & MICFIL_FIFO_STAT_FIFOX_UNDER(i))
dev_dbg(&pdev->dev,
"FIFO Underflow Exception flag for channel %d\n",
i);
}
return IRQ_HANDLED;
}
static irqreturn_t micfil_err_isr(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct platform_device *pdev = micfil->pdev;
u32 stat_reg;
regmap_read(micfil->regmap, REG_MICFIL_STAT, &stat_reg);
if (stat_reg & MICFIL_STAT_BSY_FIL)
dev_dbg(&pdev->dev, "isr: Decimation Filter is running\n");
if (stat_reg & MICFIL_STAT_FIR_RDY)
dev_dbg(&pdev->dev, "isr: FIR Filter Data ready\n");
if (stat_reg & MICFIL_STAT_LOWFREQF) {
dev_dbg(&pdev->dev, "isr: ipg_clk_app is too low\n");
regmap_write_bits(micfil->regmap, REG_MICFIL_STAT,
MICFIL_STAT_LOWFREQF, 1);
}
return IRQ_HANDLED;
}
static irqreturn_t voice_detected_fn(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct snd_kcontrol *kctl;
if (!micfil->card)
return IRQ_HANDLED;
kctl = snd_soc_card_get_kcontrol(micfil->card, "VAD Detected");
if (!kctl)
return IRQ_HANDLED;
if (micfil->vad_detected)
snd_ctl_notify(micfil->card->snd_card,
SNDRV_CTL_EVENT_MASK_VALUE,
&kctl->id);
return IRQ_HANDLED;
}
static irqreturn_t hwvad_isr(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct device *dev = &micfil->pdev->dev;
u32 vad0_reg;
int ret;
regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &vad0_reg);
/*
* The only difference between MICFIL_VAD0_STAT_EF and
* MICFIL_VAD0_STAT_IF is that the former requires Write
* 1 to Clear. Since both flags are set, it is enough
* to only read one of them
*/
if (vad0_reg & MICFIL_VAD0_STAT_IF) {
/* Write 1 to clear */
regmap_write_bits(micfil->regmap, REG_MICFIL_VAD0_STAT,
MICFIL_VAD0_STAT_IF,
MICFIL_VAD0_STAT_IF);
micfil->vad_detected = 1;
}
ret = fsl_micfil_hwvad_disable(micfil);
if (ret)
dev_err(dev, "Failed to disable hwvad\n");
return IRQ_WAKE_THREAD;
}
static irqreturn_t hwvad_err_isr(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct device *dev = &micfil->pdev->dev;
u32 vad0_reg;
regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &vad0_reg);
if (vad0_reg & MICFIL_VAD0_STAT_INSATF)
dev_dbg(dev, "voice activity input overflow/underflow detected\n");
return IRQ_HANDLED;
}
static int fsl_micfil_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_micfil *micfil;
struct resource *res;
void __iomem *regs;
int ret, i;
micfil = devm_kzalloc(&pdev->dev, sizeof(*micfil), GFP_KERNEL);
if (!micfil)
return -ENOMEM;
micfil->pdev = pdev;
strncpy(micfil->name, np->name, sizeof(micfil->name) - 1);
micfil->soc = of_device_get_match_data(&pdev->dev);
/* ipg_clk is used to control the registers
* ipg_clk_app is used to operate the filter
*/
micfil->mclk = devm_clk_get(&pdev->dev, "ipg_clk_app");
if (IS_ERR(micfil->mclk)) {
dev_err(&pdev->dev, "failed to get core clock: %ld\n",
PTR_ERR(micfil->mclk));
return PTR_ERR(micfil->mclk);
}
micfil->busclk = devm_clk_get(&pdev->dev, "ipg_clk");
if (IS_ERR(micfil->busclk)) {
dev_err(&pdev->dev, "failed to get ipg clock: %ld\n",
PTR_ERR(micfil->busclk));
return PTR_ERR(micfil->busclk);
}
fsl_asoc_get_pll_clocks(&pdev->dev, &micfil->pll8k_clk,
&micfil->pll11k_clk);
/* init regmap */
regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(regs))
return PTR_ERR(regs);
micfil->regmap = devm_regmap_init_mmio(&pdev->dev,
regs,
&fsl_micfil_regmap_config);
if (IS_ERR(micfil->regmap)) {
dev_err(&pdev->dev, "failed to init MICFIL regmap: %ld\n",
PTR_ERR(micfil->regmap));
return PTR_ERR(micfil->regmap);
}
/* dataline mask for RX */
ret = of_property_read_u32_index(np,
"fsl,dataline",
0,
&micfil->dataline);
if (ret)
micfil->dataline = 1;
if (micfil->dataline & ~micfil->soc->dataline) {
dev_err(&pdev->dev, "dataline setting error, Mask is 0x%X\n",
micfil->soc->dataline);
return -EINVAL;
}
/* get IRQs */
for (i = 0; i < MICFIL_IRQ_LINES; i++) {
micfil->irq[i] = platform_get_irq(pdev, i);
if (micfil->irq[i] < 0)
return micfil->irq[i];
}
/* Digital Microphone interface interrupt */
ret = devm_request_irq(&pdev->dev, micfil->irq[0],
micfil_isr, IRQF_SHARED,
micfil->name, micfil);
if (ret) {
dev_err(&pdev->dev, "failed to claim mic interface irq %u\n",
micfil->irq[0]);
return ret;
}
/* Digital Microphone interface error interrupt */
ret = devm_request_irq(&pdev->dev, micfil->irq[1],
micfil_err_isr, IRQF_SHARED,
micfil->name, micfil);
if (ret) {
dev_err(&pdev->dev, "failed to claim mic interface error irq %u\n",
micfil->irq[1]);
return ret;
}
/* Digital Microphone interface voice activity detector event */
ret = devm_request_threaded_irq(&pdev->dev, micfil->irq[2],
hwvad_isr, voice_detected_fn,
IRQF_SHARED, micfil->name, micfil);
if (ret) {
dev_err(&pdev->dev, "failed to claim hwvad event irq %u\n",
micfil->irq[0]);
return ret;
}
/* Digital Microphone interface voice activity detector error */
ret = devm_request_irq(&pdev->dev, micfil->irq[3],
hwvad_err_isr, IRQF_SHARED,
micfil->name, micfil);
if (ret) {
dev_err(&pdev->dev, "failed to claim hwvad error irq %u\n",
micfil->irq[1]);
return ret;
}
micfil->dma_params_rx.chan_name = "rx";
micfil->dma_params_rx.addr = res->start + REG_MICFIL_DATACH0;
micfil->dma_params_rx.maxburst = MICFIL_DMA_MAXBURST_RX;
platform_set_drvdata(pdev, micfil);
pm_runtime_enable(&pdev->dev);
regcache_cache_only(micfil->regmap, true);
/*
* Register platform component before registering cpu dai for there
* is not defer probe for platform component in snd_soc_add_pcm_runtime().
*/
ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (ret) {
dev_err(&pdev->dev, "failed to pcm register\n");
return ret;
}
fsl_micfil_dai.capture.formats = micfil->soc->formats;
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_micfil_component,
&fsl_micfil_dai, 1);
if (ret) {
dev_err(&pdev->dev, "failed to register component %s\n",
fsl_micfil_component.name);
}
return ret;
}
static int __maybe_unused fsl_micfil_runtime_suspend(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
regcache_cache_only(micfil->regmap, true);
clk_disable_unprepare(micfil->mclk);
clk_disable_unprepare(micfil->busclk);
return 0;
}
static int __maybe_unused fsl_micfil_runtime_resume(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(micfil->busclk);
if (ret < 0)
return ret;
ret = clk_prepare_enable(micfil->mclk);
if (ret < 0) {
clk_disable_unprepare(micfil->busclk);
return ret;
}
regcache_cache_only(micfil->regmap, false);
regcache_mark_dirty(micfil->regmap);
regcache_sync(micfil->regmap);
return 0;
}
static int __maybe_unused fsl_micfil_suspend(struct device *dev)
{
pm_runtime_force_suspend(dev);
return 0;
}
static int __maybe_unused fsl_micfil_resume(struct device *dev)
{
pm_runtime_force_resume(dev);
return 0;
}
static const struct dev_pm_ops fsl_micfil_pm_ops = {
SET_RUNTIME_PM_OPS(fsl_micfil_runtime_suspend,
fsl_micfil_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(fsl_micfil_suspend,
fsl_micfil_resume)
};
static struct platform_driver fsl_micfil_driver = {
.probe = fsl_micfil_probe,
.driver = {
.name = "fsl-micfil-dai",
.pm = &fsl_micfil_pm_ops,
.of_match_table = fsl_micfil_dt_ids,
},
};
module_platform_driver(fsl_micfil_driver);
MODULE_AUTHOR("Cosmin-Gabriel Samoila <cosmin.samoila@nxp.com>");
MODULE_DESCRIPTION("NXP PDM Microphone Interface (MICFIL) driver");
MODULE_LICENSE("GPL v2");