linux/drivers/gpu/drm/drm_bridge.c

551 lines
16 KiB
C
Raw Normal View History

drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
/*
* Copyright (c) 2014 Samsung Electronics Co., Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <linux/err.h>
#include <linux/module.h>
#include <linux/mutex.h>
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
#include <drm/drm_bridge.h>
#include <drm/drm_encoder.h>
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
#include "drm_crtc_internal.h"
/**
* DOC: overview
*
* &struct drm_bridge represents a device that hangs on to an encoder. These are
* handy when a regular &drm_encoder entity isn't enough to represent the entire
* encoder chain.
*
* A bridge is always attached to a single &drm_encoder at a time, but can be
* either connected to it directly, or through an intermediate bridge::
*
* encoder ---> bridge B ---> bridge A
*
* Here, the output of the encoder feeds to bridge B, and that furthers feeds to
* bridge A.
*
* The driver using the bridge is responsible to make the associations between
* the encoder and bridges. Once these links are made, the bridges will
* participate along with encoder functions to perform mode_set/enable/disable
* through the ops provided in &drm_bridge_funcs.
*
* drm_bridge, like drm_panel, aren't drm_mode_object entities like planes,
* CRTCs, encoders or connectors and hence are not visible to userspace. They
* just provide additional hooks to get the desired output at the end of the
* encoder chain.
*
* Bridges can also be chained up using the &drm_bridge.chain_node field.
*
* Both legacy CRTC helpers and the new atomic modeset helpers support bridges.
*/
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
static DEFINE_MUTEX(bridge_lock);
static LIST_HEAD(bridge_list);
/**
* drm_bridge_add - add the given bridge to the global bridge list
*
* @bridge: bridge control structure
*/
void drm_bridge_add(struct drm_bridge *bridge)
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
{
mutex_lock(&bridge_lock);
list_add_tail(&bridge->list, &bridge_list);
mutex_unlock(&bridge_lock);
}
EXPORT_SYMBOL(drm_bridge_add);
/**
* drm_bridge_remove - remove the given bridge from the global bridge list
*
* @bridge: bridge control structure
*/
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
void drm_bridge_remove(struct drm_bridge *bridge)
{
mutex_lock(&bridge_lock);
list_del_init(&bridge->list);
mutex_unlock(&bridge_lock);
}
EXPORT_SYMBOL(drm_bridge_remove);
/**
* drm_bridge_attach - attach the bridge to an encoder's chain
*
* @encoder: DRM encoder
* @bridge: bridge to attach
* @previous: previous bridge in the chain (optional)
*
* Called by a kms driver to link the bridge to an encoder's chain. The previous
* argument specifies the previous bridge in the chain. If NULL, the bridge is
* linked directly at the encoder's output. Otherwise it is linked at the
* previous bridge's output.
*
* If non-NULL the previous bridge must be already attached by a call to this
* function.
*
* Note that bridges attached to encoders are auto-detached during encoder
* cleanup in drm_encoder_cleanup(), so drm_bridge_attach() should generally
* *not* be balanced with a drm_bridge_detach() in driver code.
*
* RETURNS:
* Zero on success, error code on failure
*/
int drm_bridge_attach(struct drm_encoder *encoder, struct drm_bridge *bridge,
struct drm_bridge *previous)
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
{
int ret;
if (!encoder || !bridge)
return -EINVAL;
if (previous && (!previous->dev || previous->encoder != encoder))
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
return -EINVAL;
if (bridge->dev)
return -EBUSY;
bridge->dev = encoder->dev;
bridge->encoder = encoder;
if (previous)
list_add(&bridge->chain_node, &previous->chain_node);
else
list_add(&bridge->chain_node, &encoder->bridge_chain);
if (bridge->funcs->attach) {
ret = bridge->funcs->attach(bridge);
if (ret < 0) {
list_del(&bridge->chain_node);
bridge->dev = NULL;
bridge->encoder = NULL;
return ret;
}
}
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
return 0;
}
EXPORT_SYMBOL(drm_bridge_attach);
void drm_bridge_detach(struct drm_bridge *bridge)
{
if (WARN_ON(!bridge))
return;
if (WARN_ON(!bridge->dev))
return;
if (bridge->funcs->detach)
bridge->funcs->detach(bridge);
list_del(&bridge->chain_node);
bridge->dev = NULL;
}
/**
* DOC: bridge callbacks
*
* The &drm_bridge_funcs ops are populated by the bridge driver. The DRM
* internals (atomic and CRTC helpers) use the helpers defined in drm_bridge.c
* These helpers call a specific &drm_bridge_funcs op for all the bridges
* during encoder configuration.
*
* For detailed specification of the bridge callbacks see &drm_bridge_funcs.
*/
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
/**
* drm_bridge_chain_mode_fixup - fixup proposed mode for all bridges in the
* encoder chain
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* @bridge: bridge control structure
* @mode: desired mode to be set for the bridge
* @adjusted_mode: updated mode that works for this bridge
*
* Calls &drm_bridge_funcs.mode_fixup for all the bridges in the
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* encoder chain, starting from the first bridge to the last.
*
* Note: the bridge passed should be the one closest to the encoder
*
* RETURNS:
* true on success, false on failure
*/
bool drm_bridge_chain_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
{
struct drm_encoder *encoder;
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
if (!bridge)
return true;
encoder = bridge->encoder;
list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) {
if (!bridge->funcs->mode_fixup)
continue;
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
if (!bridge->funcs->mode_fixup(bridge, mode, adjusted_mode))
return false;
}
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
return true;
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
}
EXPORT_SYMBOL(drm_bridge_chain_mode_fixup);
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
/**
* drm_bridge_chain_mode_valid - validate the mode against all bridges in the
* encoder chain.
* @bridge: bridge control structure
* @mode: desired mode to be validated
*
* Calls &drm_bridge_funcs.mode_valid for all the bridges in the encoder
* chain, starting from the first bridge to the last. If at least one bridge
* does not accept the mode the function returns the error code.
*
* Note: the bridge passed should be the one closest to the encoder.
*
* RETURNS:
* MODE_OK on success, drm_mode_status Enum error code on failure
*/
enum drm_mode_status
drm_bridge_chain_mode_valid(struct drm_bridge *bridge,
const struct drm_display_mode *mode)
{
struct drm_encoder *encoder;
if (!bridge)
return MODE_OK;
encoder = bridge->encoder;
list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) {
enum drm_mode_status ret;
if (!bridge->funcs->mode_valid)
continue;
ret = bridge->funcs->mode_valid(bridge, mode);
if (ret != MODE_OK)
return ret;
}
return MODE_OK;
}
EXPORT_SYMBOL(drm_bridge_chain_mode_valid);
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
/**
* drm_bridge_chain_disable - disables all bridges in the encoder chain
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* @bridge: bridge control structure
*
* Calls &drm_bridge_funcs.disable op for all the bridges in the encoder
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* chain, starting from the last bridge to the first. These are called before
* calling the encoder's prepare op.
*
* Note: the bridge passed should be the one closest to the encoder
*/
void drm_bridge_chain_disable(struct drm_bridge *bridge)
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
{
struct drm_encoder *encoder;
struct drm_bridge *iter;
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) {
if (iter->funcs->disable)
iter->funcs->disable(iter);
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
if (iter == bridge)
break;
}
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
}
EXPORT_SYMBOL(drm_bridge_chain_disable);
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
/**
* drm_bridge_chain_post_disable - cleans up after disabling all bridges in the
* encoder chain
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* @bridge: bridge control structure
*
* Calls &drm_bridge_funcs.post_disable op for all the bridges in the
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* encoder chain, starting from the first bridge to the last. These are called
* after completing the encoder's prepare op.
*
* Note: the bridge passed should be the one closest to the encoder
*/
void drm_bridge_chain_post_disable(struct drm_bridge *bridge)
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
{
struct drm_encoder *encoder;
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) {
if (bridge->funcs->post_disable)
bridge->funcs->post_disable(bridge);
}
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
}
EXPORT_SYMBOL(drm_bridge_chain_post_disable);
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
/**
* drm_bridge_chain_mode_set - set proposed mode for all bridges in the
* encoder chain
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* @bridge: bridge control structure
* @mode: desired mode to be set for the encoder chain
* @adjusted_mode: updated mode that works for this encoder chain
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
*
* Calls &drm_bridge_funcs.mode_set op for all the bridges in the
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* encoder chain, starting from the first bridge to the last.
*
* Note: the bridge passed should be the one closest to the encoder
*/
void drm_bridge_chain_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
{
struct drm_encoder *encoder;
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) {
if (bridge->funcs->mode_set)
bridge->funcs->mode_set(bridge, mode, adjusted_mode);
}
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
}
EXPORT_SYMBOL(drm_bridge_chain_mode_set);
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
/**
* drm_bridge_chain_pre_enable - prepares for enabling all bridges in the
* encoder chain
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* @bridge: bridge control structure
*
* Calls &drm_bridge_funcs.pre_enable op for all the bridges in the encoder
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* chain, starting from the last bridge to the first. These are called
* before calling the encoder's commit op.
*
* Note: the bridge passed should be the one closest to the encoder
*/
void drm_bridge_chain_pre_enable(struct drm_bridge *bridge)
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
{
struct drm_encoder *encoder;
struct drm_bridge *iter;
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) {
if (iter->funcs->pre_enable)
iter->funcs->pre_enable(iter);
}
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
}
EXPORT_SYMBOL(drm_bridge_chain_pre_enable);
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
/**
* drm_bridge_chain_enable - enables all bridges in the encoder chain
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* @bridge: bridge control structure
*
* Calls &drm_bridge_funcs.enable op for all the bridges in the encoder
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
* chain, starting from the first bridge to the last. These are called
* after completing the encoder's commit op.
*
* Note that the bridge passed should be the one closest to the encoder
*/
void drm_bridge_chain_enable(struct drm_bridge *bridge)
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
{
struct drm_encoder *encoder;
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) {
if (bridge->funcs->enable)
bridge->funcs->enable(bridge);
}
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
}
EXPORT_SYMBOL(drm_bridge_chain_enable);
drm: bridge: Allow daisy chaining of bridges Allow drm_bridge objects to link to each other in order to form an encoder chain. The requirement for creating a chain of bridges comes because the MSM drm driver uses up its encoder and bridge objects for blocks within the SoC itself. There isn't anything left to use if the SoC display output is connected to an external encoder IC. Having an additional bridge connected to the existing bridge helps here. In general, it is possible for platforms to have multiple devices between the encoder and the connector/panel that require some sort of configuration. We create drm bridge helper functions corresponding to each op in 'drm_bridge_funcs'. These helpers call the corresponding 'drm_bridge_funcs' op for the entire chain of bridges. These helpers are used internally by drm_atomic_helper.c and drm_crtc_helper.c. The drm_bridge_enable/pre_enable helpers execute enable/pre_enable ops of the bridge closet to the encoder, and proceed until the last bridge in the chain is enabled. The same holds for drm_bridge_mode_set/mode_fixup helpers. The drm_bridge_disable/post_disable helpers disable the last bridge in the chain first, and proceed until the first bridge in the chain is disabled. drm_bridge_attach() remains the same. As before, the driver calling this function should make sure it has set the links correctly. The order in which the bridges are connected to each other determines the order in which the calls are made. One requirement is that every bridge in the chain should point the parent encoder object. This is required since bridge drivers expect a valid encoder pointer in drm_bridge. For example, consider a chain where an encoder's output is connected to bridge1, and bridge1's output is connected to bridge2: /* Like before, attach bridge to an encoder */ bridge1->encoder = encoder; ret = drm_bridge_attach(dev, bridge1); .. /* * set the first bridge's 'next' bridge to bridge2, set its encoder * as bridge1's encoder */ bridge1->next = bridge2 bridge2->encoder = bridge1->encoder; ret = drm_bridge_attach(dev, bridge2); ... ... This method of bridge chaining isn't intrusive and existing drivers that use drm_bridge will behave the same way as before. The bridge helpers also cleans up the atomic and crtc helper files a bit. Reviewed-by: Jani Nikula <jani.nikula@linux.intel.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Reviewed-by: Daniel Vetter <daniel@ffwll.ch> Signed-off-by: Archit Taneja <architt@codeaurora.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-21 11:03:16 +05:30
/**
* drm_atomic_bridge_chain_disable - disables all bridges in the encoder chain
* @bridge: bridge control structure
* @old_state: old atomic state
*
* Calls &drm_bridge_funcs.atomic_disable (falls back on
* &drm_bridge_funcs.disable) op for all the bridges in the encoder chain,
* starting from the last bridge to the first. These are called before calling
* &drm_encoder_helper_funcs.atomic_disable
*
* Note: the bridge passed should be the one closest to the encoder
*/
void drm_atomic_bridge_chain_disable(struct drm_bridge *bridge,
struct drm_atomic_state *old_state)
{
struct drm_encoder *encoder;
struct drm_bridge *iter;
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) {
if (iter->funcs->atomic_disable)
iter->funcs->atomic_disable(iter, old_state);
else if (iter->funcs->disable)
iter->funcs->disable(iter);
if (iter == bridge)
break;
}
}
EXPORT_SYMBOL(drm_atomic_bridge_chain_disable);
/**
* drm_atomic_bridge_chain_post_disable - cleans up after disabling all bridges
* in the encoder chain
* @bridge: bridge control structure
* @old_state: old atomic state
*
* Calls &drm_bridge_funcs.atomic_post_disable (falls back on
* &drm_bridge_funcs.post_disable) op for all the bridges in the encoder chain,
* starting from the first bridge to the last. These are called after completing
* &drm_encoder_helper_funcs.atomic_disable
*
* Note: the bridge passed should be the one closest to the encoder
*/
void drm_atomic_bridge_chain_post_disable(struct drm_bridge *bridge,
struct drm_atomic_state *old_state)
{
struct drm_encoder *encoder;
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) {
if (bridge->funcs->atomic_post_disable)
bridge->funcs->atomic_post_disable(bridge, old_state);
else if (bridge->funcs->post_disable)
bridge->funcs->post_disable(bridge);
}
}
EXPORT_SYMBOL(drm_atomic_bridge_chain_post_disable);
/**
* drm_atomic_bridge_chain_pre_enable - prepares for enabling all bridges in
* the encoder chain
* @bridge: bridge control structure
* @old_state: old atomic state
*
* Calls &drm_bridge_funcs.atomic_pre_enable (falls back on
* &drm_bridge_funcs.pre_enable) op for all the bridges in the encoder chain,
* starting from the last bridge to the first. These are called before calling
* &drm_encoder_helper_funcs.atomic_enable
*
* Note: the bridge passed should be the one closest to the encoder
*/
void drm_atomic_bridge_chain_pre_enable(struct drm_bridge *bridge,
struct drm_atomic_state *old_state)
{
struct drm_encoder *encoder;
struct drm_bridge *iter;
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_reverse(iter, &encoder->bridge_chain, chain_node) {
if (iter->funcs->atomic_pre_enable)
iter->funcs->atomic_pre_enable(iter, old_state);
else if (iter->funcs->pre_enable)
iter->funcs->pre_enable(iter);
if (iter == bridge)
break;
}
}
EXPORT_SYMBOL(drm_atomic_bridge_chain_pre_enable);
/**
* drm_atomic_bridge_chain_enable - enables all bridges in the encoder chain
* @bridge: bridge control structure
* @old_state: old atomic state
*
* Calls &drm_bridge_funcs.atomic_enable (falls back on
* &drm_bridge_funcs.enable) op for all the bridges in the encoder chain,
* starting from the first bridge to the last. These are called after completing
* &drm_encoder_helper_funcs.atomic_enable
*
* Note: the bridge passed should be the one closest to the encoder
*/
void drm_atomic_bridge_chain_enable(struct drm_bridge *bridge,
struct drm_atomic_state *old_state)
{
struct drm_encoder *encoder;
if (!bridge)
return;
encoder = bridge->encoder;
list_for_each_entry_from(bridge, &encoder->bridge_chain, chain_node) {
if (bridge->funcs->atomic_enable)
bridge->funcs->atomic_enable(bridge, old_state);
else if (bridge->funcs->enable)
bridge->funcs->enable(bridge);
}
}
EXPORT_SYMBOL(drm_atomic_bridge_chain_enable);
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
#ifdef CONFIG_OF
/**
* of_drm_find_bridge - find the bridge corresponding to the device node in
* the global bridge list
*
* @np: device node
*
* RETURNS:
* drm_bridge control struct on success, NULL on failure
*/
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 22:08:44 +05:30
struct drm_bridge *of_drm_find_bridge(struct device_node *np)
{
struct drm_bridge *bridge;
mutex_lock(&bridge_lock);
list_for_each_entry(bridge, &bridge_list, list) {
if (bridge->of_node == np) {
mutex_unlock(&bridge_lock);
return bridge;
}
}
mutex_unlock(&bridge_lock);
return NULL;
}
EXPORT_SYMBOL(of_drm_find_bridge);
#endif
MODULE_AUTHOR("Ajay Kumar <ajaykumar.rs@samsung.com>");
MODULE_DESCRIPTION("DRM bridge infrastructure");
MODULE_LICENSE("GPL and additional rights");