2017-06-21 16:32:06 +02:00
/*
* STMicroelectronics STM32 SPI Controller driver ( master mode only )
*
* Copyright ( C ) 2017 , STMicroelectronics - All Rights Reserved
* Author ( s ) : Amelie Delaunay < amelie . delaunay @ st . com > for STMicroelectronics .
*
* License terms : GPL V2 .0 .
*
* spi_stm32 driver is free software ; you can redistribute it and / or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation .
*
* spi_stm32 driver is distributed in the hope that it will be useful , but
* WITHOUT ANY WARRANTY ; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Public License for more
* details .
*
* You should have received a copy of the GNU General Public License along with
* spi_stm32 driver . If not , see < http : //www.gnu.org/licenses/>.
*/
# include <linux/debugfs.h>
# include <linux/clk.h>
# include <linux/delay.h>
# include <linux/dmaengine.h>
# include <linux/gpio.h>
# include <linux/interrupt.h>
# include <linux/iopoll.h>
# include <linux/module.h>
# include <linux/of_platform.h>
# include <linux/reset.h>
# include <linux/spi/spi.h>
# define DRIVER_NAME "spi_stm32"
/* STM32 SPI registers */
# define STM32_SPI_CR1 0x00
# define STM32_SPI_CR2 0x04
# define STM32_SPI_CFG1 0x08
# define STM32_SPI_CFG2 0x0C
# define STM32_SPI_IER 0x10
# define STM32_SPI_SR 0x14
# define STM32_SPI_IFCR 0x18
# define STM32_SPI_TXDR 0x20
# define STM32_SPI_RXDR 0x30
# define STM32_SPI_I2SCFGR 0x50
/* STM32_SPI_CR1 bit fields */
# define SPI_CR1_SPE BIT(0)
# define SPI_CR1_MASRX BIT(8)
# define SPI_CR1_CSTART BIT(9)
# define SPI_CR1_CSUSP BIT(10)
# define SPI_CR1_HDDIR BIT(11)
# define SPI_CR1_SSI BIT(12)
/* STM32_SPI_CR2 bit fields */
# define SPI_CR2_TSIZE_SHIFT 0
# define SPI_CR2_TSIZE GENMASK(15, 0)
/* STM32_SPI_CFG1 bit fields */
# define SPI_CFG1_DSIZE_SHIFT 0
# define SPI_CFG1_DSIZE GENMASK(4, 0)
# define SPI_CFG1_FTHLV_SHIFT 5
# define SPI_CFG1_FTHLV GENMASK(8, 5)
# define SPI_CFG1_RXDMAEN BIT(14)
# define SPI_CFG1_TXDMAEN BIT(15)
# define SPI_CFG1_MBR_SHIFT 28
# define SPI_CFG1_MBR GENMASK(30, 28)
# define SPI_CFG1_MBR_MIN 0
# define SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
/* STM32_SPI_CFG2 bit fields */
# define SPI_CFG2_MIDI_SHIFT 4
# define SPI_CFG2_MIDI GENMASK(7, 4)
# define SPI_CFG2_COMM_SHIFT 17
# define SPI_CFG2_COMM GENMASK(18, 17)
# define SPI_CFG2_SP_SHIFT 19
# define SPI_CFG2_SP GENMASK(21, 19)
# define SPI_CFG2_MASTER BIT(22)
# define SPI_CFG2_LSBFRST BIT(23)
# define SPI_CFG2_CPHA BIT(24)
# define SPI_CFG2_CPOL BIT(25)
# define SPI_CFG2_SSM BIT(26)
# define SPI_CFG2_AFCNTR BIT(31)
/* STM32_SPI_IER bit fields */
# define SPI_IER_RXPIE BIT(0)
# define SPI_IER_TXPIE BIT(1)
# define SPI_IER_DXPIE BIT(2)
# define SPI_IER_EOTIE BIT(3)
# define SPI_IER_TXTFIE BIT(4)
# define SPI_IER_OVRIE BIT(6)
# define SPI_IER_MODFIE BIT(9)
# define SPI_IER_ALL GENMASK(10, 0)
/* STM32_SPI_SR bit fields */
# define SPI_SR_RXP BIT(0)
# define SPI_SR_TXP BIT(1)
# define SPI_SR_EOT BIT(3)
# define SPI_SR_OVR BIT(6)
# define SPI_SR_MODF BIT(9)
# define SPI_SR_SUSP BIT(11)
# define SPI_SR_RXPLVL_SHIFT 13
# define SPI_SR_RXPLVL GENMASK(14, 13)
# define SPI_SR_RXWNE BIT(15)
/* STM32_SPI_IFCR bit fields */
# define SPI_IFCR_ALL GENMASK(11, 3)
/* STM32_SPI_I2SCFGR bit fields */
# define SPI_I2SCFGR_I2SMOD BIT(0)
/* SPI Master Baud Rate min/max divisor */
# define SPI_MBR_DIV_MIN (2 << SPI_CFG1_MBR_MIN)
# define SPI_MBR_DIV_MAX (2 << SPI_CFG1_MBR_MAX)
/* SPI Communication mode */
# define SPI_FULL_DUPLEX 0
# define SPI_SIMPLEX_TX 1
# define SPI_SIMPLEX_RX 2
# define SPI_HALF_DUPLEX 3
# define SPI_1HZ_NS 1000000000
/**
* struct stm32_spi - private data of the SPI controller
* @ dev : driver model representation of the controller
* @ master : controller master interface
* @ base : virtual memory area
* @ clk : hw kernel clock feeding the SPI clock generator
* @ clk_rate : rate of the hw kernel clock feeding the SPI clock generator
* @ rst : SPI controller reset line
* @ lock : prevent I / O concurrent access
* @ irq : SPI controller interrupt line
* @ fifo_size : size of the embedded fifo in bytes
* @ cur_midi : master inter - data idleness in ns
* @ cur_speed : speed configured in Hz
* @ cur_bpw : number of bits in a single SPI data frame
* @ cur_fthlv : fifo threshold level ( data frames in a single data packet )
* @ cur_comm : SPI communication mode
* @ cur_xferlen : current transfer length in bytes
* @ cur_usedma : boolean to know if dma is used in current transfer
* @ tx_buf : data to be written , or NULL
* @ rx_buf : data to be read , or NULL
* @ tx_len : number of data to be written in bytes
* @ rx_len : number of data to be read in bytes
* @ dma_tx : dma channel for TX transfer
* @ dma_rx : dma channel for RX transfer
* @ phys_addr : SPI registers physical base address
*/
struct stm32_spi {
struct device * dev ;
struct spi_master * master ;
void __iomem * base ;
struct clk * clk ;
u32 clk_rate ;
struct reset_control * rst ;
spinlock_t lock ; /* prevent I/O concurrent access */
int irq ;
unsigned int fifo_size ;
unsigned int cur_midi ;
unsigned int cur_speed ;
unsigned int cur_bpw ;
unsigned int cur_fthlv ;
unsigned int cur_comm ;
unsigned int cur_xferlen ;
bool cur_usedma ;
const void * tx_buf ;
void * rx_buf ;
int tx_len ;
int rx_len ;
struct dma_chan * dma_tx ;
struct dma_chan * dma_rx ;
dma_addr_t phys_addr ;
} ;
static inline void stm32_spi_set_bits ( struct stm32_spi * spi ,
u32 offset , u32 bits )
{
writel_relaxed ( readl_relaxed ( spi - > base + offset ) | bits ,
spi - > base + offset ) ;
}
static inline void stm32_spi_clr_bits ( struct stm32_spi * spi ,
u32 offset , u32 bits )
{
writel_relaxed ( readl_relaxed ( spi - > base + offset ) & ~ bits ,
spi - > base + offset ) ;
}
/**
* stm32_spi_get_fifo_size - Return fifo size
* @ spi : pointer to the spi controller data structure
*/
static int stm32_spi_get_fifo_size ( struct stm32_spi * spi )
{
unsigned long flags ;
u32 count = 0 ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
stm32_spi_set_bits ( spi , STM32_SPI_CR1 , SPI_CR1_SPE ) ;
while ( readl_relaxed ( spi - > base + STM32_SPI_SR ) & SPI_SR_TXP )
writeb_relaxed ( + + count , spi - > base + STM32_SPI_TXDR ) ;
stm32_spi_clr_bits ( spi , STM32_SPI_CR1 , SPI_CR1_SPE ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
dev_dbg ( spi - > dev , " %d x 8-bit fifo size \n " , count ) ;
return count ;
}
/**
* stm32_spi_get_bpw_mask - Return bits per word mask
* @ spi : pointer to the spi controller data structure
*/
static int stm32_spi_get_bpw_mask ( struct stm32_spi * spi )
{
unsigned long flags ;
u32 cfg1 , max_bpw ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
/*
* The most significant bit at DSIZE bit field is reserved when the
* maximum data size of periperal instances is limited to 16 - bit
*/
stm32_spi_set_bits ( spi , STM32_SPI_CFG1 , SPI_CFG1_DSIZE ) ;
cfg1 = readl_relaxed ( spi - > base + STM32_SPI_CFG1 ) ;
max_bpw = ( cfg1 & SPI_CFG1_DSIZE ) > > SPI_CFG1_DSIZE_SHIFT ;
max_bpw + = 1 ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
dev_dbg ( spi - > dev , " %d-bit maximum data frame \n " , max_bpw ) ;
return SPI_BPW_RANGE_MASK ( 4 , max_bpw ) ;
}
/**
* stm32_spi_prepare_mbr - Determine SPI_CFG1 . MBR value
* @ spi : pointer to the spi controller data structure
* @ speed_hz : requested speed
*
* Return SPI_CFG1 . MBR value in case of success or - EINVAL
*/
static int stm32_spi_prepare_mbr ( struct stm32_spi * spi , u32 speed_hz )
{
u32 div , mbrdiv ;
div = DIV_ROUND_UP ( spi - > clk_rate , speed_hz ) ;
/*
* SPI framework set xfer - > speed_hz to master - > max_speed_hz if
* xfer - > speed_hz is greater than master - > max_speed_hz , and it returns
* an error when xfer - > speed_hz is lower than master - > min_speed_hz , so
* no need to check it there .
* However , we need to ensure the following calculations .
*/
if ( ( div < SPI_MBR_DIV_MIN ) & &
( div > SPI_MBR_DIV_MAX ) )
return - EINVAL ;
/* Determine the first power of 2 greater than or equal to div */
mbrdiv = ( div & ( div - 1 ) ) ? fls ( div ) : fls ( div ) - 1 ;
spi - > cur_speed = spi - > clk_rate / ( 1 < < mbrdiv ) ;
return mbrdiv - 1 ;
}
/**
* stm32_spi_prepare_fthlv - Determine FIFO threshold level
* @ spi : pointer to the spi controller data structure
*/
static u32 stm32_spi_prepare_fthlv ( struct stm32_spi * spi )
{
u32 fthlv , half_fifo ;
/* data packet should not exceed 1/2 of fifo space */
half_fifo = ( spi - > fifo_size / 2 ) ;
fthlv = ( spi - > cur_bpw < = 8 ) ? half_fifo :
( spi - > cur_bpw < = 16 ) ? ( half_fifo / 2 ) :
( half_fifo / 4 ) ;
/* align packet size with data registers access */
if ( spi - > cur_bpw > 8 )
fthlv - = ( fthlv % 2 ) ; /* multiple of 2 */
else
fthlv - = ( fthlv % 4 ) ; /* multiple of 4 */
return fthlv ;
}
/**
* stm32_spi_write_txfifo - Write bytes in Transmit Data Register
* @ spi : pointer to the spi controller data structure
*
* Read from tx_buf depends on remaining bytes to avoid to read beyond
* tx_buf end .
*/
static void stm32_spi_write_txfifo ( struct stm32_spi * spi )
{
while ( ( spi - > tx_len > 0 ) & &
( readl_relaxed ( spi - > base + STM32_SPI_SR ) & SPI_SR_TXP ) ) {
u32 offs = spi - > cur_xferlen - spi - > tx_len ;
if ( spi - > tx_len > = sizeof ( u32 ) ) {
const u32 * tx_buf32 = ( const u32 * ) ( spi - > tx_buf + offs ) ;
writel_relaxed ( * tx_buf32 , spi - > base + STM32_SPI_TXDR ) ;
spi - > tx_len - = sizeof ( u32 ) ;
} else if ( spi - > tx_len > = sizeof ( u16 ) ) {
const u16 * tx_buf16 = ( const u16 * ) ( spi - > tx_buf + offs ) ;
writew_relaxed ( * tx_buf16 , spi - > base + STM32_SPI_TXDR ) ;
spi - > tx_len - = sizeof ( u16 ) ;
} else {
const u8 * tx_buf8 = ( const u8 * ) ( spi - > tx_buf + offs ) ;
writeb_relaxed ( * tx_buf8 , spi - > base + STM32_SPI_TXDR ) ;
spi - > tx_len - = sizeof ( u8 ) ;
}
}
dev_dbg ( spi - > dev , " %s: %d bytes left \n " , __func__ , spi - > tx_len ) ;
}
/**
* stm32_spi_read_rxfifo - Read bytes in Receive Data Register
* @ spi : pointer to the spi controller data structure
*
* Write in rx_buf depends on remaining bytes to avoid to write beyond
* rx_buf end .
*/
static void stm32_spi_read_rxfifo ( struct stm32_spi * spi , bool flush )
{
u32 sr = readl_relaxed ( spi - > base + STM32_SPI_SR ) ;
u32 rxplvl = ( sr & SPI_SR_RXPLVL ) > > SPI_SR_RXPLVL_SHIFT ;
while ( ( spi - > rx_len > 0 ) & &
( ( sr & SPI_SR_RXP ) | |
( flush & & ( ( sr & SPI_SR_RXWNE ) | | ( rxplvl > 0 ) ) ) ) ) {
u32 offs = spi - > cur_xferlen - spi - > rx_len ;
if ( ( spi - > rx_len > = sizeof ( u32 ) ) | |
( flush & & ( sr & SPI_SR_RXWNE ) ) ) {
u32 * rx_buf32 = ( u32 * ) ( spi - > rx_buf + offs ) ;
* rx_buf32 = readl_relaxed ( spi - > base + STM32_SPI_RXDR ) ;
spi - > rx_len - = sizeof ( u32 ) ;
} else if ( ( spi - > rx_len > = sizeof ( u16 ) ) | |
( flush & & ( rxplvl > = 2 | | spi - > cur_bpw > 8 ) ) ) {
u16 * rx_buf16 = ( u16 * ) ( spi - > rx_buf + offs ) ;
* rx_buf16 = readw_relaxed ( spi - > base + STM32_SPI_RXDR ) ;
spi - > rx_len - = sizeof ( u16 ) ;
} else {
u8 * rx_buf8 = ( u8 * ) ( spi - > rx_buf + offs ) ;
* rx_buf8 = readb_relaxed ( spi - > base + STM32_SPI_RXDR ) ;
spi - > rx_len - = sizeof ( u8 ) ;
}
sr = readl_relaxed ( spi - > base + STM32_SPI_SR ) ;
rxplvl = ( sr & SPI_SR_RXPLVL ) > > SPI_SR_RXPLVL_SHIFT ;
}
dev_dbg ( spi - > dev , " %s%s: %d bytes left \n " , __func__ ,
flush ? " (flush) " : " " , spi - > rx_len ) ;
}
/**
* stm32_spi_enable - Enable SPI controller
* @ spi : pointer to the spi controller data structure
*
* SPI data transfer is enabled but spi_ker_ck is idle .
* SPI_CFG1 and SPI_CFG2 are now write protected .
*/
static void stm32_spi_enable ( struct stm32_spi * spi )
{
dev_dbg ( spi - > dev , " enable controller \n " ) ;
stm32_spi_set_bits ( spi , STM32_SPI_CR1 , SPI_CR1_SPE ) ;
}
/**
* stm32_spi_disable - Disable SPI controller
* @ spi : pointer to the spi controller data structure
*
* RX - Fifo is flushed when SPI controller is disabled . To prevent any data
* loss , use stm32_spi_read_rxfifo ( flush ) to read the remaining bytes in
* RX - Fifo .
*/
static void stm32_spi_disable ( struct stm32_spi * spi )
{
unsigned long flags ;
u32 cr1 , sr ;
dev_dbg ( spi - > dev , " disable controller \n " ) ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
cr1 = readl_relaxed ( spi - > base + STM32_SPI_CR1 ) ;
if ( ! ( cr1 & SPI_CR1_SPE ) ) {
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
return ;
}
/* Wait on EOT or suspend the flow */
if ( readl_relaxed_poll_timeout_atomic ( spi - > base + STM32_SPI_SR ,
sr , ! ( sr & SPI_SR_EOT ) ,
10 , 100000 ) < 0 ) {
if ( cr1 & SPI_CR1_CSTART ) {
writel_relaxed ( cr1 | SPI_CR1_CSUSP ,
spi - > base + STM32_SPI_CR1 ) ;
if ( readl_relaxed_poll_timeout_atomic (
spi - > base + STM32_SPI_SR ,
sr , ! ( sr & SPI_SR_SUSP ) ,
10 , 100000 ) < 0 )
dev_warn ( spi - > dev ,
" Suspend request timeout \n " ) ;
}
}
if ( ! spi - > cur_usedma & & spi - > rx_buf & & ( spi - > rx_len > 0 ) )
stm32_spi_read_rxfifo ( spi , true ) ;
if ( spi - > cur_usedma & & spi - > tx_buf )
dmaengine_terminate_all ( spi - > dma_tx ) ;
if ( spi - > cur_usedma & & spi - > rx_buf )
dmaengine_terminate_all ( spi - > dma_rx ) ;
stm32_spi_clr_bits ( spi , STM32_SPI_CR1 , SPI_CR1_SPE ) ;
stm32_spi_clr_bits ( spi , STM32_SPI_CFG1 , SPI_CFG1_TXDMAEN |
SPI_CFG1_RXDMAEN ) ;
/* Disable interrupts and clear status flags */
writel_relaxed ( 0 , spi - > base + STM32_SPI_IER ) ;
writel_relaxed ( SPI_IFCR_ALL , spi - > base + STM32_SPI_IFCR ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
}
/**
* stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
*
* If the current transfer size is greater than fifo size , use DMA .
*/
static bool stm32_spi_can_dma ( struct spi_master * master ,
struct spi_device * spi_dev ,
struct spi_transfer * transfer )
{
struct stm32_spi * spi = spi_master_get_devdata ( master ) ;
dev_dbg ( spi - > dev , " %s: %s \n " , __func__ ,
( ! ! ( transfer - > len > spi - > fifo_size ) ) ? " true " : " false " ) ;
return ! ! ( transfer - > len > spi - > fifo_size ) ;
}
/**
* stm32_spi_irq - Interrupt handler for SPI controller events
* @ irq : interrupt line
* @ dev_id : SPI controller master interface
*/
static irqreturn_t stm32_spi_irq ( int irq , void * dev_id )
{
struct spi_master * master = dev_id ;
struct stm32_spi * spi = spi_master_get_devdata ( master ) ;
u32 sr , ier , mask ;
unsigned long flags ;
bool end = false ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
sr = readl_relaxed ( spi - > base + STM32_SPI_SR ) ;
ier = readl_relaxed ( spi - > base + STM32_SPI_IER ) ;
mask = ier ;
/* EOTIE is triggered on EOT, SUSP and TXC events. */
mask | = SPI_SR_SUSP ;
/*
* When TXTF is set , DXPIE and TXPIE are cleared . So in case of
* Full - Duplex , need to poll RXP event to know if there are remaining
* data , before disabling SPI .
*/
mask | = ( ( spi - > rx_buf & & ! spi - > cur_usedma ) ? SPI_SR_RXP : 0 ) ;
if ( ! ( sr & mask ) ) {
dev_dbg ( spi - > dev , " spurious IT (sr=0x%08x, ier=0x%08x) \n " ,
sr , ier ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
return IRQ_NONE ;
}
if ( sr & SPI_SR_SUSP ) {
dev_warn ( spi - > dev , " Communication suspended \n " ) ;
if ( ! spi - > cur_usedma & & ( spi - > rx_buf & & ( spi - > rx_len > 0 ) ) )
stm32_spi_read_rxfifo ( spi , false ) ;
}
if ( sr & SPI_SR_MODF ) {
dev_warn ( spi - > dev , " Mode fault: transfer aborted \n " ) ;
end = true ;
}
if ( sr & SPI_SR_OVR ) {
dev_warn ( spi - > dev , " Overrun: received value discarded \n " ) ;
if ( ! spi - > cur_usedma & & ( spi - > rx_buf & & ( spi - > rx_len > 0 ) ) )
stm32_spi_read_rxfifo ( spi , false ) ;
}
if ( sr & SPI_SR_EOT ) {
if ( ! spi - > cur_usedma & & ( spi - > rx_buf & & ( spi - > rx_len > 0 ) ) )
stm32_spi_read_rxfifo ( spi , true ) ;
end = true ;
}
if ( sr & SPI_SR_TXP )
if ( ! spi - > cur_usedma & & ( spi - > tx_buf & & ( spi - > tx_len > 0 ) ) )
stm32_spi_write_txfifo ( spi ) ;
if ( sr & SPI_SR_RXP )
if ( ! spi - > cur_usedma & & ( spi - > rx_buf & & ( spi - > rx_len > 0 ) ) )
stm32_spi_read_rxfifo ( spi , false ) ;
writel_relaxed ( mask , spi - > base + STM32_SPI_IFCR ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
if ( end ) {
spi_finalize_current_transfer ( master ) ;
stm32_spi_disable ( spi ) ;
}
return IRQ_HANDLED ;
}
/**
* stm32_spi_setup - setup device chip select
*/
static int stm32_spi_setup ( struct spi_device * spi_dev )
{
int ret = 0 ;
if ( ! gpio_is_valid ( spi_dev - > cs_gpio ) ) {
dev_err ( & spi_dev - > dev , " %d is not a valid gpio \n " ,
spi_dev - > cs_gpio ) ;
return - EINVAL ;
}
dev_dbg ( & spi_dev - > dev , " %s: set gpio%d output %s \n " , __func__ ,
spi_dev - > cs_gpio ,
( spi_dev - > mode & SPI_CS_HIGH ) ? " low " : " high " ) ;
ret = gpio_direction_output ( spi_dev - > cs_gpio ,
! ( spi_dev - > mode & SPI_CS_HIGH ) ) ;
return ret ;
}
/**
* stm32_spi_prepare_msg - set up the controller to transfer a single message
*/
static int stm32_spi_prepare_msg ( struct spi_master * master ,
struct spi_message * msg )
{
struct stm32_spi * spi = spi_master_get_devdata ( master ) ;
struct spi_device * spi_dev = msg - > spi ;
struct device_node * np = spi_dev - > dev . of_node ;
unsigned long flags ;
u32 cfg2_clrb = 0 , cfg2_setb = 0 ;
/* SPI slave device may need time between data frames */
spi - > cur_midi = 0 ;
2017-06-27 17:45:16 +02:00
if ( np & & ! of_property_read_u32 ( np , " st,spi-midi-ns " , & spi - > cur_midi ) )
2017-06-21 16:32:06 +02:00
dev_dbg ( spi - > dev , " %dns inter-data idleness \n " , spi - > cur_midi ) ;
if ( spi_dev - > mode & SPI_CPOL )
cfg2_setb | = SPI_CFG2_CPOL ;
else
cfg2_clrb | = SPI_CFG2_CPOL ;
if ( spi_dev - > mode & SPI_CPHA )
cfg2_setb | = SPI_CFG2_CPHA ;
else
cfg2_clrb | = SPI_CFG2_CPHA ;
if ( spi_dev - > mode & SPI_LSB_FIRST )
cfg2_setb | = SPI_CFG2_LSBFRST ;
else
cfg2_clrb | = SPI_CFG2_LSBFRST ;
dev_dbg ( spi - > dev , " cpol=%d cpha=%d lsb_first=%d cs_high=%d \n " ,
spi_dev - > mode & SPI_CPOL ,
spi_dev - > mode & SPI_CPHA ,
spi_dev - > mode & SPI_LSB_FIRST ,
spi_dev - > mode & SPI_CS_HIGH ) ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
if ( cfg2_clrb | | cfg2_setb )
writel_relaxed (
( readl_relaxed ( spi - > base + STM32_SPI_CFG2 ) &
~ cfg2_clrb ) | cfg2_setb ,
spi - > base + STM32_SPI_CFG2 ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
return 0 ;
}
/**
* stm32_spi_dma_cb - dma callback
*
* DMA callback is called when the transfer is complete or when an error
* occurs . If the transfer is complete , EOT flag is raised .
*/
static void stm32_spi_dma_cb ( void * data )
{
struct stm32_spi * spi = data ;
unsigned long flags ;
u32 sr ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
sr = readl_relaxed ( spi - > base + STM32_SPI_SR ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
if ( ! ( sr & SPI_SR_EOT ) ) {
dev_warn ( spi - > dev , " DMA callback (sr=0x%08x) \n " , sr ) ;
spi_finalize_current_transfer ( spi - > master ) ;
stm32_spi_disable ( spi ) ;
}
}
/**
* stm32_spi_dma_config - configure dma slave channel depending on current
* transfer bits_per_word .
*/
static void stm32_spi_dma_config ( struct stm32_spi * spi ,
struct dma_slave_config * dma_conf ,
enum dma_transfer_direction dir )
{
enum dma_slave_buswidth buswidth ;
u32 maxburst ;
buswidth = ( spi - > cur_bpw < = 8 ) ? DMA_SLAVE_BUSWIDTH_1_BYTE :
( spi - > cur_bpw < = 16 ) ? DMA_SLAVE_BUSWIDTH_2_BYTES :
DMA_SLAVE_BUSWIDTH_4_BYTES ;
/* Valid for DMA Half or Full Fifo threshold */
maxburst = ( spi - > cur_fthlv = = 2 ) ? 1 : spi - > cur_fthlv ;
memset ( dma_conf , 0 , sizeof ( struct dma_slave_config ) ) ;
dma_conf - > direction = dir ;
if ( dma_conf - > direction = = DMA_DEV_TO_MEM ) { /* RX */
dma_conf - > src_addr = spi - > phys_addr + STM32_SPI_RXDR ;
dma_conf - > src_addr_width = buswidth ;
dma_conf - > src_maxburst = maxburst ;
dev_dbg ( spi - > dev , " Rx DMA config buswidth=%d, maxburst=%d \n " ,
buswidth , maxburst ) ;
} else if ( dma_conf - > direction = = DMA_MEM_TO_DEV ) { /* TX */
dma_conf - > dst_addr = spi - > phys_addr + STM32_SPI_TXDR ;
dma_conf - > dst_addr_width = buswidth ;
dma_conf - > dst_maxburst = maxburst ;
dev_dbg ( spi - > dev , " Tx DMA config buswidth=%d, maxburst=%d \n " ,
buswidth , maxburst ) ;
}
}
/**
* stm32_spi_transfer_one_irq - transfer a single spi_transfer using
* interrupts
*
* It must returns 0 if the transfer is finished or 1 if the transfer is still
* in progress .
*/
static int stm32_spi_transfer_one_irq ( struct stm32_spi * spi )
{
unsigned long flags ;
u32 ier = 0 ;
/* Enable the interrupts relative to the current communication mode */
if ( spi - > tx_buf & & spi - > rx_buf ) /* Full Duplex */
ier | = SPI_IER_DXPIE ;
else if ( spi - > tx_buf ) /* Half-Duplex TX dir or Simplex TX */
ier | = SPI_IER_TXPIE ;
else if ( spi - > rx_buf ) /* Half-Duplex RX dir or Simplex RX */
ier | = SPI_IER_RXPIE ;
/* Enable the interrupts relative to the end of transfer */
ier | = SPI_IER_EOTIE | SPI_IER_TXTFIE | SPI_IER_OVRIE | SPI_IER_MODFIE ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
stm32_spi_enable ( spi ) ;
/* Be sure to have data in fifo before starting data transfer */
if ( spi - > tx_buf )
stm32_spi_write_txfifo ( spi ) ;
stm32_spi_set_bits ( spi , STM32_SPI_CR1 , SPI_CR1_CSTART ) ;
writel_relaxed ( ier , spi - > base + STM32_SPI_IER ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
return 1 ;
}
/**
* stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
*
* It must returns 0 if the transfer is finished or 1 if the transfer is still
* in progress .
*/
static int stm32_spi_transfer_one_dma ( struct stm32_spi * spi ,
struct spi_transfer * xfer )
{
struct dma_slave_config tx_dma_conf , rx_dma_conf ;
struct dma_async_tx_descriptor * tx_dma_desc , * rx_dma_desc ;
unsigned long flags ;
u32 ier = 0 ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
rx_dma_desc = NULL ;
if ( spi - > rx_buf ) {
stm32_spi_dma_config ( spi , & rx_dma_conf , DMA_DEV_TO_MEM ) ;
dmaengine_slave_config ( spi - > dma_rx , & rx_dma_conf ) ;
/* Enable Rx DMA request */
stm32_spi_set_bits ( spi , STM32_SPI_CFG1 , SPI_CFG1_RXDMAEN ) ;
rx_dma_desc = dmaengine_prep_slave_sg (
spi - > dma_rx , xfer - > rx_sg . sgl ,
xfer - > rx_sg . nents ,
rx_dma_conf . direction ,
DMA_PREP_INTERRUPT ) ;
rx_dma_desc - > callback = stm32_spi_dma_cb ;
rx_dma_desc - > callback_param = spi ;
}
tx_dma_desc = NULL ;
if ( spi - > tx_buf ) {
stm32_spi_dma_config ( spi , & tx_dma_conf , DMA_MEM_TO_DEV ) ;
dmaengine_slave_config ( spi - > dma_tx , & tx_dma_conf ) ;
tx_dma_desc = dmaengine_prep_slave_sg (
spi - > dma_tx , xfer - > tx_sg . sgl ,
xfer - > tx_sg . nents ,
tx_dma_conf . direction ,
DMA_PREP_INTERRUPT ) ;
if ( spi - > cur_comm = = SPI_SIMPLEX_TX ) {
tx_dma_desc - > callback = stm32_spi_dma_cb ;
tx_dma_desc - > callback_param = spi ;
}
}
if ( ( spi - > tx_buf & & ! tx_dma_desc ) | |
( spi - > rx_buf & & ! rx_dma_desc ) )
goto dma_desc_error ;
if ( rx_dma_desc ) {
if ( dma_submit_error ( dmaengine_submit ( rx_dma_desc ) ) ) {
dev_err ( spi - > dev , " Rx DMA submit failed \n " ) ;
goto dma_desc_error ;
}
/* Enable Rx DMA channel */
dma_async_issue_pending ( spi - > dma_rx ) ;
}
if ( tx_dma_desc ) {
if ( dma_submit_error ( dmaengine_submit ( tx_dma_desc ) ) ) {
dev_err ( spi - > dev , " Tx DMA submit failed \n " ) ;
goto dma_submit_error ;
}
/* Enable Tx DMA channel */
dma_async_issue_pending ( spi - > dma_tx ) ;
/* Enable Tx DMA request */
stm32_spi_set_bits ( spi , STM32_SPI_CFG1 , SPI_CFG1_TXDMAEN ) ;
}
/* Enable the interrupts relative to the end of transfer */
ier | = SPI_IER_EOTIE | SPI_IER_TXTFIE | SPI_IER_OVRIE | SPI_IER_MODFIE ;
writel_relaxed ( ier , spi - > base + STM32_SPI_IER ) ;
stm32_spi_enable ( spi ) ;
stm32_spi_set_bits ( spi , STM32_SPI_CR1 , SPI_CR1_CSTART ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
return 1 ;
dma_submit_error :
if ( spi - > rx_buf )
dmaengine_terminate_all ( spi - > dma_rx ) ;
dma_desc_error :
stm32_spi_clr_bits ( spi , STM32_SPI_CFG1 , SPI_CFG1_RXDMAEN ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
dev_info ( spi - > dev , " DMA issue: fall back to irq transfer \n " ) ;
return stm32_spi_transfer_one_irq ( spi ) ;
}
/**
* stm32_spi_transfer_one_setup - common setup to transfer a single
* spi_transfer either using DMA or
* interrupts .
*/
static int stm32_spi_transfer_one_setup ( struct stm32_spi * spi ,
struct spi_device * spi_dev ,
struct spi_transfer * transfer )
{
unsigned long flags ;
u32 cfg1_clrb = 0 , cfg1_setb = 0 , cfg2_clrb = 0 , cfg2_setb = 0 ;
u32 mode , nb_words ;
int ret = 0 ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
if ( spi - > cur_bpw ! = transfer - > bits_per_word ) {
u32 bpw , fthlv ;
spi - > cur_bpw = transfer - > bits_per_word ;
bpw = spi - > cur_bpw - 1 ;
cfg1_clrb | = SPI_CFG1_DSIZE ;
cfg1_setb | = ( bpw < < SPI_CFG1_DSIZE_SHIFT ) & SPI_CFG1_DSIZE ;
spi - > cur_fthlv = stm32_spi_prepare_fthlv ( spi ) ;
fthlv = spi - > cur_fthlv - 1 ;
cfg1_clrb | = SPI_CFG1_FTHLV ;
cfg1_setb | = ( fthlv < < SPI_CFG1_FTHLV_SHIFT ) & SPI_CFG1_FTHLV ;
}
if ( spi - > cur_speed ! = transfer - > speed_hz ) {
2017-06-22 17:34:49 +01:00
int mbr ;
2017-06-21 16:32:06 +02:00
/* Update spi->cur_speed with real clock speed */
mbr = stm32_spi_prepare_mbr ( spi , transfer - > speed_hz ) ;
if ( mbr < 0 ) {
ret = mbr ;
goto out ;
}
transfer - > speed_hz = spi - > cur_speed ;
cfg1_clrb | = SPI_CFG1_MBR ;
2017-06-22 17:34:49 +01:00
cfg1_setb | = ( ( u32 ) mbr < < SPI_CFG1_MBR_SHIFT ) & SPI_CFG1_MBR ;
2017-06-21 16:32:06 +02:00
}
if ( cfg1_clrb | | cfg1_setb )
writel_relaxed ( ( readl_relaxed ( spi - > base + STM32_SPI_CFG1 ) &
~ cfg1_clrb ) | cfg1_setb ,
spi - > base + STM32_SPI_CFG1 ) ;
mode = SPI_FULL_DUPLEX ;
if ( spi_dev - > mode & SPI_3WIRE ) { /* MISO/MOSI signals shared */
/*
* SPI_3WIRE and xfer - > tx_buf ! = NULL and xfer - > rx_buf ! = NULL
* is forbidden und unvalidated by SPI subsystem so depending
* on the valid buffer , we can determine the direction of the
* transfer .
*/
mode = SPI_HALF_DUPLEX ;
if ( ! transfer - > tx_buf )
stm32_spi_clr_bits ( spi , STM32_SPI_CR1 , SPI_CR1_HDDIR ) ;
else if ( ! transfer - > rx_buf )
stm32_spi_set_bits ( spi , STM32_SPI_CR1 , SPI_CR1_HDDIR ) ;
} else {
if ( ! transfer - > tx_buf )
mode = SPI_SIMPLEX_RX ;
else if ( ! transfer - > rx_buf )
mode = SPI_SIMPLEX_TX ;
}
if ( spi - > cur_comm ! = mode ) {
spi - > cur_comm = mode ;
cfg2_clrb | = SPI_CFG2_COMM ;
cfg2_setb | = ( mode < < SPI_CFG2_COMM_SHIFT ) & SPI_CFG2_COMM ;
}
cfg2_clrb | = SPI_CFG2_MIDI ;
if ( ( transfer - > len > 1 ) & & ( spi - > cur_midi > 0 ) ) {
u32 sck_period_ns = DIV_ROUND_UP ( SPI_1HZ_NS , spi - > cur_speed ) ;
u32 midi = min ( ( u32 ) DIV_ROUND_UP ( spi - > cur_midi , sck_period_ns ) ,
( u32 ) SPI_CFG2_MIDI > > SPI_CFG2_MIDI_SHIFT ) ;
dev_dbg ( spi - > dev , " period=%dns, midi=%d(=%dns) \n " ,
sck_period_ns , midi , midi * sck_period_ns ) ;
cfg2_setb | = ( midi < < SPI_CFG2_MIDI_SHIFT ) & SPI_CFG2_MIDI ;
}
if ( cfg2_clrb | | cfg2_setb )
writel_relaxed ( ( readl_relaxed ( spi - > base + STM32_SPI_CFG2 ) &
~ cfg2_clrb ) | cfg2_setb ,
spi - > base + STM32_SPI_CFG2 ) ;
nb_words = DIV_ROUND_UP ( transfer - > len * 8 ,
( spi - > cur_bpw < = 8 ) ? 8 :
( spi - > cur_bpw < = 16 ) ? 16 : 32 ) ;
nb_words < < = SPI_CR2_TSIZE_SHIFT ;
if ( nb_words < = SPI_CR2_TSIZE ) {
writel_relaxed ( nb_words , spi - > base + STM32_SPI_CR2 ) ;
} else {
ret = - EMSGSIZE ;
goto out ;
}
spi - > cur_xferlen = transfer - > len ;
dev_dbg ( spi - > dev , " transfer communication mode set to %d \n " ,
spi - > cur_comm ) ;
dev_dbg ( spi - > dev ,
" data frame of %d-bit, data packet of %d data frames \n " ,
spi - > cur_bpw , spi - > cur_fthlv ) ;
dev_dbg ( spi - > dev , " speed set to %dHz \n " , spi - > cur_speed ) ;
dev_dbg ( spi - > dev , " transfer of %d bytes (%d data frames) \n " ,
spi - > cur_xferlen , nb_words ) ;
dev_dbg ( spi - > dev , " dma %s \n " ,
( spi - > cur_usedma ) ? " enabled " : " disabled " ) ;
out :
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
return ret ;
}
/**
* stm32_spi_transfer_one - transfer a single spi_transfer
*
* It must return 0 if the transfer is finished or 1 if the transfer is still
* in progress .
*/
static int stm32_spi_transfer_one ( struct spi_master * master ,
struct spi_device * spi_dev ,
struct spi_transfer * transfer )
{
struct stm32_spi * spi = spi_master_get_devdata ( master ) ;
int ret ;
spi - > tx_buf = transfer - > tx_buf ;
spi - > rx_buf = transfer - > rx_buf ;
spi - > tx_len = spi - > tx_buf ? transfer - > len : 0 ;
spi - > rx_len = spi - > rx_buf ? transfer - > len : 0 ;
spi - > cur_usedma = stm32_spi_can_dma ( master , spi_dev , transfer ) ;
ret = stm32_spi_transfer_one_setup ( spi , spi_dev , transfer ) ;
if ( ret ) {
dev_err ( spi - > dev , " SPI transfer setup failed \n " ) ;
return ret ;
}
if ( spi - > cur_usedma )
return stm32_spi_transfer_one_dma ( spi , transfer ) ;
else
return stm32_spi_transfer_one_irq ( spi ) ;
}
/**
* stm32_spi_unprepare_msg - relax the hardware
*
* Normally , if TSIZE has been configured , we should relax the hardware at the
* reception of the EOT interrupt . But in case of error , EOT will not be
* raised . So the subsystem unprepare_message call allows us to properly
* complete the transfer from an hardware point of view .
*/
static int stm32_spi_unprepare_msg ( struct spi_master * master ,
struct spi_message * msg )
{
struct stm32_spi * spi = spi_master_get_devdata ( master ) ;
stm32_spi_disable ( spi ) ;
return 0 ;
}
/**
* stm32_spi_config - Configure SPI controller as SPI master
*/
static int stm32_spi_config ( struct stm32_spi * spi )
{
unsigned long flags ;
spin_lock_irqsave ( & spi - > lock , flags ) ;
/* Ensure I2SMOD bit is kept cleared */
stm32_spi_clr_bits ( spi , STM32_SPI_I2SCFGR , SPI_I2SCFGR_I2SMOD ) ;
/*
* - SS input value high
* - transmitter half duplex direction
* - automatic communication suspend when RX - Fifo is full
*/
stm32_spi_set_bits ( spi , STM32_SPI_CR1 , SPI_CR1_SSI |
SPI_CR1_HDDIR |
SPI_CR1_MASRX ) ;
/*
* - Set the master mode ( default Motorola mode )
* - Consider 1 master / n slaves configuration and
* SS input value is determined by the SSI bit
* - keep control of all associated GPIOs
*/
stm32_spi_set_bits ( spi , STM32_SPI_CFG2 , SPI_CFG2_MASTER |
SPI_CFG2_SSM |
SPI_CFG2_AFCNTR ) ;
spin_unlock_irqrestore ( & spi - > lock , flags ) ;
return 0 ;
}
static const struct of_device_id stm32_spi_of_match [ ] = {
2017-06-27 17:45:14 +02:00
{ . compatible = " st,stm32h7-spi " , } ,
2017-06-21 16:32:06 +02:00
{ } ,
} ;
MODULE_DEVICE_TABLE ( of , stm32_spi_of_match ) ;
static int stm32_spi_probe ( struct platform_device * pdev )
{
struct spi_master * master ;
struct stm32_spi * spi ;
struct resource * res ;
int i , ret ;
master = spi_alloc_master ( & pdev - > dev , sizeof ( struct stm32_spi ) ) ;
if ( ! master ) {
dev_err ( & pdev - > dev , " spi master allocation failed \n " ) ;
return - ENOMEM ;
}
platform_set_drvdata ( pdev , master ) ;
spi = spi_master_get_devdata ( master ) ;
spi - > dev = & pdev - > dev ;
spi - > master = master ;
spin_lock_init ( & spi - > lock ) ;
res = platform_get_resource ( pdev , IORESOURCE_MEM , 0 ) ;
spi - > base = devm_ioremap_resource ( & pdev - > dev , res ) ;
if ( IS_ERR ( spi - > base ) ) {
ret = PTR_ERR ( spi - > base ) ;
goto err_master_put ;
}
spi - > phys_addr = ( dma_addr_t ) res - > start ;
spi - > irq = platform_get_irq ( pdev , 0 ) ;
if ( spi - > irq < = 0 ) {
dev_err ( & pdev - > dev , " no irq: %d \n " , spi - > irq ) ;
ret = - ENOENT ;
goto err_master_put ;
}
ret = devm_request_threaded_irq ( & pdev - > dev , spi - > irq , NULL ,
stm32_spi_irq , IRQF_ONESHOT ,
pdev - > name , master ) ;
if ( ret ) {
dev_err ( & pdev - > dev , " irq%d request failed: %d \n " , spi - > irq ,
ret ) ;
goto err_master_put ;
}
spi - > clk = devm_clk_get ( & pdev - > dev , 0 ) ;
if ( IS_ERR ( spi - > clk ) ) {
ret = PTR_ERR ( spi - > clk ) ;
dev_err ( & pdev - > dev , " clk get failed: %d \n " , ret ) ;
goto err_master_put ;
}
ret = clk_prepare_enable ( spi - > clk ) ;
if ( ret ) {
dev_err ( & pdev - > dev , " clk enable failed: %d \n " , ret ) ;
goto err_master_put ;
}
spi - > clk_rate = clk_get_rate ( spi - > clk ) ;
if ( ! spi - > clk_rate ) {
dev_err ( & pdev - > dev , " clk rate = 0 \n " ) ;
ret = - EINVAL ;
goto err_master_put ;
}
spi - > rst = devm_reset_control_get ( & pdev - > dev , NULL ) ;
if ( ! IS_ERR ( spi - > rst ) ) {
reset_control_assert ( spi - > rst ) ;
udelay ( 2 ) ;
reset_control_deassert ( spi - > rst ) ;
}
spi - > fifo_size = stm32_spi_get_fifo_size ( spi ) ;
ret = stm32_spi_config ( spi ) ;
if ( ret ) {
dev_err ( & pdev - > dev , " controller configuration failed: %d \n " ,
ret ) ;
goto err_clk_disable ;
}
master - > dev . of_node = pdev - > dev . of_node ;
master - > auto_runtime_pm = true ;
master - > bus_num = pdev - > id ;
master - > mode_bits = SPI_MODE_3 | SPI_CS_HIGH | SPI_LSB_FIRST |
SPI_3WIRE | SPI_LOOP ;
master - > bits_per_word_mask = stm32_spi_get_bpw_mask ( spi ) ;
master - > max_speed_hz = spi - > clk_rate / SPI_MBR_DIV_MIN ;
master - > min_speed_hz = spi - > clk_rate / SPI_MBR_DIV_MAX ;
master - > setup = stm32_spi_setup ;
master - > prepare_message = stm32_spi_prepare_msg ;
master - > transfer_one = stm32_spi_transfer_one ;
master - > unprepare_message = stm32_spi_unprepare_msg ;
spi - > dma_tx = dma_request_slave_channel ( spi - > dev , " tx " ) ;
if ( ! spi - > dma_tx )
dev_warn ( & pdev - > dev , " failed to request tx dma channel \n " ) ;
else
master - > dma_tx = spi - > dma_tx ;
spi - > dma_rx = dma_request_slave_channel ( spi - > dev , " rx " ) ;
if ( ! spi - > dma_rx )
dev_warn ( & pdev - > dev , " failed to request rx dma channel \n " ) ;
else
master - > dma_rx = spi - > dma_rx ;
if ( spi - > dma_tx | | spi - > dma_rx )
master - > can_dma = stm32_spi_can_dma ;
ret = devm_spi_register_master ( & pdev - > dev , master ) ;
if ( ret ) {
dev_err ( & pdev - > dev , " spi master registration failed: %d \n " ,
ret ) ;
goto err_dma_release ;
}
if ( ! master - > cs_gpios ) {
dev_err ( & pdev - > dev , " no CS gpios available \n " ) ;
ret = - EINVAL ;
goto err_dma_release ;
}
for ( i = 0 ; i < master - > num_chipselect ; i + + ) {
if ( ! gpio_is_valid ( master - > cs_gpios [ i ] ) ) {
dev_err ( & pdev - > dev , " %i is not a valid gpio \n " ,
master - > cs_gpios [ i ] ) ;
ret = - EINVAL ;
goto err_dma_release ;
}
ret = devm_gpio_request ( & pdev - > dev , master - > cs_gpios [ i ] ,
DRIVER_NAME ) ;
if ( ret ) {
dev_err ( & pdev - > dev , " can't get CS gpio %i \n " ,
master - > cs_gpios [ i ] ) ;
goto err_dma_release ;
}
}
dev_info ( & pdev - > dev , " driver initialized \n " ) ;
return 0 ;
err_dma_release :
if ( spi - > dma_tx )
dma_release_channel ( spi - > dma_tx ) ;
if ( spi - > dma_rx )
dma_release_channel ( spi - > dma_rx ) ;
err_clk_disable :
clk_disable_unprepare ( spi - > clk ) ;
err_master_put :
spi_master_put ( master ) ;
return ret ;
}
static int stm32_spi_remove ( struct platform_device * pdev )
{
struct spi_master * master = platform_get_drvdata ( pdev ) ;
struct stm32_spi * spi = spi_master_get_devdata ( master ) ;
stm32_spi_disable ( spi ) ;
if ( master - > dma_tx )
dma_release_channel ( master - > dma_tx ) ;
if ( master - > dma_rx )
dma_release_channel ( master - > dma_rx ) ;
clk_disable_unprepare ( spi - > clk ) ;
return 0 ;
}
# ifdef CONFIG_PM_SLEEP
static int stm32_spi_suspend ( struct device * dev )
{
struct spi_master * master = dev_get_drvdata ( dev ) ;
struct stm32_spi * spi = spi_master_get_devdata ( master ) ;
int ret ;
ret = spi_master_suspend ( master ) ;
if ( ret )
return ret ;
clk_disable_unprepare ( spi - > clk ) ;
return ret ;
}
static int stm32_spi_resume ( struct device * dev )
{
struct spi_master * master = dev_get_drvdata ( dev ) ;
struct stm32_spi * spi = spi_master_get_devdata ( master ) ;
int ret ;
ret = clk_prepare_enable ( spi - > clk ) ;
if ( ret )
return ret ;
ret = spi_master_resume ( master ) ;
if ( ret )
clk_disable_unprepare ( spi - > clk ) ;
return ret ;
}
# endif
static SIMPLE_DEV_PM_OPS ( stm32_spi_pm_ops ,
stm32_spi_suspend , stm32_spi_resume ) ;
static struct platform_driver stm32_spi_driver = {
. probe = stm32_spi_probe ,
. remove = stm32_spi_remove ,
. driver = {
. name = DRIVER_NAME ,
. pm = & stm32_spi_pm_ops ,
. of_match_table = stm32_spi_of_match ,
} ,
} ;
module_platform_driver ( stm32_spi_driver ) ;
MODULE_ALIAS ( " platform: " DRIVER_NAME ) ;
MODULE_DESCRIPTION ( " STMicroelectronics STM32 SPI Controller driver " ) ;
MODULE_AUTHOR ( " Amelie Delaunay <amelie.delaunay@st.com> " ) ;
MODULE_LICENSE ( " GPL v2 " ) ;