2018-08-16 11:23:53 -04:00
// SPDX-License-Identifier: GPL-2.0
2016-06-23 12:45:36 -04:00
/*
2019-10-10 11:51:17 -07:00
* trace_hwlat . c - A simple Hardware Latency detector .
2016-06-23 12:45:36 -04:00
*
* Use this tracer to detect large system latencies induced by the behavior of
* certain underlying system hardware or firmware , independent of Linux itself .
* The code was developed originally to detect the presence of SMIs on Intel
* and AMD systems , although there is no dependency upon x86 herein .
*
* The classical example usage of this tracer is in detecting the presence of
* SMIs or System Management Interrupts on Intel and AMD systems . An SMI is a
* somewhat special form of hardware interrupt spawned from earlier CPU debug
* modes in which the ( BIOS / EFI / etc . ) firmware arranges for the South Bridge
* LPC ( or other device ) to generate a special interrupt under certain
* circumstances , for example , upon expiration of a special SMI timer device ,
* due to certain external thermal readings , on certain I / O address accesses ,
* and other situations . An SMI hits a special CPU pin , triggers a special
* SMI mode ( complete with special memory map ) , and the OS is unaware .
*
* Although certain hardware - inducing latencies are necessary ( for example ,
* a modern system often requires an SMI handler for correct thermal control
* and remote management ) they can wreak havoc upon any OS - level performance
* guarantees toward low - latency , especially when the OS is not even made
* aware of the presence of these interrupts . For this reason , we need a
* somewhat brute force mechanism to detect these interrupts . In this case ,
* we do it by hogging all of the CPU ( s ) for configurable timer intervals ,
* sampling the built - in CPU timer , looking for discontiguous readings .
*
* WARNING : This implementation necessarily introduces latencies . Therefore ,
* you should NEVER use this tracer while running in a production
* environment requiring any kind of low - latency performance
* guarantee ( s ) .
*
* Copyright ( C ) 2008 - 2009 Jon Masters , Red Hat , Inc . < jcm @ redhat . com >
* Copyright ( C ) 2013 - 2016 Steven Rostedt , Red Hat , Inc . < srostedt @ redhat . com >
*
* Includes useful feedback from Clark Williams < clark @ redhat . com >
*
*/
# include <linux/kthread.h>
# include <linux/tracefs.h>
# include <linux/uaccess.h>
2016-07-15 15:48:56 -04:00
# include <linux/cpumask.h>
2016-06-23 12:45:36 -04:00
# include <linux/delay.h>
2017-02-01 16:36:40 +01:00
# include <linux/sched/clock.h>
2016-06-23 12:45:36 -04:00
# include "trace.h"
static struct trace_array * hwlat_trace ;
# define U64STR_SIZE 22 /* 20 digits max */
# define BANNER "hwlat_detector: "
# define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */
# define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */
# define DEFAULT_LAT_THRESHOLD 10 /* 10us */
/* sampling thread*/
static struct task_struct * hwlat_kthread ;
static struct dentry * hwlat_sample_width ; /* sample width us */
static struct dentry * hwlat_sample_window ; /* sample window us */
/* Save the previous tracing_thresh value */
static unsigned long save_tracing_thresh ;
2016-08-04 12:49:53 -04:00
/* NMI timestamp counters */
static u64 nmi_ts_start ;
static u64 nmi_total_ts ;
static int nmi_count ;
static int nmi_cpu ;
/* Tells NMIs to call back to the hwlat tracer to record timestamps */
bool trace_hwlat_callback_enabled ;
2016-06-23 12:45:36 -04:00
/* If the user changed threshold, remember it */
static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC ;
/* Individual latency samples are stored here when detected. */
struct hwlat_sample {
2017-05-08 15:59:13 -07:00
u64 seqnum ; /* unique sequence */
u64 duration ; /* delta */
u64 outer_duration ; /* delta (outer loop) */
u64 nmi_total_ts ; /* Total time spent in NMIs */
struct timespec64 timestamp ; /* wall time */
int nmi_count ; /* # NMIs during this sample */
2020-02-12 12:21:03 -05:00
int count ; /* # of iteratons over threash */
2016-06-23 12:45:36 -04:00
} ;
/* keep the global state somewhere. */
static struct hwlat_data {
struct mutex lock ; /* protect changes */
u64 count ; /* total since reset */
u64 sample_window ; /* total sampling window (on+off) */
u64 sample_width ; /* active sampling portion of window */
} hwlat_data = {
. sample_window = DEFAULT_SAMPLE_WINDOW ,
. sample_width = DEFAULT_SAMPLE_WIDTH ,
} ;
static void trace_hwlat_sample ( struct hwlat_sample * sample )
{
struct trace_array * tr = hwlat_trace ;
struct trace_event_call * call = & event_hwlat ;
2019-12-13 13:58:57 -05:00
struct trace_buffer * buffer = tr - > array_buffer . buffer ;
2016-06-23 12:45:36 -04:00
struct ring_buffer_event * event ;
struct hwlat_entry * entry ;
unsigned long flags ;
int pc ;
pc = preempt_count ( ) ;
local_save_flags ( flags ) ;
event = trace_buffer_lock_reserve ( buffer , TRACE_HWLAT , sizeof ( * entry ) ,
flags , pc ) ;
if ( ! event )
return ;
entry = ring_buffer_event_data ( event ) ;
entry - > seqnum = sample - > seqnum ;
entry - > duration = sample - > duration ;
entry - > outer_duration = sample - > outer_duration ;
entry - > timestamp = sample - > timestamp ;
2016-08-04 12:49:53 -04:00
entry - > nmi_total_ts = sample - > nmi_total_ts ;
entry - > nmi_count = sample - > nmi_count ;
2020-02-12 12:21:03 -05:00
entry - > count = sample - > count ;
2016-06-23 12:45:36 -04:00
if ( ! call_filter_check_discard ( call , entry , buffer , event ) )
2016-11-23 20:28:38 -05:00
trace_buffer_unlock_commit_nostack ( buffer , event ) ;
2016-06-23 12:45:36 -04:00
}
/* Macros to encapsulate the time capturing infrastructure */
# define time_type u64
# define time_get() trace_clock_local()
# define time_to_us(x) div_u64(x, 1000)
# define time_sub(a, b) ((a) - (b))
# define init_time(a, b) (a = b)
# define time_u64(a) a
2016-08-04 12:49:53 -04:00
void trace_hwlat_callback ( bool enter )
{
if ( smp_processor_id ( ) ! = nmi_cpu )
return ;
/*
* Currently trace_clock_local ( ) calls sched_clock ( ) and the
* generic version is not NMI safe .
*/
if ( ! IS_ENABLED ( CONFIG_GENERIC_SCHED_CLOCK ) ) {
if ( enter )
nmi_ts_start = time_get ( ) ;
else
2019-10-10 11:50:46 -07:00
nmi_total_ts + = time_get ( ) - nmi_ts_start ;
2016-08-04 12:49:53 -04:00
}
if ( enter )
nmi_count + + ;
}
2016-06-23 12:45:36 -04:00
/**
* get_sample - sample the CPU TSC and look for likely hardware latencies
*
* Used to repeatedly capture the CPU TSC ( or similar ) , looking for potential
* hardware - induced latency . Called with interrupts disabled and with
* hwlat_data . lock held .
*/
static int get_sample ( void )
{
struct trace_array * tr = hwlat_trace ;
2020-02-12 12:21:03 -05:00
struct hwlat_sample s ;
2016-06-23 12:45:36 -04:00
time_type start , t1 , t2 , last_t2 ;
2020-02-12 12:21:03 -05:00
s64 diff , outer_diff , total , last_total = 0 ;
2016-06-23 12:45:36 -04:00
u64 sample = 0 ;
u64 thresh = tracing_thresh ;
u64 outer_sample = 0 ;
int ret = - 1 ;
2020-02-12 12:21:03 -05:00
unsigned int count = 0 ;
2016-06-23 12:45:36 -04:00
do_div ( thresh , NSEC_PER_USEC ) ; /* modifies interval value */
2016-08-04 12:49:53 -04:00
nmi_cpu = smp_processor_id ( ) ;
nmi_total_ts = 0 ;
nmi_count = 0 ;
/* Make sure NMIs see this first */
barrier ( ) ;
trace_hwlat_callback_enabled = true ;
2016-06-23 12:45:36 -04:00
init_time ( last_t2 , 0 ) ;
start = time_get ( ) ; /* start timestamp */
2020-02-12 12:21:03 -05:00
outer_diff = 0 ;
2016-06-23 12:45:36 -04:00
do {
t1 = time_get ( ) ; /* we'll look for a discontinuity */
t2 = time_get ( ) ;
if ( time_u64 ( last_t2 ) ) {
/* Check the delta from outer loop (t2 to next t1) */
2020-02-12 12:21:03 -05:00
outer_diff = time_to_us ( time_sub ( t1 , last_t2 ) ) ;
2016-06-23 12:45:36 -04:00
/* This shouldn't happen */
2020-02-12 12:21:03 -05:00
if ( outer_diff < 0 ) {
2016-06-23 12:45:36 -04:00
pr_err ( BANNER " time running backwards \n " ) ;
goto out ;
}
2020-02-12 12:21:03 -05:00
if ( outer_diff > outer_sample )
outer_sample = outer_diff ;
2016-06-23 12:45:36 -04:00
}
last_t2 = t2 ;
total = time_to_us ( time_sub ( t2 , start ) ) ; /* sample width */
/* Check for possible overflows */
if ( total < last_total ) {
pr_err ( " Time total overflowed \n " ) ;
break ;
}
last_total = total ;
/* This checks the inner loop (t1 to t2) */
diff = time_to_us ( time_sub ( t2 , t1 ) ) ; /* current diff */
2020-02-12 12:21:03 -05:00
if ( diff > thresh | | outer_diff > thresh ) {
if ( ! count )
ktime_get_real_ts64 ( & s . timestamp ) ;
count + + ;
}
2016-06-23 12:45:36 -04:00
/* This shouldn't happen */
if ( diff < 0 ) {
pr_err ( BANNER " time running backwards \n " ) ;
goto out ;
}
if ( diff > sample )
sample = diff ; /* only want highest value */
} while ( total < = hwlat_data . sample_width ) ;
2016-08-04 12:49:53 -04:00
barrier ( ) ; /* finish the above in the view for NMIs */
trace_hwlat_callback_enabled = false ;
barrier ( ) ; /* Make sure nmi_total_ts is no longer updated */
2016-06-23 12:45:36 -04:00
ret = 0 ;
/* If we exceed the threshold value, we have found a hardware latency */
if ( sample > thresh | | outer_sample > thresh ) {
2019-10-09 00:08:21 +02:00
u64 latency ;
2016-06-23 12:45:36 -04:00
ret = 1 ;
2016-08-04 12:49:53 -04:00
/* We read in microseconds */
if ( nmi_total_ts )
do_div ( nmi_total_ts , NSEC_PER_USEC ) ;
2016-06-23 12:45:36 -04:00
hwlat_data . count + + ;
s . seqnum = hwlat_data . count ;
s . duration = sample ;
s . outer_duration = outer_sample ;
2016-08-04 12:49:53 -04:00
s . nmi_total_ts = nmi_total_ts ;
s . nmi_count = nmi_count ;
2020-02-12 12:21:03 -05:00
s . count = count ;
2016-06-23 12:45:36 -04:00
trace_hwlat_sample ( & s ) ;
2019-10-09 00:08:21 +02:00
latency = max ( sample , outer_sample ) ;
2016-06-23 12:45:36 -04:00
/* Keep a running maximum ever recorded hardware latency */
2019-10-09 00:08:21 +02:00
if ( latency > tr - > max_latency ) {
tr - > max_latency = latency ;
latency_fsnotify ( tr ) ;
}
2016-06-23 12:45:36 -04:00
}
out :
return ret ;
}
2016-07-15 15:48:56 -04:00
static struct cpumask save_cpumask ;
static bool disable_migrate ;
2017-01-31 16:48:23 -05:00
static void move_to_next_cpu ( void )
2016-07-15 15:48:56 -04:00
{
2017-01-31 16:48:23 -05:00
struct cpumask * current_mask = & save_cpumask ;
2020-07-30 16:23:18 +08:00
struct trace_array * tr = hwlat_trace ;
2016-07-15 15:48:56 -04:00
int next_cpu ;
if ( disable_migrate )
return ;
/*
* If for some reason the user modifies the CPU affinity
2019-10-10 11:51:17 -07:00
* of this thread , then stop migrating for the duration
2016-07-15 15:48:56 -04:00
* of the current test .
*/
2019-04-23 16:26:36 +02:00
if ( ! cpumask_equal ( current_mask , current - > cpus_ptr ) )
2016-07-15 15:48:56 -04:00
goto disable ;
get_online_cpus ( ) ;
2020-07-30 16:23:18 +08:00
cpumask_and ( current_mask , cpu_online_mask , tr - > tracing_cpumask ) ;
2016-07-15 15:48:56 -04:00
next_cpu = cpumask_next ( smp_processor_id ( ) , current_mask ) ;
put_online_cpus ( ) ;
if ( next_cpu > = nr_cpu_ids )
next_cpu = cpumask_first ( current_mask ) ;
if ( next_cpu > = nr_cpu_ids ) /* Shouldn't happen! */
goto disable ;
cpumask_clear ( current_mask ) ;
cpumask_set_cpu ( next_cpu , current_mask ) ;
sched_setaffinity ( 0 , current_mask ) ;
return ;
disable :
disable_migrate = true ;
}
2016-06-23 12:45:36 -04:00
/*
* kthread_fn - The CPU time sampling / hardware latency detection kernel thread
*
* Used to periodically sample the CPU TSC via a call to get_sample . We
* disable interrupts , which does ( intentionally ) introduce latency since we
* need to ensure nothing else might be running ( and thus preempting ) .
* Obviously this should never be used in production environments .
*
2017-02-13 12:25:17 -05:00
* Executes one loop interaction on each CPU in tracing_cpumask sysfs file .
2016-06-23 12:45:36 -04:00
*/
static int kthread_fn ( void * data )
{
u64 interval ;
while ( ! kthread_should_stop ( ) ) {
2017-01-31 16:48:23 -05:00
move_to_next_cpu ( ) ;
2016-07-15 15:48:56 -04:00
2016-06-23 12:45:36 -04:00
local_irq_disable ( ) ;
get_sample ( ) ;
local_irq_enable ( ) ;
mutex_lock ( & hwlat_data . lock ) ;
interval = hwlat_data . sample_window - hwlat_data . sample_width ;
mutex_unlock ( & hwlat_data . lock ) ;
do_div ( interval , USEC_PER_MSEC ) ; /* modifies interval value */
/* Always sleep for at least 1ms */
if ( interval < 1 )
interval = 1 ;
if ( msleep_interruptible ( interval ) )
break ;
}
return 0 ;
}
/**
* start_kthread - Kick off the hardware latency sampling / detector kthread
*
* This starts the kernel thread that will sit and sample the CPU timestamp
* counter ( TSC or similar ) and look for potential hardware latencies .
*/
static int start_kthread ( struct trace_array * tr )
{
2017-01-31 16:48:23 -05:00
struct cpumask * current_mask = & save_cpumask ;
2016-06-23 12:45:36 -04:00
struct task_struct * kthread ;
2017-01-31 16:48:23 -05:00
int next_cpu ;
2018-08-01 16:06:02 -04:00
if ( WARN_ON ( hwlat_kthread ) )
2018-08-01 12:45:54 +02:00
return 0 ;
2017-01-31 16:48:23 -05:00
/* Just pick the first CPU on first iteration */
get_online_cpus ( ) ;
2020-07-30 16:23:18 +08:00
cpumask_and ( current_mask , cpu_online_mask , tr - > tracing_cpumask ) ;
2017-01-31 16:48:23 -05:00
put_online_cpus ( ) ;
next_cpu = cpumask_first ( current_mask ) ;
2016-06-23 12:45:36 -04:00
kthread = kthread_create ( kthread_fn , NULL , " hwlatd " ) ;
if ( IS_ERR ( kthread ) ) {
pr_err ( BANNER " could not start sampling thread \n " ) ;
return - ENOMEM ;
}
2017-01-31 16:48:23 -05:00
cpumask_clear ( current_mask ) ;
cpumask_set_cpu ( next_cpu , current_mask ) ;
sched_setaffinity ( kthread - > pid , current_mask ) ;
2016-06-23 12:45:36 -04:00
hwlat_kthread = kthread ;
wake_up_process ( kthread ) ;
return 0 ;
}
/**
* stop_kthread - Inform the hardware latency samping / detector kthread to stop
*
* This kicks the running hardware latency sampling / detector kernel thread and
* tells it to stop sampling now . Use this on unload and at system shutdown .
*/
static void stop_kthread ( void )
{
if ( ! hwlat_kthread )
return ;
kthread_stop ( hwlat_kthread ) ;
hwlat_kthread = NULL ;
}
/*
* hwlat_read - Wrapper read function for reading both window and width
* @ filp : The active open file structure
* @ ubuf : The userspace provided buffer to read value into
* @ cnt : The maximum number of bytes to read
* @ ppos : The current " file " position
*
* This function provides a generic read implementation for the global state
* " hwlat_data " structure filesystem entries .
*/
static ssize_t hwlat_read ( struct file * filp , char __user * ubuf ,
size_t cnt , loff_t * ppos )
{
char buf [ U64STR_SIZE ] ;
u64 * entry = filp - > private_data ;
u64 val ;
int len ;
if ( ! entry )
return - EFAULT ;
if ( cnt > sizeof ( buf ) )
cnt = sizeof ( buf ) ;
val = * entry ;
len = snprintf ( buf , sizeof ( buf ) , " %llu \n " , val ) ;
return simple_read_from_buffer ( ubuf , cnt , ppos , buf , len ) ;
}
/**
* hwlat_width_write - Write function for " width " entry
* @ filp : The active open file structure
* @ ubuf : The user buffer that contains the value to write
* @ cnt : The maximum number of bytes to write to " file "
* @ ppos : The current position in @ file
*
* This function provides a write implementation for the " width " interface
* to the hardware latency detector . It can be used to configure
* for how many us of the total window us we will actively sample for any
* hardware - induced latency periods . Obviously , it is not possible to
* sample constantly and have the system respond to a sample reader , or ,
* worse , without having the system appear to have gone out to lunch . It
* is enforced that width is less that the total window size .
*/
static ssize_t
hwlat_width_write ( struct file * filp , const char __user * ubuf ,
size_t cnt , loff_t * ppos )
{
u64 val ;
int err ;
err = kstrtoull_from_user ( ubuf , cnt , 10 , & val ) ;
if ( err )
return err ;
mutex_lock ( & hwlat_data . lock ) ;
if ( val < hwlat_data . sample_window )
hwlat_data . sample_width = val ;
else
err = - EINVAL ;
mutex_unlock ( & hwlat_data . lock ) ;
if ( err )
return err ;
return cnt ;
}
/**
* hwlat_window_write - Write function for " window " entry
* @ filp : The active open file structure
* @ ubuf : The user buffer that contains the value to write
* @ cnt : The maximum number of bytes to write to " file "
* @ ppos : The current position in @ file
*
* This function provides a write implementation for the " window " interface
* to the hardware latency detetector . The window is the total time
* in us that will be considered one sample period . Conceptually , windows
* occur back - to - back and contain a sample width period during which
* actual sampling occurs . Can be used to write a new total window size . It
* is enfoced that any value written must be greater than the sample width
* size , or an error results .
*/
static ssize_t
hwlat_window_write ( struct file * filp , const char __user * ubuf ,
size_t cnt , loff_t * ppos )
{
u64 val ;
int err ;
err = kstrtoull_from_user ( ubuf , cnt , 10 , & val ) ;
if ( err )
return err ;
mutex_lock ( & hwlat_data . lock ) ;
if ( hwlat_data . sample_width < val )
hwlat_data . sample_window = val ;
else
err = - EINVAL ;
mutex_unlock ( & hwlat_data . lock ) ;
if ( err )
return err ;
return cnt ;
}
static const struct file_operations width_fops = {
. open = tracing_open_generic ,
. read = hwlat_read ,
. write = hwlat_width_write ,
} ;
static const struct file_operations window_fops = {
. open = tracing_open_generic ,
. read = hwlat_read ,
. write = hwlat_window_write ,
} ;
/**
* init_tracefs - A function to initialize the tracefs interface files
*
* This function creates entries in tracefs for " hwlat_detector " .
* It creates the hwlat_detector directory in the tracing directory ,
* and within that directory is the count , width and window files to
* change and view those values .
*/
static int init_tracefs ( void )
{
2020-07-12 09:10:36 +08:00
int ret ;
2016-06-23 12:45:36 -04:00
struct dentry * top_dir ;
2020-07-12 09:10:36 +08:00
ret = tracing_init_dentry ( ) ;
if ( ret )
2016-06-23 12:45:36 -04:00
return - ENOMEM ;
2020-07-12 09:10:36 +08:00
top_dir = tracefs_create_dir ( " hwlat_detector " , NULL ) ;
2016-06-23 12:45:36 -04:00
if ( ! top_dir )
return - ENOMEM ;
hwlat_sample_window = tracefs_create_file ( " window " , 0640 ,
top_dir ,
& hwlat_data . sample_window ,
& window_fops ) ;
if ( ! hwlat_sample_window )
goto err ;
hwlat_sample_width = tracefs_create_file ( " width " , 0644 ,
top_dir ,
& hwlat_data . sample_width ,
& width_fops ) ;
if ( ! hwlat_sample_width )
goto err ;
return 0 ;
err :
2019-11-18 09:43:10 -05:00
tracefs_remove ( top_dir ) ;
2016-06-23 12:45:36 -04:00
return - ENOMEM ;
}
static void hwlat_tracer_start ( struct trace_array * tr )
{
int err ;
err = start_kthread ( tr ) ;
if ( err )
pr_err ( BANNER " Cannot start hwlat kthread \n " ) ;
}
static void hwlat_tracer_stop ( struct trace_array * tr )
{
stop_kthread ( ) ;
}
static bool hwlat_busy ;
static int hwlat_tracer_init ( struct trace_array * tr )
{
/* Only allow one instance to enable this */
if ( hwlat_busy )
return - EBUSY ;
hwlat_trace = tr ;
2016-07-15 15:48:56 -04:00
disable_migrate = false ;
2016-06-23 12:45:36 -04:00
hwlat_data . count = 0 ;
tr - > max_latency = 0 ;
save_tracing_thresh = tracing_thresh ;
/* tracing_thresh is in nsecs, we speak in usecs */
if ( ! tracing_thresh )
tracing_thresh = last_tracing_thresh ;
if ( tracer_tracing_is_on ( tr ) )
hwlat_tracer_start ( tr ) ;
hwlat_busy = true ;
return 0 ;
}
static void hwlat_tracer_reset ( struct trace_array * tr )
{
stop_kthread ( ) ;
/* the tracing threshold is static between runs */
last_tracing_thresh = tracing_thresh ;
tracing_thresh = save_tracing_thresh ;
hwlat_busy = false ;
}
static struct tracer hwlat_tracer __read_mostly =
{
. name = " hwlat " ,
. init = hwlat_tracer_init ,
. reset = hwlat_tracer_reset ,
. start = hwlat_tracer_start ,
. stop = hwlat_tracer_stop ,
. allow_instances = true ,
} ;
__init static int init_hwlat_tracer ( void )
{
int ret ;
mutex_init ( & hwlat_data . lock ) ;
ret = register_tracer ( & hwlat_tracer ) ;
if ( ret )
return ret ;
init_tracefs ( ) ;
return 0 ;
}
late_initcall ( init_hwlat_tracer ) ;