linux/kernel/time/tick-broadcast.c

1216 lines
33 KiB
C
Raw Normal View History

time: Add SPDX license identifiers Update the time(r) core files files with the correct SPDX license identifier based on the license text in the file itself. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This work is based on a script and data from Philippe Ombredanne, Kate Stewart and myself. The data has been created with two independent license scanners and manual inspection. The following files do not contain any direct license information and have been omitted from the big initial SPDX changes: timeconst.bc: The .bc files were not touched time.c, timer.c, timekeeping.c: Licence was deduced from EXPORT_SYMBOL_GPL As those files do not contain direct license references they fall under the project license, i.e. GPL V2 only. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: John Stultz <john.stultz@linaro.org> Acked-by: Corey Minyard <cminyard@mvista.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Russell King <rmk+kernel@armlinux.org.uk> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: David Riley <davidriley@chromium.org> Cc: Colin Cross <ccross@android.com> Cc: Mark Brown <broonie@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/20181031182252.879109557@linutronix.de
2018-10-31 19:21:09 +01:00
// SPDX-License-Identifier: GPL-2.0
/*
* This file contains functions which emulate a local clock-event
* device via a broadcast event source.
*
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
[S390] genirq/clockevents: move irq affinity prototypes/inlines to interrupt.h > Generic code is not supposed to include irq.h. Replace this include > by linux/hardirq.h instead and add/replace an include of linux/irq.h > in asm header files where necessary. > This change should only matter for architectures that make use of > GENERIC_CLOCKEVENTS. > Architectures in question are mips, x86, arm, sh, powerpc, uml and sparc64. > > I did some cross compile tests for mips, x86_64, arm, powerpc and sparc64. > This patch fixes also build breakages caused by the include replacement in > tick-common.h. I generally dislike adding optional linux/* includes in asm/* includes - I'm nervous about this causing include loops. However, there's a separate point to be discussed here. That is, what interfaces are expected of every architecture in the kernel. If generic code wants to be able to set the affinity of interrupts, then that needs to become part of the interfaces listed in linux/interrupt.h rather than linux/irq.h. So what I suggest is this approach instead (against Linus' tree of a couple of days ago) - we move irq_set_affinity() and irq_can_set_affinity() to linux/interrupt.h, change the linux/irq.h includes to linux/interrupt.h and include asm/irq_regs.h where needed (asm/irq_regs.h is supposed to be rarely used include since not much touches the stacked parent context registers.) Build tested on ARM PXA family kernels and ARM's Realview platform kernels which both use genirq. [ tglx@linutronix.de: add GENERIC_HARDIRQ dependencies ] Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-17 07:46:24 +02:00
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/module.h>
#include "tick-internal.h"
/*
* Broadcast support for broken x86 hardware, where the local apic
* timer stops in C3 state.
*/
static struct tick_device tick_broadcast_device;
static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
static cpumask_var_t tmpmask __cpumask_var_read_mostly;
static int tick_broadcast_forced;
static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
#ifdef CONFIG_TICK_ONESHOT
static DEFINE_PER_CPU(struct clock_event_device *, tick_oneshot_wakeup_device);
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
static void tick_broadcast_setup_oneshot(struct clock_event_device *bc, bool from_periodic);
static void tick_broadcast_clear_oneshot(int cpu);
static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
# ifdef CONFIG_HOTPLUG_CPU
static void tick_broadcast_oneshot_offline(unsigned int cpu);
# endif
#else
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
static inline void
tick_broadcast_setup_oneshot(struct clock_event_device *bc, bool from_periodic) { BUG(); }
static inline void tick_broadcast_clear_oneshot(int cpu) { }
static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
# ifdef CONFIG_HOTPLUG_CPU
static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
# endif
#endif
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 01:28:15 -08:00
/*
* Debugging: see timer_list.c
*/
struct tick_device *tick_get_broadcast_device(void)
{
return &tick_broadcast_device;
}
struct cpumask *tick_get_broadcast_mask(void)
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 01:28:15 -08:00
{
return tick_broadcast_mask;
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 01:28:15 -08:00
}
static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu);
const struct clock_event_device *tick_get_wakeup_device(int cpu)
{
return tick_get_oneshot_wakeup_device(cpu);
}
/*
* Start the device in periodic mode
*/
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
if (bc)
tick_setup_periodic(bc, 1);
}
/*
* Check, if the device can be utilized as broadcast device:
*/
static bool tick_check_broadcast_device(struct clock_event_device *curdev,
struct clock_event_device *newdev)
{
if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
(newdev->features & CLOCK_EVT_FEAT_C3STOP))
return false;
if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
!(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
return false;
return !curdev || newdev->rating > curdev->rating;
}
#ifdef CONFIG_TICK_ONESHOT
static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
{
return per_cpu(tick_oneshot_wakeup_device, cpu);
}
static void tick_oneshot_wakeup_handler(struct clock_event_device *wd)
{
/*
* If we woke up early and the tick was reprogrammed in the
* meantime then this may be spurious but harmless.
*/
tick_receive_broadcast();
}
static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
int cpu)
{
struct clock_event_device *curdev = tick_get_oneshot_wakeup_device(cpu);
if (!newdev)
goto set_device;
if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
(newdev->features & CLOCK_EVT_FEAT_C3STOP))
return false;
if (!(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
!(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
return false;
if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
return false;
if (curdev && newdev->rating <= curdev->rating)
return false;
if (!try_module_get(newdev->owner))
return false;
newdev->event_handler = tick_oneshot_wakeup_handler;
set_device:
clockevents_exchange_device(curdev, newdev);
per_cpu(tick_oneshot_wakeup_device, cpu) = newdev;
return true;
}
#else
static struct clock_event_device *tick_get_oneshot_wakeup_device(int cpu)
{
return NULL;
}
static bool tick_set_oneshot_wakeup_device(struct clock_event_device *newdev,
int cpu)
{
return false;
}
#endif
/*
* Conditionally install/replace broadcast device
*/
void tick_install_broadcast_device(struct clock_event_device *dev, int cpu)
{
struct clock_event_device *cur = tick_broadcast_device.evtdev;
if (tick_set_oneshot_wakeup_device(dev, cpu))
return;
if (!tick_check_broadcast_device(cur, dev))
return;
if (!try_module_get(dev->owner))
return;
clockevents_exchange_device(cur, dev);
if (cur)
cur->event_handler = clockevents_handle_noop;
tick_broadcast_device.evtdev = dev;
if (!cpumask_empty(tick_broadcast_mask))
tick_broadcast_start_periodic(dev);
if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
return;
/*
* If the system already runs in oneshot mode, switch the newly
* registered broadcast device to oneshot mode explicitly.
*/
if (tick_broadcast_oneshot_active()) {
tick_broadcast_switch_to_oneshot();
return;
}
/*
* Inform all cpus about this. We might be in a situation
* where we did not switch to oneshot mode because the per cpu
* devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
* of a oneshot capable broadcast device. Without that
* notification the systems stays stuck in periodic mode
* forever.
*/
tick_clock_notify();
}
/*
* Check, if the device is the broadcast device
*/
int tick_is_broadcast_device(struct clock_event_device *dev)
{
return (dev && tick_broadcast_device.evtdev == dev);
}
int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
{
int ret = -ENODEV;
if (tick_is_broadcast_device(dev)) {
raw_spin_lock(&tick_broadcast_lock);
ret = __clockevents_update_freq(dev, freq);
raw_spin_unlock(&tick_broadcast_lock);
}
return ret;
}
static void err_broadcast(const struct cpumask *mask)
{
pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
{
if (!dev->broadcast)
dev->broadcast = tick_broadcast;
if (!dev->broadcast) {
pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
dev->name);
dev->broadcast = err_broadcast;
}
}
/*
* Check, if the device is dysfunctional and a placeholder, which
* needs to be handled by the broadcast device.
*/
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
struct clock_event_device *bc = tick_broadcast_device.evtdev;
unsigned long flags;
int ret = 0;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
/*
* Devices might be registered with both periodic and oneshot
* mode disabled. This signals, that the device needs to be
* operated from the broadcast device and is a placeholder for
* the cpu local device.
*/
if (!tick_device_is_functional(dev)) {
dev->event_handler = tick_handle_periodic;
tick_device_setup_broadcast_func(dev);
cpumask_set_cpu(cpu, tick_broadcast_mask);
tick: broadcast: Check broadcast mode on CPU hotplug On ARM systems the dummy clockevent is registered with the cpu hotplug notifier chain before any other per-cpu clockevent. This has the side-effect of causing the dummy clockevent to be registered first in every hotplug sequence. Because the dummy is first, we'll try to turn the broadcast source on but the code in tick_device_uses_broadcast() assumes the broadcast source is in periodic mode and calls tick_broadcast_start_periodic() unconditionally. On boot this isn't a problem because we typically haven't switched into oneshot mode yet (if at all). During hotplug, if the broadcast source isn't in periodic mode we'll replace the broadcast oneshot handler with the broadcast periodic handler and start emulating oneshot mode when we shouldn't. Due to the way the broadcast oneshot handler programs the next_event it's possible for it to contain KTIME_MAX and cause us to hang the system when the periodic handler tries to program the next tick. Fix this by using the appropriate function to start the broadcast source. Reported-by: Stephen Warren <swarren@nvidia.com> Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Stephen Boyd <sboyd@codeaurora.org> Cc: Mark Rutland <Mark.Rutland@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: ARM kernel mailing list <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Joseph Lo <josephl@nvidia.com> Link: http://lkml.kernel.org/r/20130711140059.GA27430@codeaurora.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-11 07:00:59 -07:00
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
tick_broadcast_start_periodic(bc);
else
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
tick_broadcast_setup_oneshot(bc, false);
ret = 1;
} else {
/*
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
* Clear the broadcast bit for this cpu if the
* device is not power state affected.
*/
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
cpumask_clear_cpu(cpu, tick_broadcast_mask);
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
else
tick_device_setup_broadcast_func(dev);
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
/*
* Clear the broadcast bit if the CPU is not in
* periodic broadcast on state.
*/
if (!cpumask_test_cpu(cpu, tick_broadcast_on))
cpumask_clear_cpu(cpu, tick_broadcast_mask);
switch (tick_broadcast_device.mode) {
case TICKDEV_MODE_ONESHOT:
/*
* If the system is in oneshot mode we can
* unconditionally clear the oneshot mask bit,
* because the CPU is running and therefore
* not in an idle state which causes the power
* state affected device to stop. Let the
* caller initialize the device.
*/
tick_broadcast_clear_oneshot(cpu);
ret = 0;
break;
case TICKDEV_MODE_PERIODIC:
/*
* If the system is in periodic mode, check
* whether the broadcast device can be
* switched off now.
*/
if (cpumask_empty(tick_broadcast_mask) && bc)
clockevents_shutdown(bc);
/*
* If we kept the cpu in the broadcast mask,
* tell the caller to leave the per cpu device
* in shutdown state. The periodic interrupt
* is delivered by the broadcast device, if
* the broadcast device exists and is not
* hrtimer based.
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
*/
if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
break;
default:
break;
}
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
return ret;
}
int tick_receive_broadcast(void)
{
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
struct clock_event_device *evt = td->evtdev;
if (!evt)
return -ENODEV;
if (!evt->event_handler)
return -EINVAL;
evt->event_handler(evt);
return 0;
}
/*
* Broadcast the event to the cpus, which are set in the mask (mangled).
*/
static bool tick_do_broadcast(struct cpumask *mask)
{
int cpu = smp_processor_id();
struct tick_device *td;
bool local = false;
/*
* Check, if the current cpu is in the mask
*/
if (cpumask_test_cpu(cpu, mask)) {
struct clock_event_device *bc = tick_broadcast_device.evtdev;
cpumask_clear_cpu(cpu, mask);
/*
* We only run the local handler, if the broadcast
* device is not hrtimer based. Otherwise we run into
* a hrtimer recursion.
*
* local timer_interrupt()
* local_handler()
* expire_hrtimers()
* bc_handler()
* local_handler()
* expire_hrtimers()
*/
local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
}
if (!cpumask_empty(mask)) {
/*
* It might be necessary to actually check whether the devices
* have different broadcast functions. For now, just use the
* one of the first device. This works as long as we have this
* misfeature only on x86 (lapic)
*/
td = &per_cpu(tick_cpu_device, cpumask_first(mask));
td->evtdev->broadcast(mask);
}
return local;
}
/*
* Periodic broadcast:
* - invoke the broadcast handlers
*/
static bool tick_do_periodic_broadcast(void)
{
cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
return tick_do_broadcast(tmpmask);
}
/*
* Event handler for periodic broadcast ticks
*/
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
bool bc_local;
raw_spin_lock(&tick_broadcast_lock);
/* Handle spurious interrupts gracefully */
if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
raw_spin_unlock(&tick_broadcast_lock);
return;
}
bc_local = tick_do_periodic_broadcast();
if (clockevent_state_oneshot(dev)) {
ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
clockevents_program_event(dev, next, true);
}
raw_spin_unlock(&tick_broadcast_lock);
/*
* We run the handler of the local cpu after dropping
* tick_broadcast_lock because the handler might deadlock when
* trying to switch to oneshot mode.
*/
if (bc_local)
td->evtdev->event_handler(td->evtdev);
}
/**
* tick_broadcast_control - Enable/disable or force broadcast mode
* @mode: The selected broadcast mode
*
* Called when the system enters a state where affected tick devices
* might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
*/
void tick_broadcast_control(enum tick_broadcast_mode mode)
{
struct clock_event_device *bc, *dev;
struct tick_device *td;
int cpu, bc_stopped;
tick/broadcast: Prevent deadlock on tick_broadcast_lock tick_broadcast_lock is taken from interrupt context, but the following call chain takes the lock without disabling interrupts: [ 12.703736] _raw_spin_lock+0x3b/0x50 [ 12.703738] tick_broadcast_control+0x5a/0x1a0 [ 12.703742] intel_idle_cpu_online+0x22/0x100 [ 12.703744] cpuhp_invoke_callback+0x245/0x9d0 [ 12.703752] cpuhp_thread_fun+0x52/0x110 [ 12.703754] smpboot_thread_fn+0x276/0x320 So the following deadlock can happen: lock(tick_broadcast_lock); <Interrupt> lock(tick_broadcast_lock); intel_idle_cpu_online() is the only place which violates the calling convention of tick_broadcast_control(). This was caused by the removal of the smp function call in course of the cpu hotplug rework. Instead of slapping local_irq_disable/enable() at the call site, we can relax the calling convention and handle it in the core code, which makes the whole machinery more robust. Fixes: 29d7bbada98e ("intel_idle: Remove superfluous SMP fuction call") Reported-by: Gabriel C <nix.or.die@gmail.com> Signed-off-by: Mike Galbraith <efault@gmx.de> Cc: Ruslan Ruslichenko <rruslich@cisco.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: lwn@lwn.net Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: stable <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/1486953115.5912.4.camel@gmx.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-02-13 03:31:55 +01:00
unsigned long flags;
tick/broadcast: Prevent deadlock on tick_broadcast_lock tick_broadcast_lock is taken from interrupt context, but the following call chain takes the lock without disabling interrupts: [ 12.703736] _raw_spin_lock+0x3b/0x50 [ 12.703738] tick_broadcast_control+0x5a/0x1a0 [ 12.703742] intel_idle_cpu_online+0x22/0x100 [ 12.703744] cpuhp_invoke_callback+0x245/0x9d0 [ 12.703752] cpuhp_thread_fun+0x52/0x110 [ 12.703754] smpboot_thread_fn+0x276/0x320 So the following deadlock can happen: lock(tick_broadcast_lock); <Interrupt> lock(tick_broadcast_lock); intel_idle_cpu_online() is the only place which violates the calling convention of tick_broadcast_control(). This was caused by the removal of the smp function call in course of the cpu hotplug rework. Instead of slapping local_irq_disable/enable() at the call site, we can relax the calling convention and handle it in the core code, which makes the whole machinery more robust. Fixes: 29d7bbada98e ("intel_idle: Remove superfluous SMP fuction call") Reported-by: Gabriel C <nix.or.die@gmail.com> Signed-off-by: Mike Galbraith <efault@gmx.de> Cc: Ruslan Ruslichenko <rruslich@cisco.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: lwn@lwn.net Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: stable <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/1486953115.5912.4.camel@gmx.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-02-13 03:31:55 +01:00
/* Protects also the local clockevent device. */
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
td = this_cpu_ptr(&tick_cpu_device);
dev = td->evtdev;
/*
* Is the device not affected by the powerstate ?
*/
if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
tick/broadcast: Prevent deadlock on tick_broadcast_lock tick_broadcast_lock is taken from interrupt context, but the following call chain takes the lock without disabling interrupts: [ 12.703736] _raw_spin_lock+0x3b/0x50 [ 12.703738] tick_broadcast_control+0x5a/0x1a0 [ 12.703742] intel_idle_cpu_online+0x22/0x100 [ 12.703744] cpuhp_invoke_callback+0x245/0x9d0 [ 12.703752] cpuhp_thread_fun+0x52/0x110 [ 12.703754] smpboot_thread_fn+0x276/0x320 So the following deadlock can happen: lock(tick_broadcast_lock); <Interrupt> lock(tick_broadcast_lock); intel_idle_cpu_online() is the only place which violates the calling convention of tick_broadcast_control(). This was caused by the removal of the smp function call in course of the cpu hotplug rework. Instead of slapping local_irq_disable/enable() at the call site, we can relax the calling convention and handle it in the core code, which makes the whole machinery more robust. Fixes: 29d7bbada98e ("intel_idle: Remove superfluous SMP fuction call") Reported-by: Gabriel C <nix.or.die@gmail.com> Signed-off-by: Mike Galbraith <efault@gmx.de> Cc: Ruslan Ruslichenko <rruslich@cisco.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: lwn@lwn.net Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: stable <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/1486953115.5912.4.camel@gmx.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-02-13 03:31:55 +01:00
goto out;
if (!tick_device_is_functional(dev))
tick/broadcast: Prevent deadlock on tick_broadcast_lock tick_broadcast_lock is taken from interrupt context, but the following call chain takes the lock without disabling interrupts: [ 12.703736] _raw_spin_lock+0x3b/0x50 [ 12.703738] tick_broadcast_control+0x5a/0x1a0 [ 12.703742] intel_idle_cpu_online+0x22/0x100 [ 12.703744] cpuhp_invoke_callback+0x245/0x9d0 [ 12.703752] cpuhp_thread_fun+0x52/0x110 [ 12.703754] smpboot_thread_fn+0x276/0x320 So the following deadlock can happen: lock(tick_broadcast_lock); <Interrupt> lock(tick_broadcast_lock); intel_idle_cpu_online() is the only place which violates the calling convention of tick_broadcast_control(). This was caused by the removal of the smp function call in course of the cpu hotplug rework. Instead of slapping local_irq_disable/enable() at the call site, we can relax the calling convention and handle it in the core code, which makes the whole machinery more robust. Fixes: 29d7bbada98e ("intel_idle: Remove superfluous SMP fuction call") Reported-by: Gabriel C <nix.or.die@gmail.com> Signed-off-by: Mike Galbraith <efault@gmx.de> Cc: Ruslan Ruslichenko <rruslich@cisco.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: lwn@lwn.net Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: stable <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/1486953115.5912.4.camel@gmx.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-02-13 03:31:55 +01:00
goto out;
cpu = smp_processor_id();
bc = tick_broadcast_device.evtdev;
bc_stopped = cpumask_empty(tick_broadcast_mask);
switch (mode) {
case TICK_BROADCAST_FORCE:
tick_broadcast_forced = 1;
fallthrough;
case TICK_BROADCAST_ON:
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
cpumask_set_cpu(cpu, tick_broadcast_on);
if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
/*
* Only shutdown the cpu local device, if:
*
* - the broadcast device exists
* - the broadcast device is not a hrtimer based one
* - the broadcast device is in periodic mode to
* avoid a hiccup during switch to oneshot mode
*/
if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
clockevents_shutdown(dev);
}
break;
case TICK_BROADCAST_OFF:
if (tick_broadcast_forced)
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
break;
cpumask_clear_cpu(cpu, tick_broadcast_on);
if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
if (tick_broadcast_device.mode ==
TICKDEV_MODE_PERIODIC)
tick_setup_periodic(dev, 0);
}
break;
}
if (bc) {
if (cpumask_empty(tick_broadcast_mask)) {
if (!bc_stopped)
clockevents_shutdown(bc);
} else if (bc_stopped) {
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
tick_broadcast_start_periodic(bc);
else
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
tick_broadcast_setup_oneshot(bc, false);
}
}
tick/broadcast: Prevent deadlock on tick_broadcast_lock tick_broadcast_lock is taken from interrupt context, but the following call chain takes the lock without disabling interrupts: [ 12.703736] _raw_spin_lock+0x3b/0x50 [ 12.703738] tick_broadcast_control+0x5a/0x1a0 [ 12.703742] intel_idle_cpu_online+0x22/0x100 [ 12.703744] cpuhp_invoke_callback+0x245/0x9d0 [ 12.703752] cpuhp_thread_fun+0x52/0x110 [ 12.703754] smpboot_thread_fn+0x276/0x320 So the following deadlock can happen: lock(tick_broadcast_lock); <Interrupt> lock(tick_broadcast_lock); intel_idle_cpu_online() is the only place which violates the calling convention of tick_broadcast_control(). This was caused by the removal of the smp function call in course of the cpu hotplug rework. Instead of slapping local_irq_disable/enable() at the call site, we can relax the calling convention and handle it in the core code, which makes the whole machinery more robust. Fixes: 29d7bbada98e ("intel_idle: Remove superfluous SMP fuction call") Reported-by: Gabriel C <nix.or.die@gmail.com> Signed-off-by: Mike Galbraith <efault@gmx.de> Cc: Ruslan Ruslichenko <rruslich@cisco.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: lwn@lwn.net Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: stable <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/1486953115.5912.4.camel@gmx.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-02-13 03:31:55 +01:00
out:
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
EXPORT_SYMBOL_GPL(tick_broadcast_control);
/*
* Set the periodic handler depending on broadcast on/off
*/
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
if (!broadcast)
dev->event_handler = tick_handle_periodic;
else
dev->event_handler = tick_handle_periodic_broadcast;
}
#ifdef CONFIG_HOTPLUG_CPU
static void tick_shutdown_broadcast(void)
{
struct clock_event_device *bc = tick_broadcast_device.evtdev;
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
if (bc && cpumask_empty(tick_broadcast_mask))
clockevents_shutdown(bc);
}
}
/*
* Remove a CPU from broadcasting
*/
void tick_broadcast_offline(unsigned int cpu)
{
raw_spin_lock(&tick_broadcast_lock);
cpumask_clear_cpu(cpu, tick_broadcast_mask);
cpumask_clear_cpu(cpu, tick_broadcast_on);
tick_broadcast_oneshot_offline(cpu);
tick_shutdown_broadcast();
raw_spin_unlock(&tick_broadcast_lock);
}
#endif
void tick_suspend_broadcast(void)
{
struct clock_event_device *bc;
unsigned long flags;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
if (bc)
clockevents_shutdown(bc);
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* This is called from tick_resume_local() on a resuming CPU. That's
* called from the core resume function, tick_unfreeze() and the magic XEN
* resume hackery.
*
* In none of these cases the broadcast device mode can change and the
* bit of the resuming CPU in the broadcast mask is safe as well.
*/
bool tick_resume_check_broadcast(void)
{
if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
return false;
else
return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
}
void tick_resume_broadcast(void)
{
struct clock_event_device *bc;
unsigned long flags;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
if (bc) {
clockevents_tick_resume(bc);
switch (tick_broadcast_device.mode) {
case TICKDEV_MODE_PERIODIC:
if (!cpumask_empty(tick_broadcast_mask))
tick_broadcast_start_periodic(bc);
break;
case TICKDEV_MODE_ONESHOT:
if (!cpumask_empty(tick_broadcast_mask))
tick_resume_broadcast_oneshot(bc);
break;
}
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
#ifdef CONFIG_TICK_ONESHOT
static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 01:28:15 -08:00
/*
* Exposed for debugging: see timer_list.c
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 01:28:15 -08:00
*/
struct cpumask *tick_get_broadcast_oneshot_mask(void)
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 01:28:15 -08:00
{
return tick_broadcast_oneshot_mask;
[PATCH] Add debugging feature /proc/timer_list add /proc/timer_list, which prints all currently pending (high-res) timers, all clock-event sources and their parameters in a human-readable form. Sample output: Timer List Version: v0.1 HRTIMER_MAX_CLOCK_BASES: 2 now at 4246046273872 nsecs cpu: 0 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_stop_sched_tick, swapper/0 # expires at 4246432689566 nsecs [in 386415694 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, pcscd/2050 # expires at 4247018194689 nsecs [in 971920817 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, irqbalance/1909 # expires at 4247351358392 nsecs [in 1305084520 nsecs] #3: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, crond/2157 # expires at 4249097614968 nsecs [in 3051341096 nsecs] #4: <f5a90ec8>, it_real_fn, do_setitimer, syslogd/1888 # expires at 4251329900926 nsecs [in 5283627054 nsecs] .expires_next : 4246432689566 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 31306 .idle_tick : 4246020791890 nsecs .tick_stopped : 1 .idle_jiffies : 986504 .idle_calls : 40700 .idle_sleeps : 36014 .idle_entrytime : 4246019418883 nsecs .idle_sleeptime : 4178181972709 nsecs cpu: 1 clock 0: .index: 0 .resolution: 1 nsecs .get_time: ktime_get_real .offset: 1273998312645738432 nsecs active timers: clock 1: .index: 1 .resolution: 1 nsecs .get_time: ktime_get .offset: 0 nsecs active timers: #0: <f5a90ec8>, hrtimer_sched_tick, hrtimer_restart_sched_tick, swapper/0 # expires at 4246050084568 nsecs [in 3810696 nsecs] #1: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, atd/2227 # expires at 4261010635003 nsecs [in 14964361131 nsecs] #2: <f5a90ec8>, hrtimer_wakeup, do_nanosleep, smartd/2332 # expires at 5469485798970 nsecs [in 1223439525098 nsecs] .expires_next : 4246050084568 nsecs .hres_active : 1 .check_clocks : 0 .nr_events : 24043 .idle_tick : 4246046084568 nsecs .tick_stopped : 0 .idle_jiffies : 986510 .idle_calls : 26360 .idle_sleeps : 22551 .idle_entrytime : 4246043874339 nsecs .idle_sleeptime : 4170763761184 nsecs tick_broadcast_mask: 00000003 event_broadcast_mask: 00000001 CPU#0's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246432689566 nsecs CPU#1's local event device: Clock Event Device: lapic capabilities: 0000000e max_delta_ns: 807385544 min_delta_ns: 1443 mult: 44624025 shift: 32 set_next_event: lapic_next_event set_mode: lapic_timer_setup event_handler: hrtimer_interrupt .installed: 1 .expires: 4246050084568 nsecs Clock Event Device: hpet capabilities: 00000007 max_delta_ns: 2147483647 min_delta_ns: 3352 mult: 61496110 shift: 32 set_next_event: hpet_next_event set_mode: hpet_set_mode event_handler: handle_nextevt_broadcast Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 01:28:15 -08:00
}
/*
* Called before going idle with interrupts disabled. Checks whether a
* broadcast event from the other core is about to happen. We detected
* that in tick_broadcast_oneshot_control(). The callsite can use this
* to avoid a deep idle transition as we are about to get the
* broadcast IPI right away.
*/
noinstr int tick_check_broadcast_expired(void)
{
#ifdef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H
return arch_test_bit(smp_processor_id(), cpumask_bits(tick_broadcast_force_mask));
#else
return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
#endif
}
/*
* Set broadcast interrupt affinity
*/
static void tick_broadcast_set_affinity(struct clock_event_device *bc,
const struct cpumask *cpumask)
{
if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
return;
if (cpumask_equal(bc->cpumask, cpumask))
return;
bc->cpumask = cpumask;
irq_set_affinity(bc->irq, bc->cpumask);
}
static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
ktime_t expires)
{
if (!clockevent_state_oneshot(bc))
clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
tick: Ensure that the broadcast device is initialized Santosh found another trap when we avoid to initialize the broadcast device in the switch_to_oneshot code. The broadcast device might be still in SHUTDOWN state when we actually need to use it. That obviously breaks, as set_next_event() is called on a shutdown device. This did not break on x86, but Suresh analyzed it: From the review, most likely on Sven's system we are force enabling the hpet using the pci quirk's method very late. And in this case, hpet_clockevent (which will be global_clock_event) handler can be null, specifically as this platform might not be using deeper c-states and using the reliable APIC timer. Prior to commit 'fa4da365bc7772c', that handler will be set to 'tick_handle_oneshot_broadcast' when we switch the broadcast timer to oneshot mode, even though we don't use it. Post commit 'fa4da365bc7772c', we stopped switching the broadcast mode to oneshot as this is not really needed and his platform's global_clock_event's handler will remain null. While on my SNB laptop, same is set to 'clockevents_handle_noop' because hpet gets enabled very early. (noop handler on my platform set when the early enabled hpet timer gets replaced by the lapic timer). But the commit 'fa4da365bc7772c' tracked the broadcast timer mode in the SW as oneshot, even though it didn't touch the HW timer. During resume however, tick_resume_broadcast() saw the SW broadcast mode as oneshot and actually programmed the broadcast device also into oneshot mode. So this triggered the null pointer de-reference after the hpet wraps around and depending on what the hpet counter is set to. On the normal platforms where hpet gets enabled early we should be seeing a spurious interrupt (in my SNB laptop I see one spurious interrupt after around 5 minutes ;) which is 32-bit hpet counter wraparound time), but that's a separate issue. Enforce the mode setting when trying to set an event. Reported-and-tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: torvalds@linux-foundation.org Cc: svenjoac@gmx.de Cc: rjw@sisk.pl Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1204181723350.2542@ionos
2012-04-18 17:31:58 +02:00
clockevents_program_event(bc, expires, 1);
tick_broadcast_set_affinity(bc, cpumask_of(cpu));
}
static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
}
/*
* Called from irq_enter() when idle was interrupted to reenable the
* per cpu device.
*/
void tick_check_oneshot_broadcast_this_cpu(void)
{
if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
tick: Prevent uncontrolled switch to oneshot mode When the system switches from periodic to oneshot mode, the broadcast logic causes a possibility that a CPU which has not yet switched to oneshot mode puts its own clock event device into oneshot mode without updating the state and the timer handler. CPU0 CPU1 per cpu tickdev is in periodic mode and switched to broadcast Switch to oneshot mode tick_broadcast_switch_to_oneshot() cpumask_copy(tick_oneshot_broacast_mask, tick_broadcast_mask); broadcast device mode = oneshot Timer interrupt irq_enter() tick_check_oneshot_broadcast() dev->set_mode(ONESHOT); tick_handle_periodic() if (dev->mode == ONESHOT) dev->next_event += period; FAIL. We fail, because dev->next_event contains KTIME_MAX, if the device was in periodic mode before the uncontrolled switch to oneshot happened. We must copy the broadcast bits over to the oneshot mask, because otherwise a CPU which relies on the broadcast would not been woken up anymore after the broadcast device switched to oneshot mode. So we need to verify in tick_check_oneshot_broadcast() whether the CPU has already switched to oneshot mode. If not, leave the device untouched and let the CPU switch controlled into oneshot mode. This is a long standing bug, which was never noticed, because the main user of the broadcast x86 cannot run into that scenario, AFAICT. The nonarchitected timer mess of ARM creates a gazillion of differently broken abominations which trigger the shortcomings of that broadcast code, which better had never been necessary in the first place. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
/*
* We might be in the middle of switching over from
* periodic to oneshot. If the CPU has not yet
* switched over, leave the device alone.
*/
if (td->mode == TICKDEV_MODE_ONESHOT) {
clockevents_switch_state(td->evtdev,
clockevents: Manage device's state separately for the core 'enum clock_event_mode' is used for two purposes today: - to pass mode to the driver of clockevent device::set_mode(). - for managing state of the device for clockevents core. For supporting new modes/states we have moved away from the legacy set_mode() callback to new per-mode/state callbacks. New modes/states shouldn't be exposed to the legacy (now OBSOLOTE) callbacks and so we shouldn't add new states to 'enum clock_event_mode'. Lets have separate enums for the two use cases mentioned above. Keep using the earlier enum for legacy set_mode() callback and mark it OBSOLETE. And add another enum to clearly specify the possible states of a clockevent device. This also renames the newly added per-mode callbacks to reflect state changes. We haven't got rid of 'mode' member of 'struct clock_event_device' as it is used by some of the clockevent drivers and it would automatically die down once we migrate those drivers to the new interface. It ('mode') is only updated now for the drivers using the legacy interface. Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Kevin Hilman <khilman@linaro.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: linaro-kernel@lists.linaro.org Cc: linaro-networking@linaro.org Cc: linux-arm-kernel@lists.infradead.org Link: http://lkml.kernel.org/r/b6b0143a8a57bd58352ad35e08c25424c879c0cb.1425037853.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-27 17:21:33 +05:30
CLOCK_EVT_STATE_ONESHOT);
tick: Prevent uncontrolled switch to oneshot mode When the system switches from periodic to oneshot mode, the broadcast logic causes a possibility that a CPU which has not yet switched to oneshot mode puts its own clock event device into oneshot mode without updating the state and the timer handler. CPU0 CPU1 per cpu tickdev is in periodic mode and switched to broadcast Switch to oneshot mode tick_broadcast_switch_to_oneshot() cpumask_copy(tick_oneshot_broacast_mask, tick_broadcast_mask); broadcast device mode = oneshot Timer interrupt irq_enter() tick_check_oneshot_broadcast() dev->set_mode(ONESHOT); tick_handle_periodic() if (dev->mode == ONESHOT) dev->next_event += period; FAIL. We fail, because dev->next_event contains KTIME_MAX, if the device was in periodic mode before the uncontrolled switch to oneshot happened. We must copy the broadcast bits over to the oneshot mask, because otherwise a CPU which relies on the broadcast would not been woken up anymore after the broadcast device switched to oneshot mode. So we need to verify in tick_check_oneshot_broadcast() whether the CPU has already switched to oneshot mode. If not, leave the device untouched and let the CPU switch controlled into oneshot mode. This is a long standing bug, which was never noticed, because the main user of the broadcast x86 cannot run into that scenario, AFAICT. The nonarchitected timer mess of ARM creates a gazillion of differently broken abominations which trigger the shortcomings of that broadcast code, which better had never been necessary in the first place. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
}
}
}
/*
* Handle oneshot mode broadcasting
*/
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
struct tick_device *td;
ktime_t now, next_event;
int cpu, next_cpu = 0;
bool bc_local;
raw_spin_lock(&tick_broadcast_lock);
dev->next_event = KTIME_MAX;
next_event = KTIME_MAX;
cpumask_clear(tmpmask);
now = ktime_get();
/* Find all expired events */
for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
/*
* Required for !SMP because for_each_cpu() reports
* unconditionally CPU0 as set on UP kernels.
*/
if (!IS_ENABLED(CONFIG_SMP) &&
cpumask_empty(tick_broadcast_oneshot_mask))
break;
td = &per_cpu(tick_cpu_device, cpu);
if (td->evtdev->next_event <= now) {
cpumask_set_cpu(cpu, tmpmask);
/*
* Mark the remote cpu in the pending mask, so
* it can avoid reprogramming the cpu local
* timer in tick_broadcast_oneshot_control().
*/
cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
} else if (td->evtdev->next_event < next_event) {
next_event = td->evtdev->next_event;
next_cpu = cpu;
}
}
tick: Cure broadcast false positive pending bit warning commit 26517f3e (tick: Avoid programming the local cpu timer if broadcast pending) added a warning if the cpu enters broadcast mode again while the pending bit is still set. Meelis reported that the warning triggers. There are two corner cases which have been not considered: 1) cpuidle calls clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) twice. That can result in the following scenario CPU0 CPU1 cpuidle_idle_call() clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) set cpu in tick_broadcast_oneshot_mask broadcast interrupt event expired for cpu1 set pending bit acpi_idle_enter_simple() clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) WARN_ON(pending bit) Move the WARN_ON into the section where we enter broadcast mode so it wont provide false positives on the second call. 2) safe_halt() enables interrupts, so a broadcast interrupt can be delivered befor the broadcast mode is disabled. That sets the pending bit for the CPU which receives the broadcast interrupt. Though the interrupt is delivered right away from the broadcast handler and leaves the pending bit stale. Clear the pending bit for the current cpu in the broadcast handler. Reported-and-tested-by: Meelis Roos <mroos@linux.ee> Cc: Len Brown <lenb@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Rafael J. Wysocki <rjw@sisk.pl> Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305271841130.4220@ionos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-05-28 09:33:01 +02:00
/*
* Remove the current cpu from the pending mask. The event is
* delivered immediately in tick_do_broadcast() !
*/
cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
/* Take care of enforced broadcast requests */
cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
cpumask_clear(tick_broadcast_force_mask);
/*
* Sanity check. Catch the case where we try to broadcast to
* offline cpus.
*/
if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
cpumask_and(tmpmask, tmpmask, cpu_online_mask);
/*
* Wakeup the cpus which have an expired event.
*/
bc_local = tick_do_broadcast(tmpmask);
/*
* Two reasons for reprogram:
*
* - The global event did not expire any CPU local
* events. This happens in dyntick mode, as the maximum PIT
* delta is quite small.
*
* - There are pending events on sleeping CPUs which were not
* in the event mask
*/
if (next_event != KTIME_MAX)
tick_broadcast_set_event(dev, next_cpu, next_event);
raw_spin_unlock(&tick_broadcast_lock);
if (bc_local) {
td = this_cpu_ptr(&tick_cpu_device);
td->evtdev->event_handler(td->evtdev);
}
}
tick: Introduce hrtimer based broadcast On some architectures, in certain CPU deep idle states the local timers stop. An external clock device is used to wakeup these CPUs. The kernel support for the wakeup of these CPUs is provided by the tick broadcast framework by using the external clock device as the wakeup source. However not all implementations of architectures provide such an external clock device. This patch includes support in the broadcast framework to handle the wakeup of the CPUs in deep idle states on such systems by queuing a hrtimer on one of the CPUs, which is meant to handle the wakeup of CPUs in deep idle states. This patchset introduces a pseudo clock device which can be registered by the archs as tick_broadcast_device in the absence of a real external clock device. Once registered, the broadcast framework will work as is for these architectures as long as the archs take care of the BROADCAST_ENTER notification failing for one of the CPUs. This CPU is made the stand by CPU to handle wakeup of the CPUs in deep idle and it *must not enter deep idle states*. The CPU with the earliest wakeup is chosen to be this CPU. Hence this way the stand by CPU dynamically moves around and so does the hrtimer which is queued to trigger at the next earliest wakeup time. This is consistent with the case where an external clock device is present. The smp affinity of this clock device is set to the CPU with the earliest wakeup. This patchset handles the hotplug of the stand by CPU as well by moving the hrtimer on to the CPU handling the CPU_DEAD notification. Originally-from: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: deepthi@linux.vnet.ibm.com Cc: paulmck@linux.vnet.ibm.com Cc: fweisbec@gmail.com Cc: paulus@samba.org Cc: srivatsa.bhat@linux.vnet.ibm.com Cc: svaidy@linux.vnet.ibm.com Cc: peterz@infradead.org Cc: benh@kernel.crashing.org Cc: rafael.j.wysocki@intel.com Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20140207080632.17187.80532.stgit@preeti.in.ibm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-07 13:36:32 +05:30
static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
{
if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
return 0;
if (bc->next_event == KTIME_MAX)
tick: Introduce hrtimer based broadcast On some architectures, in certain CPU deep idle states the local timers stop. An external clock device is used to wakeup these CPUs. The kernel support for the wakeup of these CPUs is provided by the tick broadcast framework by using the external clock device as the wakeup source. However not all implementations of architectures provide such an external clock device. This patch includes support in the broadcast framework to handle the wakeup of the CPUs in deep idle states on such systems by queuing a hrtimer on one of the CPUs, which is meant to handle the wakeup of CPUs in deep idle states. This patchset introduces a pseudo clock device which can be registered by the archs as tick_broadcast_device in the absence of a real external clock device. Once registered, the broadcast framework will work as is for these architectures as long as the archs take care of the BROADCAST_ENTER notification failing for one of the CPUs. This CPU is made the stand by CPU to handle wakeup of the CPUs in deep idle and it *must not enter deep idle states*. The CPU with the earliest wakeup is chosen to be this CPU. Hence this way the stand by CPU dynamically moves around and so does the hrtimer which is queued to trigger at the next earliest wakeup time. This is consistent with the case where an external clock device is present. The smp affinity of this clock device is set to the CPU with the earliest wakeup. This patchset handles the hotplug of the stand by CPU as well by moving the hrtimer on to the CPU handling the CPU_DEAD notification. Originally-from: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: deepthi@linux.vnet.ibm.com Cc: paulmck@linux.vnet.ibm.com Cc: fweisbec@gmail.com Cc: paulus@samba.org Cc: srivatsa.bhat@linux.vnet.ibm.com Cc: svaidy@linux.vnet.ibm.com Cc: peterz@infradead.org Cc: benh@kernel.crashing.org Cc: rafael.j.wysocki@intel.com Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20140207080632.17187.80532.stgit@preeti.in.ibm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-07 13:36:32 +05:30
return 0;
return bc->bound_on == cpu ? -EBUSY : 0;
}
static void broadcast_shutdown_local(struct clock_event_device *bc,
struct clock_event_device *dev)
{
/*
* For hrtimer based broadcasting we cannot shutdown the cpu
* local device if our own event is the first one to expire or
* if we own the broadcast timer.
*/
if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
if (broadcast_needs_cpu(bc, smp_processor_id()))
return;
if (dev->next_event < bc->next_event)
tick: Introduce hrtimer based broadcast On some architectures, in certain CPU deep idle states the local timers stop. An external clock device is used to wakeup these CPUs. The kernel support for the wakeup of these CPUs is provided by the tick broadcast framework by using the external clock device as the wakeup source. However not all implementations of architectures provide such an external clock device. This patch includes support in the broadcast framework to handle the wakeup of the CPUs in deep idle states on such systems by queuing a hrtimer on one of the CPUs, which is meant to handle the wakeup of CPUs in deep idle states. This patchset introduces a pseudo clock device which can be registered by the archs as tick_broadcast_device in the absence of a real external clock device. Once registered, the broadcast framework will work as is for these architectures as long as the archs take care of the BROADCAST_ENTER notification failing for one of the CPUs. This CPU is made the stand by CPU to handle wakeup of the CPUs in deep idle and it *must not enter deep idle states*. The CPU with the earliest wakeup is chosen to be this CPU. Hence this way the stand by CPU dynamically moves around and so does the hrtimer which is queued to trigger at the next earliest wakeup time. This is consistent with the case where an external clock device is present. The smp affinity of this clock device is set to the CPU with the earliest wakeup. This patchset handles the hotplug of the stand by CPU as well by moving the hrtimer on to the CPU handling the CPU_DEAD notification. Originally-from: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: deepthi@linux.vnet.ibm.com Cc: paulmck@linux.vnet.ibm.com Cc: fweisbec@gmail.com Cc: paulus@samba.org Cc: srivatsa.bhat@linux.vnet.ibm.com Cc: svaidy@linux.vnet.ibm.com Cc: peterz@infradead.org Cc: benh@kernel.crashing.org Cc: rafael.j.wysocki@intel.com Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20140207080632.17187.80532.stgit@preeti.in.ibm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-07 13:36:32 +05:30
return;
}
clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
tick: Introduce hrtimer based broadcast On some architectures, in certain CPU deep idle states the local timers stop. An external clock device is used to wakeup these CPUs. The kernel support for the wakeup of these CPUs is provided by the tick broadcast framework by using the external clock device as the wakeup source. However not all implementations of architectures provide such an external clock device. This patch includes support in the broadcast framework to handle the wakeup of the CPUs in deep idle states on such systems by queuing a hrtimer on one of the CPUs, which is meant to handle the wakeup of CPUs in deep idle states. This patchset introduces a pseudo clock device which can be registered by the archs as tick_broadcast_device in the absence of a real external clock device. Once registered, the broadcast framework will work as is for these architectures as long as the archs take care of the BROADCAST_ENTER notification failing for one of the CPUs. This CPU is made the stand by CPU to handle wakeup of the CPUs in deep idle and it *must not enter deep idle states*. The CPU with the earliest wakeup is chosen to be this CPU. Hence this way the stand by CPU dynamically moves around and so does the hrtimer which is queued to trigger at the next earliest wakeup time. This is consistent with the case where an external clock device is present. The smp affinity of this clock device is set to the CPU with the earliest wakeup. This patchset handles the hotplug of the stand by CPU as well by moving the hrtimer on to the CPU handling the CPU_DEAD notification. Originally-from: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: deepthi@linux.vnet.ibm.com Cc: paulmck@linux.vnet.ibm.com Cc: fweisbec@gmail.com Cc: paulus@samba.org Cc: srivatsa.bhat@linux.vnet.ibm.com Cc: svaidy@linux.vnet.ibm.com Cc: peterz@infradead.org Cc: benh@kernel.crashing.org Cc: rafael.j.wysocki@intel.com Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20140207080632.17187.80532.stgit@preeti.in.ibm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-07 13:36:32 +05:30
}
static int ___tick_broadcast_oneshot_control(enum tick_broadcast_state state,
struct tick_device *td,
int cpu)
{
struct clock_event_device *bc, *dev = td->evtdev;
int ret = 0;
ktime_t now;
raw_spin_lock(&tick_broadcast_lock);
bc = tick_broadcast_device.evtdev;
if (state == TICK_BROADCAST_ENTER) {
/*
* If the current CPU owns the hrtimer broadcast
* mechanism, it cannot go deep idle and we do not add
* the CPU to the broadcast mask. We don't have to go
* through the EXIT path as the local timer is not
* shutdown.
*/
ret = broadcast_needs_cpu(bc, cpu);
if (ret)
goto out;
/*
* If the broadcast device is in periodic mode, we
* return.
*/
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
/* If it is a hrtimer based broadcast, return busy */
if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
ret = -EBUSY;
goto out;
}
if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
tick: Cure broadcast false positive pending bit warning commit 26517f3e (tick: Avoid programming the local cpu timer if broadcast pending) added a warning if the cpu enters broadcast mode again while the pending bit is still set. Meelis reported that the warning triggers. There are two corner cases which have been not considered: 1) cpuidle calls clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) twice. That can result in the following scenario CPU0 CPU1 cpuidle_idle_call() clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) set cpu in tick_broadcast_oneshot_mask broadcast interrupt event expired for cpu1 set pending bit acpi_idle_enter_simple() clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER) WARN_ON(pending bit) Move the WARN_ON into the section where we enter broadcast mode so it wont provide false positives on the second call. 2) safe_halt() enables interrupts, so a broadcast interrupt can be delivered befor the broadcast mode is disabled. That sets the pending bit for the CPU which receives the broadcast interrupt. Though the interrupt is delivered right away from the broadcast handler and leaves the pending bit stale. Clear the pending bit for the current cpu in the broadcast handler. Reported-and-tested-by: Meelis Roos <mroos@linux.ee> Cc: Len Brown <lenb@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Rafael J. Wysocki <rjw@sisk.pl> Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305271841130.4220@ionos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-05-28 09:33:01 +02:00
WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
/* Conditionally shut down the local timer. */
tick: Introduce hrtimer based broadcast On some architectures, in certain CPU deep idle states the local timers stop. An external clock device is used to wakeup these CPUs. The kernel support for the wakeup of these CPUs is provided by the tick broadcast framework by using the external clock device as the wakeup source. However not all implementations of architectures provide such an external clock device. This patch includes support in the broadcast framework to handle the wakeup of the CPUs in deep idle states on such systems by queuing a hrtimer on one of the CPUs, which is meant to handle the wakeup of CPUs in deep idle states. This patchset introduces a pseudo clock device which can be registered by the archs as tick_broadcast_device in the absence of a real external clock device. Once registered, the broadcast framework will work as is for these architectures as long as the archs take care of the BROADCAST_ENTER notification failing for one of the CPUs. This CPU is made the stand by CPU to handle wakeup of the CPUs in deep idle and it *must not enter deep idle states*. The CPU with the earliest wakeup is chosen to be this CPU. Hence this way the stand by CPU dynamically moves around and so does the hrtimer which is queued to trigger at the next earliest wakeup time. This is consistent with the case where an external clock device is present. The smp affinity of this clock device is set to the CPU with the earliest wakeup. This patchset handles the hotplug of the stand by CPU as well by moving the hrtimer on to the CPU handling the CPU_DEAD notification. Originally-from: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: deepthi@linux.vnet.ibm.com Cc: paulmck@linux.vnet.ibm.com Cc: fweisbec@gmail.com Cc: paulus@samba.org Cc: srivatsa.bhat@linux.vnet.ibm.com Cc: svaidy@linux.vnet.ibm.com Cc: peterz@infradead.org Cc: benh@kernel.crashing.org Cc: rafael.j.wysocki@intel.com Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/r/20140207080632.17187.80532.stgit@preeti.in.ibm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-07 13:36:32 +05:30
broadcast_shutdown_local(bc, dev);
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
/*
* We only reprogram the broadcast timer if we
* did not mark ourself in the force mask and
* if the cpu local event is earlier than the
* broadcast event. If the current CPU is in
* the force mask, then we are going to be
* woken by the IPI right away; we return
* busy, so the CPU does not try to go deep
* idle.
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
*/
if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
ret = -EBUSY;
} else if (dev->next_event < bc->next_event) {
tick_broadcast_set_event(bc, cpu, dev->next_event);
/*
* In case of hrtimer broadcasts the
* programming might have moved the
* timer to this cpu. If yes, remove
* us from the broadcast mask and
* return busy.
*/
ret = broadcast_needs_cpu(bc, cpu);
if (ret) {
cpumask_clear_cpu(cpu,
tick_broadcast_oneshot_mask);
}
}
}
} else {
if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
/*
* The cpu which was handling the broadcast
* timer marked this cpu in the broadcast
* pending mask and fired the broadcast
* IPI. So we are going to handle the expired
* event anyway via the broadcast IPI
* handler. No need to reprogram the timer
* with an already expired event.
*/
if (cpumask_test_and_clear_cpu(cpu,
tick_broadcast_pending_mask))
goto out;
tick: Fix tick_broadcast_pending_mask not cleared The recent modification in the cpuidle framework consolidated the timer broadcast code across the different drivers by setting a new flag in the idle state. It tells the cpuidle core code to enter/exit the broadcast mode for the cpu when entering a deep idle state. The broadcast timer enter/exit is no longer handled by the back-end driver. This change made the local interrupt to be enabled *before* calling CLOCK_EVENT_NOTIFY_EXIT. On a tegra114, a four cores system, when the flag has been introduced in the driver, the following warning appeared: WARNING: at kernel/time/tick-broadcast.c:578 tick_broadcast_oneshot_control CPU: 2 PID: 0 Comm: swapper/2 Not tainted 3.10.0-rc3-next-20130529+ #15 [<c00667f8>] (tick_broadcast_oneshot_control+0x1a4/0x1d0) from [<c0065cd0>] (tick_notify+0x240/0x40c) [<c0065cd0>] (tick_notify+0x240/0x40c) from [<c0044724>] (notifier_call_chain+0x44/0x84) [<c0044724>] (notifier_call_chain+0x44/0x84) from [<c0044828>] (raw_notifier_call_chain+0x18/0x20) [<c0044828>] (raw_notifier_call_chain+0x18/0x20) from [<c00650cc>] (clockevents_notify+0x28/0x170) [<c00650cc>] (clockevents_notify+0x28/0x170) from [<c033f1f0>] (cpuidle_idle_call+0x11c/0x168) [<c033f1f0>] (cpuidle_idle_call+0x11c/0x168) from [<c000ea94>] (arch_cpu_idle+0x8/0x38) [<c000ea94>] (arch_cpu_idle+0x8/0x38) from [<c005ea80>] (cpu_startup_entry+0x60/0x134) [<c005ea80>] (cpu_startup_entry+0x60/0x134) from [<804fe9a4>] (0x804fe9a4) I don't have the hardware, so I wasn't able to reproduce the warning but after looking a while at the code, I deduced the following: 1. the CPU2 enters a deep idle state and sets the broadcast timer 2. the timer expires, the tick_handle_oneshot_broadcast function is called, setting the tick_broadcast_pending_mask and waking up the idle cpu CPU2 3. the CPU2 exits idle handles the interrupt and then invokes tick_broadcast_oneshot_control with CLOCK_EVENT_NOTIFY_EXIT which runs the following code: [...] if (dev->next_event.tv64 == KTIME_MAX) goto out; if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_pending_mask)) goto out; [...] So if there is no next event scheduled for CPU2, we fulfil the first condition and jump out without clearing the tick_broadcast_pending_mask. 4. CPU2 goes to deep idle again and calls tick_broadcast_oneshot_control with CLOCK_NOTIFY_EVENT_ENTER but with the tick_broadcast_pending_mask set for CPU2, triggering the warning. The issue only surfaced due to the modifications of the cpuidle framework, which resulted in interrupts being enabled before the call to the clockevents code. If the call happens before interrupts have been enabled, the warning cannot trigger, because there is still the event pending which caused the broadcast timer expiry. Move the check for the next event below the check for the pending bit, so the pending bit gets cleared whether an event is scheduled on the cpu or not. [ tglx: Massaged changelog ] Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reported-and-tested-by: Joseph Lo <josephl@nvidia.com> Cc: Stephen Warren <swarren@nvidia.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linaro-kernel@lists.linaro.org Link: http://lkml.kernel.org/r/1371485735-31249-1-git-send-email-daniel.lezcano@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-17 18:15:35 +02:00
/*
* Bail out if there is no next event.
*/
if (dev->next_event == KTIME_MAX)
tick: Fix tick_broadcast_pending_mask not cleared The recent modification in the cpuidle framework consolidated the timer broadcast code across the different drivers by setting a new flag in the idle state. It tells the cpuidle core code to enter/exit the broadcast mode for the cpu when entering a deep idle state. The broadcast timer enter/exit is no longer handled by the back-end driver. This change made the local interrupt to be enabled *before* calling CLOCK_EVENT_NOTIFY_EXIT. On a tegra114, a four cores system, when the flag has been introduced in the driver, the following warning appeared: WARNING: at kernel/time/tick-broadcast.c:578 tick_broadcast_oneshot_control CPU: 2 PID: 0 Comm: swapper/2 Not tainted 3.10.0-rc3-next-20130529+ #15 [<c00667f8>] (tick_broadcast_oneshot_control+0x1a4/0x1d0) from [<c0065cd0>] (tick_notify+0x240/0x40c) [<c0065cd0>] (tick_notify+0x240/0x40c) from [<c0044724>] (notifier_call_chain+0x44/0x84) [<c0044724>] (notifier_call_chain+0x44/0x84) from [<c0044828>] (raw_notifier_call_chain+0x18/0x20) [<c0044828>] (raw_notifier_call_chain+0x18/0x20) from [<c00650cc>] (clockevents_notify+0x28/0x170) [<c00650cc>] (clockevents_notify+0x28/0x170) from [<c033f1f0>] (cpuidle_idle_call+0x11c/0x168) [<c033f1f0>] (cpuidle_idle_call+0x11c/0x168) from [<c000ea94>] (arch_cpu_idle+0x8/0x38) [<c000ea94>] (arch_cpu_idle+0x8/0x38) from [<c005ea80>] (cpu_startup_entry+0x60/0x134) [<c005ea80>] (cpu_startup_entry+0x60/0x134) from [<804fe9a4>] (0x804fe9a4) I don't have the hardware, so I wasn't able to reproduce the warning but after looking a while at the code, I deduced the following: 1. the CPU2 enters a deep idle state and sets the broadcast timer 2. the timer expires, the tick_handle_oneshot_broadcast function is called, setting the tick_broadcast_pending_mask and waking up the idle cpu CPU2 3. the CPU2 exits idle handles the interrupt and then invokes tick_broadcast_oneshot_control with CLOCK_EVENT_NOTIFY_EXIT which runs the following code: [...] if (dev->next_event.tv64 == KTIME_MAX) goto out; if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_pending_mask)) goto out; [...] So if there is no next event scheduled for CPU2, we fulfil the first condition and jump out without clearing the tick_broadcast_pending_mask. 4. CPU2 goes to deep idle again and calls tick_broadcast_oneshot_control with CLOCK_NOTIFY_EVENT_ENTER but with the tick_broadcast_pending_mask set for CPU2, triggering the warning. The issue only surfaced due to the modifications of the cpuidle framework, which resulted in interrupts being enabled before the call to the clockevents code. If the call happens before interrupts have been enabled, the warning cannot trigger, because there is still the event pending which caused the broadcast timer expiry. Move the check for the next event below the check for the pending bit, so the pending bit gets cleared whether an event is scheduled on the cpu or not. [ tglx: Massaged changelog ] Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Reported-and-tested-by: Joseph Lo <josephl@nvidia.com> Cc: Stephen Warren <swarren@nvidia.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linaro-kernel@lists.linaro.org Link: http://lkml.kernel.org/r/1371485735-31249-1-git-send-email-daniel.lezcano@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-06-17 18:15:35 +02:00
goto out;
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
/*
* If the pending bit is not set, then we are
* either the CPU handling the broadcast
* interrupt or we got woken by something else.
*
* We are no longer in the broadcast mask, so
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
* if the cpu local expiry time is already
* reached, we would reprogram the cpu local
* timer with an already expired event.
*
* This can lead to a ping-pong when we return
* to idle and therefore rearm the broadcast
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
* timer before the cpu local timer was able
* to fire. This happens because the forced
* reprogramming makes sure that the event
* will happen in the future and depending on
* the min_delta setting this might be far
* enough out that the ping-pong starts.
*
* If the cpu local next_event has expired
* then we know that the broadcast timer
* next_event has expired as well and
* broadcast is about to be handled. So we
* avoid reprogramming and enforce that the
* broadcast handler, which did not run yet,
* will invoke the cpu local handler.
*
* We cannot call the handler directly from
* here, because we might be in a NOHZ phase
* and we did not go through the irq_enter()
* nohz fixups.
*/
now = ktime_get();
if (dev->next_event <= now) {
tick: Handle broadcast wakeup of multiple cpus Some brilliant hardware implementations wake multiple cores when the broadcast timer fires. This leads to the following interesting problem: CPU0 CPU1 wakeup from idle wakeup from idle leave broadcast mode leave broadcast mode restart per cpu timer restart per cpu timer go back to idle handle broadcast (empty mask) enter broadcast mode programm broadcast device enter broadcast mode programm broadcast device So what happens is that due to the forced reprogramming of the cpu local timer, we need to set a event in the future. Now if we manage to go back to idle before the timer fires, we switch off the timer and arm the broadcast device with an already expired time (covered by forced mode). So in the worst case we repeat the above ping pong forever. Unfortunately we have no information about what caused the wakeup, but we can check current time against the expiry time of the local cpu. If the local event is already in the past, we know that the broadcast timer is about to fire and send an IPI. So we mark ourself as an IPI target even if we left broadcast mode and avoid the reprogramming of the local cpu timer. This still leaves the possibility that a CPU which is not handling the broadcast interrupt is going to reach idle again before the IPI arrives. This can't be solved in the core code and will be handled in follow up patches. Reported-by: Jason Liu <liu.h.jason@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Veen <arjan@infradead.org> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-03-06 11:18:35 +00:00
cpumask_set_cpu(cpu, tick_broadcast_force_mask);
goto out;
}
/*
* We got woken by something else. Reprogram
* the cpu local timer device.
*/
tick_program_event(dev->next_event, 1);
}
}
out:
raw_spin_unlock(&tick_broadcast_lock);
return ret;
}
static int tick_oneshot_wakeup_control(enum tick_broadcast_state state,
struct tick_device *td,
int cpu)
{
struct clock_event_device *dev, *wd;
dev = td->evtdev;
if (td->mode != TICKDEV_MODE_ONESHOT)
return -EINVAL;
wd = tick_get_oneshot_wakeup_device(cpu);
if (!wd)
return -ENODEV;
switch (state) {
case TICK_BROADCAST_ENTER:
clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT_STOPPED);
clockevents_switch_state(wd, CLOCK_EVT_STATE_ONESHOT);
clockevents_program_event(wd, dev->next_event, 1);
break;
case TICK_BROADCAST_EXIT:
/* We may have transitioned to oneshot mode while idle */
if (clockevent_get_state(wd) != CLOCK_EVT_STATE_ONESHOT)
return -ENODEV;
}
return 0;
}
int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
{
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
int cpu = smp_processor_id();
if (!tick_oneshot_wakeup_control(state, td, cpu))
return 0;
if (tick_broadcast_device.evtdev)
return ___tick_broadcast_oneshot_control(state, td, cpu);
/*
* If there is no broadcast or wakeup device, tell the caller not
* to go into deep idle.
*/
return -EBUSY;
}
/*
* Reset the one shot broadcast for a cpu
*
* Called with tick_broadcast_lock held
*/
static void tick_broadcast_clear_oneshot(int cpu)
{
cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
tick: Clear broadcast pending bit when switching to oneshot AMD systems which use the C1E workaround in the amd_e400_idle routine trigger the WARN_ON_ONCE in the broadcast code when onlining a CPU. The reason is that the idle routine of those AMD systems switches the cpu into forced broadcast mode early on before the newly brought up CPU can switch over to high resolution / NOHZ mode. The timer related CPU1 bringup looks like this: clockevent_register_device(local_apic); tick_setup(local_apic); ... idle() tick_broadcast_on_off(FORCE); tick_broadcast_oneshot_control(ENTER) cpumask_set(cpu, broadcast_oneshot_mask); halt(); Now the broadcast interrupt on CPU0 sets CPU1 in the broadcast_pending_mask and wakes CPU1. So CPU1 continues: local_apic_timer_interrupt() tick_handle_periodic(); softirq() tick_init_highres(); cpumask_clr(cpu, broadcast_oneshot_mask); tick_broadcast_oneshot_control(ENTER) WARN_ON(cpumask_test(cpu, broadcast_pending_mask); So while we remove CPU1 from the broadcast_oneshot_mask when we switch over to highres mode, we do not clear the pending bit, which then triggers the warning when we go back to idle. The reason why this is only visible on C1E affected AMD systems is that the other machines enter the deep sleep states via acpi_idle/intel_idle and exit the broadcast mode before executing the remote triggered local_apic_timer_interrupt. So the pending bit is already cleared when the switch over to highres mode is clearing the oneshot mask. The solution is simple: Clear the pending bit together with the mask bit when we switch over to highres mode. Stanislaw came up independently with the same patch by enforcing the C1E workaround and debugging the fallout. I picked mine, because mine has a changelog :) Reported-by: poma <pomidorabelisima@gmail.com> Debugged-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Olaf Hering <olaf@aepfle.de> Cc: Dave Jones <davej@redhat.com> Cc: Justin M. Forbes <jforbes@redhat.com> Cc: Josh Boyer <jwboyer@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402111434180.21991@ionos.tec.linutronix.de Cc: stable@vger.kernel.org # 3.10+ Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-11 14:35:40 +01:00
cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
}
static void tick_broadcast_init_next_event(struct cpumask *mask,
ktime_t expires)
{
struct tick_device *td;
int cpu;
for_each_cpu(cpu, mask) {
td = &per_cpu(tick_cpu_device, cpu);
if (td->evtdev)
td->evtdev->next_event = expires;
}
}
static inline ktime_t tick_get_next_period(void)
{
ktime_t next;
/*
* Protect against concurrent updates (store /load tearing on
* 32bit). It does not matter if the time is already in the
* past. The broadcast device which is about to be programmed will
* fire in any case.
*/
raw_spin_lock(&jiffies_lock);
next = tick_next_period;
raw_spin_unlock(&jiffies_lock);
return next;
}
/**
* tick_broadcast_setup_oneshot - setup the broadcast device
*/
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
static void tick_broadcast_setup_oneshot(struct clock_event_device *bc,
bool from_periodic)
{
tick: Clear broadcast active bit when switching to oneshot The first cpu which switches from periodic to oneshot mode switches also the broadcast device into oneshot mode. The broadcast device serves as a backup for per cpu timers which stop in deeper C-states. To avoid starvation of the cpus which might be in idle and depend on broadcast mode it marks the other cpus as broadcast active and sets the brodcast expiry value of those cpus to the next tick. The oneshot mode broadcast bit for the other cpus is sticky and gets only cleared when those cpus exit idle. If a cpu was not idle while the bit got set in consequence the bit prevents that the broadcast device is armed on behalf of that cpu when it enters idle for the first time after it switched to oneshot mode. In most cases that goes unnoticed as one of the other cpus has usually a timer pending which keeps the broadcast device armed with a short timeout. Now if the only cpu which has a short timer active has the bit set then the broadcast device will not be armed on behalf of that cpu and will fire way after the expected timer expiry. In the case of Christians bug report it took ~145 seconds which is about half of the wrap around time of HPET (the limit for that device) due to the fact that all other cpus had no timers armed which expired before the 145 seconds timeframe. The solution is simply to clear the broadcast active bit unconditionally when a cpu switches to oneshot mode after the first cpu switched the broadcast device over. It's not idle at that point otherwise it would not be executing that code. [ I fundamentally hate that broadcast crap. Why the heck thought some folks that when going into deep idle it's a brilliant concept to switch off the last device which brings the cpu back from that state? ] Thanks to Christian for providing all the valuable debug information! Reported-and-tested-by: Christian Hoffmann <email@christianhoffmann.info> Cc: John Stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1105161105170.3078%40ionos%3E Cc: stable@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-05-16 11:07:48 +02:00
int cpu = smp_processor_id();
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
ktime_t nexttick = 0;
tick: Clear broadcast active bit when switching to oneshot The first cpu which switches from periodic to oneshot mode switches also the broadcast device into oneshot mode. The broadcast device serves as a backup for per cpu timers which stop in deeper C-states. To avoid starvation of the cpus which might be in idle and depend on broadcast mode it marks the other cpus as broadcast active and sets the brodcast expiry value of those cpus to the next tick. The oneshot mode broadcast bit for the other cpus is sticky and gets only cleared when those cpus exit idle. If a cpu was not idle while the bit got set in consequence the bit prevents that the broadcast device is armed on behalf of that cpu when it enters idle for the first time after it switched to oneshot mode. In most cases that goes unnoticed as one of the other cpus has usually a timer pending which keeps the broadcast device armed with a short timeout. Now if the only cpu which has a short timer active has the bit set then the broadcast device will not be armed on behalf of that cpu and will fire way after the expected timer expiry. In the case of Christians bug report it took ~145 seconds which is about half of the wrap around time of HPET (the limit for that device) due to the fact that all other cpus had no timers armed which expired before the 145 seconds timeframe. The solution is simply to clear the broadcast active bit unconditionally when a cpu switches to oneshot mode after the first cpu switched the broadcast device over. It's not idle at that point otherwise it would not be executing that code. [ I fundamentally hate that broadcast crap. Why the heck thought some folks that when going into deep idle it's a brilliant concept to switch off the last device which brings the cpu back from that state? ] Thanks to Christian for providing all the valuable debug information! Reported-and-tested-by: Christian Hoffmann <email@christianhoffmann.info> Cc: John Stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1105161105170.3078%40ionos%3E Cc: stable@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-05-16 11:07:48 +02:00
if (!bc)
return;
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
/*
* When the broadcast device was switched to oneshot by the first
* CPU handling the NOHZ change, the other CPUs will reach this
* code via hrtimer_run_queues() -> tick_check_oneshot_change()
* too. Set up the broadcast device only once!
*/
if (bc->event_handler == tick_handle_oneshot_broadcast) {
/*
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
* The CPU which switched from periodic to oneshot mode
* set the broadcast oneshot bit for all other CPUs which
* are in the general (periodic) broadcast mask to ensure
* that CPUs which wait for the periodic broadcast are
* woken up.
*
* Clear the bit for the local CPU as the set bit would
* prevent the first tick_broadcast_enter() after this CPU
* switched to oneshot state to program the broadcast
* device.
*
* This code can also be reached via tick_broadcast_control(),
* but this cannot avoid the tick_broadcast_clear_oneshot()
* as that would break the periodic to oneshot transition of
* secondary CPUs. But that's harmless as the below only
* clears already cleared bits.
*/
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
tick_broadcast_clear_oneshot(cpu);
return;
}
bc->event_handler = tick_handle_oneshot_broadcast;
bc->next_event = KTIME_MAX;
/*
* When the tick mode is switched from periodic to oneshot it must
* be ensured that CPUs which are waiting for periodic broadcast
* get their wake-up at the next tick. This is achieved by ORing
* tick_broadcast_mask into tick_broadcast_oneshot_mask.
*
* For other callers, e.g. broadcast device replacement,
* tick_broadcast_oneshot_mask must not be touched as this would
* set bits for CPUs which are already NOHZ, but not idle. Their
* next tick_broadcast_enter() would observe the bit set and fail
* to update the expiry time and the broadcast event device.
*/
if (from_periodic) {
cpumask_copy(tmpmask, tick_broadcast_mask);
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
/* Remove the local CPU as it is obviously not idle */
cpumask_clear_cpu(cpu, tmpmask);
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
cpumask_or(tick_broadcast_oneshot_mask, tick_broadcast_oneshot_mask, tmpmask);
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
/*
* Ensure that the oneshot broadcast handler will wake the
* CPUs which are still waiting for periodic broadcast.
*/
nexttick = tick_get_next_period();
tick_broadcast_init_next_event(tmpmask, nexttick);
tick: Clear broadcast active bit when switching to oneshot The first cpu which switches from periodic to oneshot mode switches also the broadcast device into oneshot mode. The broadcast device serves as a backup for per cpu timers which stop in deeper C-states. To avoid starvation of the cpus which might be in idle and depend on broadcast mode it marks the other cpus as broadcast active and sets the brodcast expiry value of those cpus to the next tick. The oneshot mode broadcast bit for the other cpus is sticky and gets only cleared when those cpus exit idle. If a cpu was not idle while the bit got set in consequence the bit prevents that the broadcast device is armed on behalf of that cpu when it enters idle for the first time after it switched to oneshot mode. In most cases that goes unnoticed as one of the other cpus has usually a timer pending which keeps the broadcast device armed with a short timeout. Now if the only cpu which has a short timer active has the bit set then the broadcast device will not be armed on behalf of that cpu and will fire way after the expected timer expiry. In the case of Christians bug report it took ~145 seconds which is about half of the wrap around time of HPET (the limit for that device) due to the fact that all other cpus had no timers armed which expired before the 145 seconds timeframe. The solution is simply to clear the broadcast active bit unconditionally when a cpu switches to oneshot mode after the first cpu switched the broadcast device over. It's not idle at that point otherwise it would not be executing that code. [ I fundamentally hate that broadcast crap. Why the heck thought some folks that when going into deep idle it's a brilliant concept to switch off the last device which brings the cpu back from that state? ] Thanks to Christian for providing all the valuable debug information! Reported-and-tested-by: Christian Hoffmann <email@christianhoffmann.info> Cc: John Stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1105161105170.3078%40ionos%3E Cc: stable@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-05-16 11:07:48 +02:00
/*
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
* If the underlying broadcast clock event device is
* already in oneshot state, then there is nothing to do.
* The device was already armed for the next tick
* in tick_handle_broadcast_periodic()
tick: Clear broadcast active bit when switching to oneshot The first cpu which switches from periodic to oneshot mode switches also the broadcast device into oneshot mode. The broadcast device serves as a backup for per cpu timers which stop in deeper C-states. To avoid starvation of the cpus which might be in idle and depend on broadcast mode it marks the other cpus as broadcast active and sets the brodcast expiry value of those cpus to the next tick. The oneshot mode broadcast bit for the other cpus is sticky and gets only cleared when those cpus exit idle. If a cpu was not idle while the bit got set in consequence the bit prevents that the broadcast device is armed on behalf of that cpu when it enters idle for the first time after it switched to oneshot mode. In most cases that goes unnoticed as one of the other cpus has usually a timer pending which keeps the broadcast device armed with a short timeout. Now if the only cpu which has a short timer active has the bit set then the broadcast device will not be armed on behalf of that cpu and will fire way after the expected timer expiry. In the case of Christians bug report it took ~145 seconds which is about half of the wrap around time of HPET (the limit for that device) due to the fact that all other cpus had no timers armed which expired before the 145 seconds timeframe. The solution is simply to clear the broadcast active bit unconditionally when a cpu switches to oneshot mode after the first cpu switched the broadcast device over. It's not idle at that point otherwise it would not be executing that code. [ I fundamentally hate that broadcast crap. Why the heck thought some folks that when going into deep idle it's a brilliant concept to switch off the last device which brings the cpu back from that state? ] Thanks to Christian for providing all the valuable debug information! Reported-and-tested-by: Christian Hoffmann <email@christianhoffmann.info> Cc: John Stultz <johnstul@us.ibm.com> Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1105161105170.3078%40ionos%3E Cc: stable@kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2011-05-16 11:07:48 +02:00
*/
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
if (clockevent_state_oneshot(bc))
return;
}
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
/*
* When switching from periodic to oneshot mode arm the broadcast
* device for the next tick.
*
* If the broadcast device has been replaced in oneshot mode and
* the oneshot broadcast mask is not empty, then arm it to expire
* immediately in order to reevaluate the next expiring timer.
* @nexttick is 0 and therefore in the past which will cause the
* clockevent code to force an event.
*
* For both cases the programming can be avoided when the oneshot
* broadcast mask is empty.
*
* tick_broadcast_set_event() implicitly switches the broadcast
* device to oneshot state.
*/
if (!cpumask_empty(tick_broadcast_oneshot_mask))
tick_broadcast_set_event(bc, cpu, nexttick);
}
/*
* Select oneshot operating mode for the broadcast device
*/
void tick_broadcast_switch_to_oneshot(void)
{
struct clock_event_device *bc;
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
enum tick_device_mode oldmode;
unsigned long flags;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
oldmode = tick_broadcast_device.mode;
tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
bc = tick_broadcast_device.evtdev;
if (bc)
tick/broadcast: Make broadcast device replacement work correctly When a tick broadcast clockevent device is initialized for one shot mode then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode cpumask into the oneshot broadcast cpumask. This is required when switching from periodic broadcast mode to oneshot broadcast mode to ensure that CPUs which are waiting for periodic broadcast are woken up on the next tick. But it is subtly broken, when an active broadcast device is replaced and the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed this and debugged the issue. Then the OR of the periodic broadcast CPU mask is wrong as the periodic cpumask bits are sticky after tick_broadcast_enable() set it for a CPU unless explicitly cleared via tick_broadcast_disable(). That means that this sets all other CPUs which have tick broadcasting enabled at that point unconditionally in the oneshot broadcast mask. If the affected CPUs were already idle and had their bits set in the oneshot broadcast mask then this does no harm. But for non idle CPUs which were not set this corrupts their state. On their next invocation of tick_broadcast_enable() they observe the bit set, which indicates that the broadcast for the CPU is already set up. As a consequence they fail to update the broadcast event even if their earliest expiring timer is before the actually programmed broadcast event. If the programmed broadcast event is far in the future, then this can cause stalls or trigger the hung task detector. Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether this is the initial switch over from periodic to oneshot broadcast which must take the periodic broadcast mask into account. In the case of initialization of a replacement device this prevents that the broadcast oneshot mask is modified. There is a second problem with broadcast device replacement in this function. The broadcast device is only armed when the previous state of the device was periodic. That is correct for the switch from periodic broadcast mode to oneshot broadcast mode as the underlying broadcast device could operate in oneshot state already due to lack of periodic state in hardware. In that case it is already armed to expire at the next tick. For the replacement case this is wrong as the device is in shutdown state. That means that any already pending broadcast event will not be armed. This went unnoticed because any CPU which goes idle will observe that the broadcast device has an expiry time of KTIME_MAX and therefore any CPUs next timer event will be earlier and cause a reprogramming of the broadcast device. But that does not guarantee that the events of the CPUs which were already in idle are delivered on time. Fix this by arming the newly installed device for an immediate event which will reevaluate the per CPU expiry times and reprogram the broadcast device accordingly. This is simpler than caching the last expiry time in yet another place or saving it before the device exchange and handing it down to the setup function. Replacement of broadcast devices is not a frequent operation and usually happens once somewhere late in the boot process. Fixes: 9c336c9935cf ("tick/broadcast: Allow late registered device to enter oneshot mode") Reported-by: Victor Hassan <victor@allwinnertech.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
2023-05-06 18:40:57 +02:00
tick_broadcast_setup_oneshot(bc, oldmode == TICKDEV_MODE_PERIODIC);
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
#ifdef CONFIG_HOTPLUG_CPU
void hotplug_cpu__broadcast_tick_pull(int deadcpu)
{
struct clock_event_device *bc;
unsigned long flags;
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
bc = tick_broadcast_device.evtdev;
if (bc && broadcast_needs_cpu(bc, deadcpu)) {
/* This moves the broadcast assignment to this CPU: */
clockevents_program_event(bc, bc->next_event, 1);
}
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
/*
* Remove a dying CPU from broadcasting
*/
static void tick_broadcast_oneshot_offline(unsigned int cpu)
{
if (tick_get_oneshot_wakeup_device(cpu))
tick_set_oneshot_wakeup_device(NULL, cpu);
/*
* Clear the broadcast masks for the dead cpu, but do not stop
* the broadcast device!
*/
cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
}
#endif
/*
* Check, whether the broadcast device is in one shot mode
*/
int tick_broadcast_oneshot_active(void)
{
return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}
/*
* Check whether the broadcast device supports oneshot.
*/
bool tick_broadcast_oneshot_available(void)
{
struct clock_event_device *bc = tick_broadcast_device.evtdev;
return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}
tick/broadcast: Make idle check independent from mode and config Currently the broadcast busy check, which prevents the idle code from going into deep idle, works only in one shot mode. If NOHZ and HIGHRES are off (config or command line) there is no sanity check at all, so under certain conditions cpus are allowed to go into deep idle, where the local timer stops, and are not woken up again because there is no broadcast timer installed or a hrtimer based broadcast device is not evaluated. Move tick_broadcast_oneshot_control() into the common code and provide proper subfunctions for the various config combinations. The common check in tick_broadcast_oneshot_control() is for the C3STOP misfeature flag of the local clock event device. If its not set, idle can proceed. If set, further checks are necessary. Provide checks for the trivial cases: - If broadcast is disabled in the config, then return busy - If oneshot mode (NOHZ/HIGHES) is disabled in the config, return busy if the broadcast device is hrtimer based. - If oneshot mode is enabled in the config call the original tick_broadcast_oneshot_control() function. That function needs extra checks which will be implemented in seperate patches. [ Split out from a larger combo patch ] Reported-and-tested-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Suzuki Poulose <Suzuki.Poulose@arm.com> Cc: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com> Cc: Catalin Marinas <Catalin.Marinas@arm.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1507070929360.3916@nanos
2015-07-07 16:29:38 +02:00
#else
int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
{
struct clock_event_device *bc = tick_broadcast_device.evtdev;
if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
return -EBUSY;
return 0;
}
#endif
void __init tick_broadcast_init(void)
{
zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
tick: Sanitize broadcast control logic The recent implementation of a generic dummy timer resulted in a different registration order of per cpu local timers which made the broadcast control logic go belly up. If the dummy timer is the first clock event device which is registered for a CPU, then it is installed, the broadcast timer is initialized and the CPU is marked as broadcast target. If a real clock event device is installed after that, we can fail to take the CPU out of the broadcast mask. In the worst case we end up with two periodic timer events firing for the same CPU. One from the per cpu hardware device and one from the broadcast. Now the problem is that we have no way to distinguish whether the system is in a state which makes broadcasting necessary or the broadcast bit was set due to the nonfunctional dummy timer installment. To solve this we need to keep track of the system state seperately and provide a more detailed decision logic whether we keep the CPU in broadcast mode or not. The old decision logic only clears the broadcast mode, if the newly installed clock event device is not affected by power states. The new logic clears the broadcast mode if one of the following is true: - The new device is not affected by power states. - The system is not in a power state affected mode - The system has switched to oneshot mode. The oneshot broadcast is controlled from the deep idle state. The CPU is not in idle at this point, so it's safe to remove it from the mask. If we clear the broadcast bit for the CPU when a new device is installed, we also shutdown the broadcast device when this was the last CPU in the broadcast mask. If the broadcast bit is kept, then we leave the new device in shutdown state and rely on the broadcast to deliver the timer interrupts via the broadcast ipis. Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: John Stultz <john.stultz@linaro.org>, Cc: Mark Rutland <mark.rutland@arm.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de Cc: stable@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2013-07-01 22:14:10 +02:00
zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
#ifdef CONFIG_TICK_ONESHOT
zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
#endif
}