2005-04-16 15:20:36 -07:00
/*------------------------------------------------------------------------
. smc91x . h - macros for SMSC ' s 91 C9x / 91 C1xx single - chip Ethernet device .
.
. Copyright ( C ) 1996 by Erik Stahlman
. Copyright ( C ) 2001 Standard Microsystems Corporation
. Developed by Simple Network Magic Corporation
. Copyright ( C ) 2003 Monta Vista Software , Inc .
. Unified SMC91x driver by Nicolas Pitre
.
. This program is free software ; you can redistribute it and / or modify
. it under the terms of the GNU General Public License as published by
. the Free Software Foundation ; either version 2 of the License , or
. ( at your option ) any later version .
.
. This program is distributed in the hope that it will be useful ,
. but WITHOUT ANY WARRANTY ; without even the implied warranty of
. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
. GNU General Public License for more details .
.
. You should have received a copy of the GNU General Public License
. along with this program ; if not , write to the Free Software
. Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
.
. Information contained in this file was obtained from the LAN91C111
. manual from SMC . To get a copy , if you really want one , you can find
. information under www . smsc . com .
.
. Authors
. Erik Stahlman < erik @ vt . edu >
. Daris A Nevil < dnevil @ snmc . com >
. Nicolas Pitre < nico @ cam . org >
.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
# ifndef _SMC91X_H_
# define _SMC91X_H_
/*
* Define your architecture specific bus configuration parameters here .
*/
# if defined(CONFIG_ARCH_LUBBOCK)
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_NOWAIT 1
/* The first two address lines aren't connected... */
# define SMC_IO_SHIFT 2
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_outw(v, a, r) writew(v, (a) + (r))
# define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
# define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
# elif defined(CONFIG_REDWOOD_5) || defined(CONFIG_REDWOOD_6)
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_NOWAIT 1
# define SMC_IO_SHIFT 0
# define SMC_inw(a, r) in_be16((volatile u16 *)((a) + (r)))
# define SMC_outw(v, a, r) out_be16((volatile u16 *)((a) + (r)), v)
# define SMC_insw(a, r, p, l) \
do { \
unsigned long __port = ( a ) + ( r ) ; \
u16 * __p = ( u16 * ) ( p ) ; \
int __l = ( l ) ; \
insw ( __port , __p , __l ) ; \
while ( __l > 0 ) { \
* __p = swab16 ( * __p ) ; \
__p + + ; \
__l - - ; \
} \
} while ( 0 )
# define SMC_outsw(a, r, p, l) \
do { \
unsigned long __port = ( a ) + ( r ) ; \
u16 * __p = ( u16 * ) ( p ) ; \
int __l = ( l ) ; \
while ( __l > 0 ) { \
/* Believe it or not, the swab isn't needed. */ \
outw ( /* swab16 */ ( * __p + + ) , __port ) ; \
__l - - ; \
} \
} while ( 0 )
# define set_irq_type(irq, type)
# elif defined(CONFIG_SA1100_PLEB)
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_IO_SHIFT 0
# define SMC_NOWAIT 1
# define SMC_inb(a, r) inb((a) + (r))
# define SMC_insb(a, r, p, l) insb((a) + (r), p, (l))
# define SMC_inw(a, r) inw((a) + (r))
# define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
# define SMC_outb(v, a, r) outb(v, (a) + (r))
# define SMC_outsb(a, r, p, l) outsb((a) + (r), p, (l))
# define SMC_outw(v, a, r) outw(v, (a) + (r))
# define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
# define set_irq_type(irq, type) do {} while (0)
# elif defined(CONFIG_SA1100_ASSABET)
# include <asm/arch/neponset.h>
/* We can only do 8-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 0
# define SMC_CAN_USE_32BIT 0
# define SMC_NOWAIT 1
/* The first two address lines aren't connected... */
# define SMC_IO_SHIFT 2
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
# define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
# elif defined(CONFIG_ARCH_INNOKOM) || \
defined ( CONFIG_MACH_MAINSTONE ) | | \
defined ( CONFIG_ARCH_PXA_IDP ) | | \
defined ( CONFIG_ARCH_RAMSES )
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 1
# define SMC_IO_SHIFT 0
# define SMC_NOWAIT 1
# define SMC_USE_PXA_DMA 1
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_inl(a, r) readl((a) + (r))
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_outl(v, a, r) writel(v, (a) + (r))
# define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
# define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
/* We actually can't write halfwords properly if not word aligned */
static inline void
2005-05-12 20:19:09 -04:00
SMC_outw ( u16 val , void __iomem * ioaddr , int reg )
2005-04-16 15:20:36 -07:00
{
if ( reg & 2 ) {
unsigned int v = val < < 16 ;
v | = readl ( ioaddr + ( reg & ~ 2 ) ) & 0xffff ;
writel ( v , ioaddr + ( reg & ~ 2 ) ) ;
} else {
writew ( val , ioaddr + reg ) ;
}
}
# elif defined(CONFIG_ARCH_OMAP)
/* We can only do 16-bit reads and writes in the static memory space. */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_IO_SHIFT 0
# define SMC_NOWAIT 1
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_outw(v, a, r) writew(v, (a) + (r))
# define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
# define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
# define SMC_inl(a, r) readl((a) + (r))
# define SMC_outl(v, a, r) writel(v, (a) + (r))
# define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
# define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
2005-05-16 08:53:52 -07:00
# include <asm/mach-types.h>
# include <asm/arch/cpu.h>
# define SMC_IRQ_TRIGGER_TYPE (( \
machine_is_omap_h2 ( ) \
| | machine_is_omap_h3 ( ) \
2005-06-30 06:40:18 -07:00
| | ( machine_is_omap_innovator ( ) & & ! cpu_is_omap1510 ( ) ) \
2005-05-16 08:53:52 -07:00
) ? IRQT_FALLING : IRQT_RISING )
2005-04-16 15:20:36 -07:00
# elif defined(CONFIG_SH_SH4202_MICRODEV)
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
# define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
# define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
# define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
# define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000)
# define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
# define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
# define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
# define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
# define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
# define set_irq_type(irq, type) do {} while(0)
# elif defined(CONFIG_ISA)
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_inb(a, r) inb((a) + (r))
# define SMC_inw(a, r) inw((a) + (r))
# define SMC_outb(v, a, r) outb(v, (a) + (r))
# define SMC_outw(v, a, r) outw(v, (a) + (r))
# define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
# define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
# elif defined(CONFIG_M32R)
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
2005-10-30 15:00:06 -08:00
# define SMC_inb(a, r) inb((u32)a) + (r))
# define SMC_inw(a, r) inw(((u32)a) + (r))
# define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
# define SMC_outw(v, a, r) outw(v, ((u32)a) + (r))
# define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
# define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
2005-04-16 15:20:36 -07:00
# define set_irq_type(irq, type) do {} while(0)
# define RPC_LSA_DEFAULT RPC_LED_TX_RX
# define RPC_LSB_DEFAULT RPC_LED_100_10
# elif defined(CONFIG_MACH_LPD7A400) || defined(CONFIG_MACH_LPD7A404)
/* The LPD7A40X_IOBARRIER is necessary to overcome a mismatch between
* the way that the CPU handles chip selects and the way that the SMC
* chip expects the chip select to operate . Refer to
* Documentation / arm / Sharp - LH / IOBarrier for details . The read from
* IOBARRIER is a byte as a least - common denominator of possible
* regions to use as the barrier . It would be wasteful to read 32
* bits from a byte oriented region .
*
* There is no explicit protection against interrupts intervening
* between the writew and the IOBARRIER . In SMC ISR there is a
* preamble that performs an IOBARRIER in the extremely unlikely event
* that the driver interrupts itself between a writew to the chip an
* the IOBARRIER that follows * and * the cache is large enough that the
* first off - chip access while handing the interrupt is to the SMC
* chip . Other devices in the same address space as the SMC chip must
* be aware of the potential for trouble and perform a similar
* IOBARRIER on entry to their ISR .
*/
# include <asm/arch/constants.h> /* IOBARRIER_VIRT */
# define SMC_CAN_USE_8BIT 0
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 0
# define SMC_NOWAIT 0
# define LPD7A40X_IOBARRIER readb (IOBARRIER_VIRT)
# define SMC_inw(a,r) readw ((void*) ((a) + (r)))
# define SMC_insw(a,r,p,l) readsw ((void*) ((a) + (r)), p, l)
# define SMC_outw(v,a,r) ({ writew ((v), (a) + (r)); LPD7A40X_IOBARRIER; })
static inline void SMC_outsw ( unsigned long a , int r , unsigned char * p , int l )
{
unsigned short * ps = ( unsigned short * ) p ;
while ( l - - > 0 ) {
writew ( * ps + + , a + r ) ;
LPD7A40X_IOBARRIER ;
}
}
# define SMC_INTERRUPT_PREAMBLE LPD7A40X_IOBARRIER
# define RPC_LSA_DEFAULT RPC_LED_TX_RX
# define RPC_LSB_DEFAULT RPC_LED_100_10
# else
# define SMC_CAN_USE_8BIT 1
# define SMC_CAN_USE_16BIT 1
# define SMC_CAN_USE_32BIT 1
# define SMC_NOWAIT 1
# define SMC_inb(a, r) readb((a) + (r))
# define SMC_inw(a, r) readw((a) + (r))
# define SMC_inl(a, r) readl((a) + (r))
# define SMC_outb(v, a, r) writeb(v, (a) + (r))
# define SMC_outw(v, a, r) writew(v, (a) + (r))
# define SMC_outl(v, a, r) writel(v, (a) + (r))
# define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
# define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
# define RPC_LSA_DEFAULT RPC_LED_100_10
# define RPC_LSB_DEFAULT RPC_LED_TX_RX
# endif
2005-05-16 08:53:52 -07:00
# ifndef SMC_IRQ_TRIGGER_TYPE
# define SMC_IRQ_TRIGGER_TYPE IRQT_RISING
# endif
2005-04-16 15:20:36 -07:00
# ifdef SMC_USE_PXA_DMA
/*
* Let ' s use the DMA engine on the XScale PXA2xx for RX packets . This is
* always happening in irq context so no need to worry about races . TX is
* different and probably not worth it for that reason , and not as critical
* as RX which can overrun memory and lose packets .
*/
# include <linux/dma-mapping.h>
# include <asm/dma.h>
# include <asm/arch/pxa-regs.h>
# ifdef SMC_insl
# undef SMC_insl
# define SMC_insl(a, r, p, l) \
smc_pxa_dma_insl ( a , lp - > physaddr , r , dev - > dma , p , l )
static inline void
2005-05-12 20:19:09 -04:00
smc_pxa_dma_insl ( void __iomem * ioaddr , u_long physaddr , int reg , int dma ,
2005-04-16 15:20:36 -07:00
u_char * buf , int len )
{
dma_addr_t dmabuf ;
/* fallback if no DMA available */
if ( dma = = ( unsigned char ) - 1 ) {
readsl ( ioaddr + reg , buf , len ) ;
return ;
}
/* 64 bit alignment is required for memory to memory DMA */
if ( ( long ) buf & 4 ) {
* ( ( u32 * ) buf ) = SMC_inl ( ioaddr , reg ) ;
buf + = 4 ;
len - - ;
}
len * = 4 ;
dmabuf = dma_map_single ( NULL , buf , len , DMA_FROM_DEVICE ) ;
DCSR ( dma ) = DCSR_NODESC ;
DTADR ( dma ) = dmabuf ;
DSADR ( dma ) = physaddr + reg ;
DCMD ( dma ) = ( DCMD_INCTRGADDR | DCMD_BURST32 |
DCMD_WIDTH4 | ( DCMD_LENGTH & len ) ) ;
DCSR ( dma ) = DCSR_NODESC | DCSR_RUN ;
while ( ! ( DCSR ( dma ) & DCSR_STOPSTATE ) )
cpu_relax ( ) ;
DCSR ( dma ) = 0 ;
dma_unmap_single ( NULL , dmabuf , len , DMA_FROM_DEVICE ) ;
}
# endif
# ifdef SMC_insw
# undef SMC_insw
# define SMC_insw(a, r, p, l) \
smc_pxa_dma_insw ( a , lp - > physaddr , r , dev - > dma , p , l )
static inline void
2005-05-12 20:19:09 -04:00
smc_pxa_dma_insw ( void __iomem * ioaddr , u_long physaddr , int reg , int dma ,
2005-04-16 15:20:36 -07:00
u_char * buf , int len )
{
dma_addr_t dmabuf ;
/* fallback if no DMA available */
if ( dma = = ( unsigned char ) - 1 ) {
readsw ( ioaddr + reg , buf , len ) ;
return ;
}
/* 64 bit alignment is required for memory to memory DMA */
while ( ( long ) buf & 6 ) {
* ( ( u16 * ) buf ) = SMC_inw ( ioaddr , reg ) ;
buf + = 2 ;
len - - ;
}
len * = 2 ;
dmabuf = dma_map_single ( NULL , buf , len , DMA_FROM_DEVICE ) ;
DCSR ( dma ) = DCSR_NODESC ;
DTADR ( dma ) = dmabuf ;
DSADR ( dma ) = physaddr + reg ;
DCMD ( dma ) = ( DCMD_INCTRGADDR | DCMD_BURST32 |
DCMD_WIDTH2 | ( DCMD_LENGTH & len ) ) ;
DCSR ( dma ) = DCSR_NODESC | DCSR_RUN ;
while ( ! ( DCSR ( dma ) & DCSR_STOPSTATE ) )
cpu_relax ( ) ;
DCSR ( dma ) = 0 ;
dma_unmap_single ( NULL , dmabuf , len , DMA_FROM_DEVICE ) ;
}
# endif
static void
smc_pxa_dma_irq ( int dma , void * dummy , struct pt_regs * regs )
{
DCSR ( dma ) = 0 ;
}
# endif /* SMC_USE_PXA_DMA */
/* Because of bank switching, the LAN91x uses only 16 I/O ports */
# ifndef SMC_IO_SHIFT
# define SMC_IO_SHIFT 0
# endif
# define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
# define SMC_DATA_EXTENT (4)
/*
. Bank Select Register :
.
. yyyy yyyy 0000 00 xx
. xx = bank number
. yyyy yyyy = 0x33 , for identification purposes .
*/
# define BANK_SELECT (14 << SMC_IO_SHIFT)
// Transmit Control Register
/* BANK 0 */
# define TCR_REG SMC_REG(0x0000, 0)
# define TCR_ENABLE 0x0001 // When 1 we can transmit
# define TCR_LOOP 0x0002 // Controls output pin LBK
# define TCR_FORCOL 0x0004 // When 1 will force a collision
# define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
# define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
# define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
# define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
# define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
# define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
# define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
# define TCR_CLEAR 0 /* do NOTHING */
/* the default settings for the TCR register : */
# define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
// EPH Status Register
/* BANK 0 */
# define EPH_STATUS_REG SMC_REG(0x0002, 0)
# define ES_TX_SUC 0x0001 // Last TX was successful
# define ES_SNGL_COL 0x0002 // Single collision detected for last tx
# define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
# define ES_LTX_MULT 0x0008 // Last tx was a multicast
# define ES_16COL 0x0010 // 16 Collisions Reached
# define ES_SQET 0x0020 // Signal Quality Error Test
# define ES_LTXBRD 0x0040 // Last tx was a broadcast
# define ES_TXDEFR 0x0080 // Transmit Deferred
# define ES_LATCOL 0x0200 // Late collision detected on last tx
# define ES_LOSTCARR 0x0400 // Lost Carrier Sense
# define ES_EXC_DEF 0x0800 // Excessive Deferral
# define ES_CTR_ROL 0x1000 // Counter Roll Over indication
# define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
# define ES_TXUNRN 0x8000 // Tx Underrun
// Receive Control Register
/* BANK 0 */
# define RCR_REG SMC_REG(0x0004, 0)
# define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
# define RCR_PRMS 0x0002 // Enable promiscuous mode
# define RCR_ALMUL 0x0004 // When set accepts all multicast frames
# define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
# define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
# define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
# define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
# define RCR_SOFTRST 0x8000 // resets the chip
/* the normal settings for the RCR register : */
# define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
# define RCR_CLEAR 0x0 // set it to a base state
// Counter Register
/* BANK 0 */
# define COUNTER_REG SMC_REG(0x0006, 0)
// Memory Information Register
/* BANK 0 */
# define MIR_REG SMC_REG(0x0008, 0)
// Receive/Phy Control Register
/* BANK 0 */
# define RPC_REG SMC_REG(0x000A, 0)
# define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
# define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
# define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
# define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
# define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
# define RPC_LED_100_10 (0x00) // LED = 100Mbps OR's with 10Mbps link detect
# define RPC_LED_RES (0x01) // LED = Reserved
# define RPC_LED_10 (0x02) // LED = 10Mbps link detect
# define RPC_LED_FD (0x03) // LED = Full Duplex Mode
# define RPC_LED_TX_RX (0x04) // LED = TX or RX packet occurred
# define RPC_LED_100 (0x05) // LED = 100Mbps link dectect
# define RPC_LED_TX (0x06) // LED = TX packet occurred
# define RPC_LED_RX (0x07) // LED = RX packet occurred
# ifndef RPC_LSA_DEFAULT
# define RPC_LSA_DEFAULT RPC_LED_100
# endif
# ifndef RPC_LSB_DEFAULT
# define RPC_LSB_DEFAULT RPC_LED_FD
# endif
# define RPC_DEFAULT (RPC_ANEG | (RPC_LSA_DEFAULT << RPC_LSXA_SHFT) | (RPC_LSB_DEFAULT << RPC_LSXB_SHFT) | RPC_SPEED | RPC_DPLX)
/* Bank 0 0x0C is reserved */
// Bank Select Register
/* All Banks */
# define BSR_REG 0x000E
// Configuration Reg
/* BANK 1 */
# define CONFIG_REG SMC_REG(0x0000, 1)
# define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
# define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
# define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
# define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
# define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
// Base Address Register
/* BANK 1 */
# define BASE_REG SMC_REG(0x0002, 1)
// Individual Address Registers
/* BANK 1 */
# define ADDR0_REG SMC_REG(0x0004, 1)
# define ADDR1_REG SMC_REG(0x0006, 1)
# define ADDR2_REG SMC_REG(0x0008, 1)
// General Purpose Register
/* BANK 1 */
# define GP_REG SMC_REG(0x000A, 1)
// Control Register
/* BANK 1 */
# define CTL_REG SMC_REG(0x000C, 1)
# define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
# define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
# define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
# define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
# define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
# define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
# define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
# define CTL_STORE 0x0001 // When set stores registers into EEPROM
// MMU Command Register
/* BANK 2 */
# define MMU_CMD_REG SMC_REG(0x0000, 2)
# define MC_BUSY 1 // When 1 the last release has not completed
# define MC_NOP (0<<5) // No Op
# define MC_ALLOC (1<<5) // OR with number of 256 byte packets
# define MC_RESET (2<<5) // Reset MMU to initial state
# define MC_REMOVE (3<<5) // Remove the current rx packet
# define MC_RELEASE (4<<5) // Remove and release the current rx packet
# define MC_FREEPKT (5<<5) // Release packet in PNR register
# define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
# define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
// Packet Number Register
/* BANK 2 */
# define PN_REG SMC_REG(0x0002, 2)
// Allocation Result Register
/* BANK 2 */
# define AR_REG SMC_REG(0x0003, 2)
# define AR_FAILED 0x80 // Alocation Failed
// TX FIFO Ports Register
/* BANK 2 */
# define TXFIFO_REG SMC_REG(0x0004, 2)
# define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
// RX FIFO Ports Register
/* BANK 2 */
# define RXFIFO_REG SMC_REG(0x0005, 2)
# define RXFIFO_REMPTY 0x80 // RX FIFO Empty
# define FIFO_REG SMC_REG(0x0004, 2)
// Pointer Register
/* BANK 2 */
# define PTR_REG SMC_REG(0x0006, 2)
# define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
# define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
# define PTR_READ 0x2000 // When 1 the operation is a read
// Data Register
/* BANK 2 */
# define DATA_REG SMC_REG(0x0008, 2)
// Interrupt Status/Acknowledge Register
/* BANK 2 */
# define INT_REG SMC_REG(0x000C, 2)
// Interrupt Mask Register
/* BANK 2 */
# define IM_REG SMC_REG(0x000D, 2)
# define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
# define IM_ERCV_INT 0x40 // Early Receive Interrupt
# define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
# define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
# define IM_ALLOC_INT 0x08 // Set when allocation request is completed
# define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
# define IM_TX_INT 0x02 // Transmit Interrupt
# define IM_RCV_INT 0x01 // Receive Interrupt
// Multicast Table Registers
/* BANK 3 */
# define MCAST_REG1 SMC_REG(0x0000, 3)
# define MCAST_REG2 SMC_REG(0x0002, 3)
# define MCAST_REG3 SMC_REG(0x0004, 3)
# define MCAST_REG4 SMC_REG(0x0006, 3)
// Management Interface Register (MII)
/* BANK 3 */
# define MII_REG SMC_REG(0x0008, 3)
# define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
# define MII_MDOE 0x0008 // MII Output Enable
# define MII_MCLK 0x0004 // MII Clock, pin MDCLK
# define MII_MDI 0x0002 // MII Input, pin MDI
# define MII_MDO 0x0001 // MII Output, pin MDO
// Revision Register
/* BANK 3 */
/* ( hi: chip id low: rev # ) */
# define REV_REG SMC_REG(0x000A, 3)
// Early RCV Register
/* BANK 3 */
/* this is NOT on SMC9192 */
# define ERCV_REG SMC_REG(0x000C, 3)
# define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
# define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
// External Register
/* BANK 7 */
# define EXT_REG SMC_REG(0x0000, 7)
# define CHIP_9192 3
# define CHIP_9194 4
# define CHIP_9195 5
# define CHIP_9196 6
# define CHIP_91100 7
# define CHIP_91100FD 8
# define CHIP_91111FD 9
static const char * chip_ids [ 16 ] = {
NULL , NULL , NULL ,
/* 3 */ " SMC91C90/91C92 " ,
/* 4 */ " SMC91C94 " ,
/* 5 */ " SMC91C95 " ,
/* 6 */ " SMC91C96 " ,
/* 7 */ " SMC91C100 " ,
/* 8 */ " SMC91C100FD " ,
/* 9 */ " SMC91C11xFD " ,
NULL , NULL , NULL ,
NULL , NULL , NULL } ;
/*
. Receive status bits
*/
# define RS_ALGNERR 0x8000
# define RS_BRODCAST 0x4000
# define RS_BADCRC 0x2000
# define RS_ODDFRAME 0x1000
# define RS_TOOLONG 0x0800
# define RS_TOOSHORT 0x0400
# define RS_MULTICAST 0x0001
# define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
/*
* PHY IDs
* LAN83C183 = = LAN91C111 Internal PHY
*/
# define PHY_LAN83C183 0x0016f840
# define PHY_LAN83C180 0x02821c50
/*
* PHY Register Addresses ( LAN91C111 Internal PHY )
*
* Generic PHY registers can be found in < linux / mii . h >
*
* These phy registers are specific to our on - board phy .
*/
// PHY Configuration Register 1
# define PHY_CFG1_REG 0x10
# define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
# define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
# define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
# define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
# define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
# define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
# define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
# define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
# define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
# define PHY_CFG1_TLVL_MASK 0x003C
# define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
// PHY Configuration Register 2
# define PHY_CFG2_REG 0x11
# define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
# define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
# define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
# define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
// PHY Status Output (and Interrupt status) Register
# define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
# define PHY_INT_INT 0x8000 // 1=bits have changed since last read
# define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
# define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
# define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
# define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
# define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
# define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
# define PHY_INT_JAB 0x0100 // 1=Jabber detected
# define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
# define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
// PHY Interrupt/Status Mask Register
# define PHY_MASK_REG 0x13 // Interrupt Mask
// Uses the same bit definitions as PHY_INT_REG
/*
* SMC91C96 ethernet config and status registers .
* These are in the " attribute " space .
*/
# define ECOR 0x8000
# define ECOR_RESET 0x80
# define ECOR_LEVEL_IRQ 0x40
# define ECOR_WR_ATTRIB 0x04
# define ECOR_ENABLE 0x01
# define ECSR 0x8002
# define ECSR_IOIS8 0x20
# define ECSR_PWRDWN 0x04
# define ECSR_INT 0x02
# define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
/*
* Macros to abstract register access according to the data bus
* capabilities . Please use those and not the in / out primitives .
* Note : the following macros do * not * select the bank - - this must
* be done separately as needed in the main code . The SMC_REG ( ) macro
* only uses the bank argument for debugging purposes ( when enabled ) .
*/
# if SMC_DEBUG > 0
# define SMC_REG(reg, bank) \
( { \
int __b = SMC_CURRENT_BANK ( ) ; \
if ( unlikely ( ( __b & ~ 0xf0 ) ! = ( 0x3300 | bank ) ) ) { \
printk ( " %s: bank reg screwed (0x%04x) \n " , \
CARDNAME , __b ) ; \
BUG ( ) ; \
} \
reg < < SMC_IO_SHIFT ; \
} )
# else
# define SMC_REG(reg, bank) (reg<<SMC_IO_SHIFT)
# endif
# if SMC_CAN_USE_8BIT
# define SMC_GET_PN() SMC_inb( ioaddr, PN_REG )
# define SMC_SET_PN(x) SMC_outb( x, ioaddr, PN_REG )
# define SMC_GET_AR() SMC_inb( ioaddr, AR_REG )
# define SMC_GET_TXFIFO() SMC_inb( ioaddr, TXFIFO_REG )
# define SMC_GET_RXFIFO() SMC_inb( ioaddr, RXFIFO_REG )
# define SMC_GET_INT() SMC_inb( ioaddr, INT_REG )
# define SMC_ACK_INT(x) SMC_outb( x, ioaddr, INT_REG )
# define SMC_GET_INT_MASK() SMC_inb( ioaddr, IM_REG )
# define SMC_SET_INT_MASK(x) SMC_outb( x, ioaddr, IM_REG )
# else
# define SMC_GET_PN() (SMC_inw( ioaddr, PN_REG ) & 0xFF)
# define SMC_SET_PN(x) SMC_outw( x, ioaddr, PN_REG )
# define SMC_GET_AR() (SMC_inw( ioaddr, PN_REG ) >> 8)
# define SMC_GET_TXFIFO() (SMC_inw( ioaddr, TXFIFO_REG ) & 0xFF)
# define SMC_GET_RXFIFO() (SMC_inw( ioaddr, TXFIFO_REG ) >> 8)
# define SMC_GET_INT() (SMC_inw( ioaddr, INT_REG ) & 0xFF)
# define SMC_ACK_INT(x) \
do { \
unsigned long __flags ; \
int __mask ; \
local_irq_save ( __flags ) ; \
__mask = SMC_inw ( ioaddr , INT_REG ) & ~ 0xff ; \
SMC_outw ( __mask | ( x ) , ioaddr , INT_REG ) ; \
local_irq_restore ( __flags ) ; \
} while ( 0 )
# define SMC_GET_INT_MASK() (SMC_inw( ioaddr, INT_REG ) >> 8)
# define SMC_SET_INT_MASK(x) SMC_outw( (x) << 8, ioaddr, INT_REG )
# endif
# define SMC_CURRENT_BANK() SMC_inw( ioaddr, BANK_SELECT )
# define SMC_SELECT_BANK(x) SMC_outw( x, ioaddr, BANK_SELECT )
# define SMC_GET_BASE() SMC_inw( ioaddr, BASE_REG )
# define SMC_SET_BASE(x) SMC_outw( x, ioaddr, BASE_REG )
# define SMC_GET_CONFIG() SMC_inw( ioaddr, CONFIG_REG )
# define SMC_SET_CONFIG(x) SMC_outw( x, ioaddr, CONFIG_REG )
# define SMC_GET_COUNTER() SMC_inw( ioaddr, COUNTER_REG )
# define SMC_GET_CTL() SMC_inw( ioaddr, CTL_REG )
# define SMC_SET_CTL(x) SMC_outw( x, ioaddr, CTL_REG )
# define SMC_GET_MII() SMC_inw( ioaddr, MII_REG )
# define SMC_SET_MII(x) SMC_outw( x, ioaddr, MII_REG )
# define SMC_GET_MIR() SMC_inw( ioaddr, MIR_REG )
# define SMC_SET_MIR(x) SMC_outw( x, ioaddr, MIR_REG )
# define SMC_GET_MMU_CMD() SMC_inw( ioaddr, MMU_CMD_REG )
# define SMC_SET_MMU_CMD(x) SMC_outw( x, ioaddr, MMU_CMD_REG )
# define SMC_GET_FIFO() SMC_inw( ioaddr, FIFO_REG )
# define SMC_GET_PTR() SMC_inw( ioaddr, PTR_REG )
# define SMC_SET_PTR(x) SMC_outw( x, ioaddr, PTR_REG )
2005-04-12 16:21:11 -04:00
# define SMC_GET_EPH_STATUS() SMC_inw( ioaddr, EPH_STATUS_REG )
2005-04-16 15:20:36 -07:00
# define SMC_GET_RCR() SMC_inw( ioaddr, RCR_REG )
# define SMC_SET_RCR(x) SMC_outw( x, ioaddr, RCR_REG )
# define SMC_GET_REV() SMC_inw( ioaddr, REV_REG )
# define SMC_GET_RPC() SMC_inw( ioaddr, RPC_REG )
# define SMC_SET_RPC(x) SMC_outw( x, ioaddr, RPC_REG )
# define SMC_GET_TCR() SMC_inw( ioaddr, TCR_REG )
# define SMC_SET_TCR(x) SMC_outw( x, ioaddr, TCR_REG )
# ifndef SMC_GET_MAC_ADDR
# define SMC_GET_MAC_ADDR(addr) \
do { \
unsigned int __v ; \
__v = SMC_inw ( ioaddr , ADDR0_REG ) ; \
addr [ 0 ] = __v ; addr [ 1 ] = __v > > 8 ; \
__v = SMC_inw ( ioaddr , ADDR1_REG ) ; \
addr [ 2 ] = __v ; addr [ 3 ] = __v > > 8 ; \
__v = SMC_inw ( ioaddr , ADDR2_REG ) ; \
addr [ 4 ] = __v ; addr [ 5 ] = __v > > 8 ; \
} while ( 0 )
# endif
# define SMC_SET_MAC_ADDR(addr) \
do { \
SMC_outw ( addr [ 0 ] | ( addr [ 1 ] < < 8 ) , ioaddr , ADDR0_REG ) ; \
SMC_outw ( addr [ 2 ] | ( addr [ 3 ] < < 8 ) , ioaddr , ADDR1_REG ) ; \
SMC_outw ( addr [ 4 ] | ( addr [ 5 ] < < 8 ) , ioaddr , ADDR2_REG ) ; \
} while ( 0 )
# define SMC_SET_MCAST(x) \
do { \
const unsigned char * mt = ( x ) ; \
SMC_outw ( mt [ 0 ] | ( mt [ 1 ] < < 8 ) , ioaddr , MCAST_REG1 ) ; \
SMC_outw ( mt [ 2 ] | ( mt [ 3 ] < < 8 ) , ioaddr , MCAST_REG2 ) ; \
SMC_outw ( mt [ 4 ] | ( mt [ 5 ] < < 8 ) , ioaddr , MCAST_REG3 ) ; \
SMC_outw ( mt [ 6 ] | ( mt [ 7 ] < < 8 ) , ioaddr , MCAST_REG4 ) ; \
} while ( 0 )
# if SMC_CAN_USE_32BIT
/*
* Some setups just can ' t write 8 or 16 bits reliably when not aligned
* to a 32 bit boundary . I tell you that exists !
* We re - do the ones here that can be easily worked around if they can have
* their low parts written to 0 without adverse effects .
*/
# undef SMC_SELECT_BANK
# define SMC_SELECT_BANK(x) SMC_outl( (x)<<16, ioaddr, 12<<SMC_IO_SHIFT )
# undef SMC_SET_RPC
# define SMC_SET_RPC(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(8, 0) )
# undef SMC_SET_PN
# define SMC_SET_PN(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(0, 2) )
# undef SMC_SET_PTR
# define SMC_SET_PTR(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(4, 2) )
# endif
# if SMC_CAN_USE_32BIT
# define SMC_PUT_PKT_HDR(status, length) \
SMC_outl ( ( status ) | ( length ) < < 16 , ioaddr , DATA_REG )
# define SMC_GET_PKT_HDR(status, length) \
do { \
unsigned int __val = SMC_inl ( ioaddr , DATA_REG ) ; \
( status ) = __val & 0xffff ; \
( length ) = __val > > 16 ; \
} while ( 0 )
# else
# define SMC_PUT_PKT_HDR(status, length) \
do { \
SMC_outw ( status , ioaddr , DATA_REG ) ; \
SMC_outw ( length , ioaddr , DATA_REG ) ; \
} while ( 0 )
# define SMC_GET_PKT_HDR(status, length) \
do { \
( status ) = SMC_inw ( ioaddr , DATA_REG ) ; \
( length ) = SMC_inw ( ioaddr , DATA_REG ) ; \
} while ( 0 )
# endif
# if SMC_CAN_USE_32BIT
# define _SMC_PUSH_DATA(p, l) \
do { \
char * __ptr = ( p ) ; \
int __len = ( l ) ; \
if ( __len > = 2 & & ( unsigned long ) __ptr & 2 ) { \
__len - = 2 ; \
SMC_outw ( * ( u16 * ) __ptr , ioaddr , DATA_REG ) ; \
__ptr + = 2 ; \
} \
SMC_outsl ( ioaddr , DATA_REG , __ptr , __len > > 2 ) ; \
if ( __len & 2 ) { \
__ptr + = ( __len & ~ 3 ) ; \
SMC_outw ( * ( ( u16 * ) __ptr ) , ioaddr , DATA_REG ) ; \
} \
} while ( 0 )
# define _SMC_PULL_DATA(p, l) \
do { \
char * __ptr = ( p ) ; \
int __len = ( l ) ; \
if ( ( unsigned long ) __ptr & 2 ) { \
/* \
* We want 32 bit alignment here . \
* Since some buses perform a full 32 bit \
* fetch even for 16 bit data we can ' t use \
* SMC_inw ( ) here . Back both source ( on chip \
* and destination ) pointers of 2 bytes . \
*/ \
__ptr - = 2 ; \
__len + = 2 ; \
SMC_SET_PTR ( 2 | PTR_READ | PTR_RCV | PTR_AUTOINC ) ; \
} \
__len + = 2 ; \
SMC_insl ( ioaddr , DATA_REG , __ptr , __len > > 2 ) ; \
} while ( 0 )
# elif SMC_CAN_USE_16BIT
# define _SMC_PUSH_DATA(p, l) SMC_outsw( ioaddr, DATA_REG, p, (l) >> 1 )
# define _SMC_PULL_DATA(p, l) SMC_insw ( ioaddr, DATA_REG, p, (l) >> 1 )
# elif SMC_CAN_USE_8BIT
# define _SMC_PUSH_DATA(p, l) SMC_outsb( ioaddr, DATA_REG, p, l )
# define _SMC_PULL_DATA(p, l) SMC_insb ( ioaddr, DATA_REG, p, l )
# endif
# if ! SMC_CAN_USE_16BIT
# define SMC_outw(x, ioaddr, reg) \
do { \
unsigned int __val16 = ( x ) ; \
SMC_outb ( __val16 , ioaddr , reg ) ; \
SMC_outb ( __val16 > > 8 , ioaddr , reg + ( 1 < < SMC_IO_SHIFT ) ) ; \
} while ( 0 )
# define SMC_inw(ioaddr, reg) \
( { \
unsigned int __val16 ; \
__val16 = SMC_inb ( ioaddr , reg ) ; \
__val16 | = SMC_inb ( ioaddr , reg + ( 1 < < SMC_IO_SHIFT ) ) < < 8 ; \
__val16 ; \
} )
# endif
2005-09-07 23:25:15 +01:00
# ifdef SMC_CAN_USE_DATACS
2005-04-16 15:20:36 -07:00
# define SMC_PUSH_DATA(p, l) \
if ( lp - > datacs ) { \
unsigned char * __ptr = ( p ) ; \
int __len = ( l ) ; \
if ( __len > = 2 & & ( unsigned long ) __ptr & 2 ) { \
__len - = 2 ; \
SMC_outw ( * ( ( u16 * ) __ptr ) , ioaddr , DATA_REG ) ; \
__ptr + = 2 ; \
} \
outsl ( lp - > datacs , __ptr , __len > > 2 ) ; \
if ( __len & 2 ) { \
__ptr + = ( __len & ~ 3 ) ; \
SMC_outw ( * ( ( u16 * ) __ptr ) , ioaddr , DATA_REG ) ; \
} \
} else { \
_SMC_PUSH_DATA ( p , l ) ; \
}
# define SMC_PULL_DATA(p, l) \
if ( lp - > datacs ) { \
unsigned char * __ptr = ( p ) ; \
int __len = ( l ) ; \
if ( ( unsigned long ) __ptr & 2 ) { \
/* \
* We want 32 bit alignment here . \
* Since some buses perform a full 32 bit \
* fetch even for 16 bit data we can ' t use \
* SMC_inw ( ) here . Back both source ( on chip \
* and destination ) pointers of 2 bytes . \
*/ \
__ptr - = 2 ; \
__len + = 2 ; \
SMC_SET_PTR ( 2 | PTR_READ | PTR_RCV | PTR_AUTOINC ) ; \
} \
__len + = 2 ; \
insl ( lp - > datacs , __ptr , __len > > 2 ) ; \
} else { \
_SMC_PULL_DATA ( p , l ) ; \
}
# else
# define SMC_PUSH_DATA(p, l) _SMC_PUSH_DATA(p, l)
# define SMC_PULL_DATA(p, l) _SMC_PULL_DATA(p, l)
# endif
# if !defined (SMC_INTERRUPT_PREAMBLE)
# define SMC_INTERRUPT_PREAMBLE
# endif
# endif /* _SMC91X_H_ */