linux/drivers/net/mctp/mctp-i2c.c

1082 lines
27 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Management Controller Transport Protocol (MCTP)
* Implements DMTF specification
* "DSP0237 Management Component Transport Protocol (MCTP) SMBus/I2C
* Transport Binding"
* https://www.dmtf.org/sites/default/files/standards/documents/DSP0237_1.2.0.pdf
*
* A netdev is created for each I2C bus that handles MCTP. In the case of an I2C
* mux topology a single I2C client is attached to the root of the mux topology,
* shared between all mux I2C busses underneath. For non-mux cases an I2C client
* is attached per netdev.
*
* mctp-i2c-controller.yml devicetree binding has further details.
*
* Copyright (c) 2022 Code Construct
* Copyright (c) 2022 Google
*/
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/i2c.h>
#include <linux/i2c-mux.h>
#include <linux/if_arp.h>
#include <net/mctp.h>
#include <net/mctpdevice.h>
/* byte_count is limited to u8 */
#define MCTP_I2C_MAXBLOCK 255
/* One byte is taken by source_slave */
#define MCTP_I2C_MAXMTU (MCTP_I2C_MAXBLOCK - 1)
#define MCTP_I2C_MINMTU (64 + 4)
/* Allow space for dest_address, command, byte_count, data, PEC */
#define MCTP_I2C_BUFSZ (3 + MCTP_I2C_MAXBLOCK + 1)
#define MCTP_I2C_MINLEN 8
#define MCTP_I2C_COMMANDCODE 0x0f
#define MCTP_I2C_TX_WORK_LEN 100
/* Sufficient for 64kB at min mtu */
#define MCTP_I2C_TX_QUEUE_LEN 1100
#define MCTP_I2C_OF_PROP "mctp-controller"
enum {
MCTP_I2C_FLOW_STATE_NEW = 0,
MCTP_I2C_FLOW_STATE_ACTIVE,
};
/* List of all struct mctp_i2c_client
* Lock protects driver_clients and also prevents adding/removing adapters
* during mctp_i2c_client probe/remove.
*/
static DEFINE_MUTEX(driver_clients_lock);
static LIST_HEAD(driver_clients);
struct mctp_i2c_client;
/* The netdev structure. One of these per I2C adapter. */
struct mctp_i2c_dev {
struct net_device *ndev;
struct i2c_adapter *adapter;
struct mctp_i2c_client *client;
struct list_head list; /* For mctp_i2c_client.devs */
size_t rx_pos;
u8 rx_buffer[MCTP_I2C_BUFSZ];
struct completion rx_done;
struct task_struct *tx_thread;
wait_queue_head_t tx_wq;
struct sk_buff_head tx_queue;
u8 tx_scratch[MCTP_I2C_BUFSZ];
/* A fake entry in our tx queue to perform an unlock operation */
struct sk_buff unlock_marker;
/* Spinlock protects i2c_lock_count, release_count, allow_rx */
spinlock_t lock;
int i2c_lock_count;
int release_count;
/* Indicates that the netif is ready to receive incoming packets */
bool allow_rx;
};
/* The i2c client structure. One per hardware i2c bus at the top of the
* mux tree, shared by multiple netdevs
*/
struct mctp_i2c_client {
struct i2c_client *client;
u8 lladdr;
struct mctp_i2c_dev *sel;
struct list_head devs;
spinlock_t sel_lock; /* Protects sel and devs */
struct list_head list; /* For driver_clients */
};
/* Header on the wire. */
struct mctp_i2c_hdr {
u8 dest_slave;
u8 command;
/* Count of bytes following byte_count, excluding PEC */
u8 byte_count;
u8 source_slave;
};
static int mctp_i2c_recv(struct mctp_i2c_dev *midev);
static int mctp_i2c_slave_cb(struct i2c_client *client,
enum i2c_slave_event event, u8 *val);
static void mctp_i2c_ndo_uninit(struct net_device *dev);
static int mctp_i2c_ndo_open(struct net_device *dev);
static struct i2c_adapter *mux_root_adapter(struct i2c_adapter *adap)
{
#if IS_ENABLED(CONFIG_I2C_MUX)
return i2c_root_adapter(&adap->dev);
#else
/* In non-mux config all i2c adapters are root adapters */
return adap;
#endif
}
/* Creates a new i2c slave device attached to the root adapter.
* Sets up the slave callback.
* Must be called with a client on a root adapter.
*/
static struct mctp_i2c_client *mctp_i2c_new_client(struct i2c_client *client)
{
struct mctp_i2c_client *mcli = NULL;
struct i2c_adapter *root = NULL;
int rc;
if (client->flags & I2C_CLIENT_TEN) {
dev_err(&client->dev, "failed, MCTP requires a 7-bit I2C address, addr=0x%x\n",
client->addr);
rc = -EINVAL;
goto err;
}
root = mux_root_adapter(client->adapter);
if (!root) {
dev_err(&client->dev, "failed to find root adapter\n");
rc = -ENOENT;
goto err;
}
if (root != client->adapter) {
dev_err(&client->dev,
"A mctp-i2c-controller client cannot be placed on an I2C mux adapter.\n"
" It should be placed on the mux tree root adapter\n"
" then set mctp-controller property on adapters to attach\n");
rc = -EINVAL;
goto err;
}
mcli = kzalloc(sizeof(*mcli), GFP_KERNEL);
if (!mcli) {
rc = -ENOMEM;
goto err;
}
spin_lock_init(&mcli->sel_lock);
INIT_LIST_HEAD(&mcli->devs);
INIT_LIST_HEAD(&mcli->list);
mcli->lladdr = client->addr & 0xff;
mcli->client = client;
i2c_set_clientdata(client, mcli);
rc = i2c_slave_register(mcli->client, mctp_i2c_slave_cb);
if (rc < 0) {
dev_err(&client->dev, "i2c register failed %d\n", rc);
mcli->client = NULL;
i2c_set_clientdata(client, NULL);
goto err;
}
return mcli;
err:
if (mcli) {
if (mcli->client)
i2c_unregister_device(mcli->client);
kfree(mcli);
}
return ERR_PTR(rc);
}
static void mctp_i2c_free_client(struct mctp_i2c_client *mcli)
{
int rc;
WARN_ON(!mutex_is_locked(&driver_clients_lock));
WARN_ON(!list_empty(&mcli->devs));
WARN_ON(mcli->sel); /* sanity check, no locking */
rc = i2c_slave_unregister(mcli->client);
/* Leak if it fails, we can't propagate errors upwards */
if (rc < 0)
dev_err(&mcli->client->dev, "i2c unregister failed %d\n", rc);
else
kfree(mcli);
}
/* Switch the mctp i2c device to receive responses.
* Call with sel_lock held
*/
static void __mctp_i2c_device_select(struct mctp_i2c_client *mcli,
struct mctp_i2c_dev *midev)
{
assert_spin_locked(&mcli->sel_lock);
if (midev)
dev_hold(midev->ndev);
if (mcli->sel)
dev_put(mcli->sel->ndev);
mcli->sel = midev;
}
/* Switch the mctp i2c device to receive responses */
static void mctp_i2c_device_select(struct mctp_i2c_client *mcli,
struct mctp_i2c_dev *midev)
{
unsigned long flags;
spin_lock_irqsave(&mcli->sel_lock, flags);
__mctp_i2c_device_select(mcli, midev);
spin_unlock_irqrestore(&mcli->sel_lock, flags);
}
static int mctp_i2c_slave_cb(struct i2c_client *client,
enum i2c_slave_event event, u8 *val)
{
struct mctp_i2c_client *mcli = i2c_get_clientdata(client);
struct mctp_i2c_dev *midev = NULL;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&mcli->sel_lock, flags);
midev = mcli->sel;
if (midev)
dev_hold(midev->ndev);
spin_unlock_irqrestore(&mcli->sel_lock, flags);
if (!midev)
return 0;
switch (event) {
case I2C_SLAVE_WRITE_RECEIVED:
if (midev->rx_pos < MCTP_I2C_BUFSZ) {
midev->rx_buffer[midev->rx_pos] = *val;
midev->rx_pos++;
} else {
midev->ndev->stats.rx_over_errors++;
}
break;
case I2C_SLAVE_WRITE_REQUESTED:
/* dest_slave as first byte */
midev->rx_buffer[0] = mcli->lladdr << 1;
midev->rx_pos = 1;
break;
case I2C_SLAVE_STOP:
rc = mctp_i2c_recv(midev);
break;
default:
break;
}
dev_put(midev->ndev);
return rc;
}
/* Processes incoming data that has been accumulated by the slave cb */
static int mctp_i2c_recv(struct mctp_i2c_dev *midev)
{
struct net_device *ndev = midev->ndev;
struct mctp_i2c_hdr *hdr;
struct mctp_skb_cb *cb;
struct sk_buff *skb;
unsigned long flags;
u8 pec, calc_pec;
size_t recvlen;
int status;
/* + 1 for the PEC */
if (midev->rx_pos < MCTP_I2C_MINLEN + 1) {
ndev->stats.rx_length_errors++;
return -EINVAL;
}
/* recvlen excludes PEC */
recvlen = midev->rx_pos - 1;
hdr = (void *)midev->rx_buffer;
if (hdr->command != MCTP_I2C_COMMANDCODE) {
ndev->stats.rx_dropped++;
return -EINVAL;
}
if (hdr->byte_count + offsetof(struct mctp_i2c_hdr, source_slave) != recvlen) {
ndev->stats.rx_length_errors++;
return -EINVAL;
}
pec = midev->rx_buffer[midev->rx_pos - 1];
calc_pec = i2c_smbus_pec(0, midev->rx_buffer, recvlen);
if (pec != calc_pec) {
ndev->stats.rx_crc_errors++;
return -EINVAL;
}
skb = netdev_alloc_skb(ndev, recvlen);
if (!skb) {
ndev->stats.rx_dropped++;
return -ENOMEM;
}
skb->protocol = htons(ETH_P_MCTP);
skb_put_data(skb, midev->rx_buffer, recvlen);
skb_reset_mac_header(skb);
skb_pull(skb, sizeof(struct mctp_i2c_hdr));
skb_reset_network_header(skb);
cb = __mctp_cb(skb);
cb->halen = 1;
cb->haddr[0] = hdr->source_slave >> 1;
/* We need to ensure that the netif is not used once netdev
* unregister occurs
*/
spin_lock_irqsave(&midev->lock, flags);
if (midev->allow_rx) {
reinit_completion(&midev->rx_done);
spin_unlock_irqrestore(&midev->lock, flags);
status = netif_rx(skb);
complete(&midev->rx_done);
} else {
status = NET_RX_DROP;
spin_unlock_irqrestore(&midev->lock, flags);
}
if (status == NET_RX_SUCCESS) {
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += recvlen;
} else {
ndev->stats.rx_dropped++;
}
return 0;
}
enum mctp_i2c_flow_state {
MCTP_I2C_TX_FLOW_INVALID,
MCTP_I2C_TX_FLOW_NONE,
MCTP_I2C_TX_FLOW_NEW,
MCTP_I2C_TX_FLOW_EXISTING,
};
static enum mctp_i2c_flow_state
mctp_i2c_get_tx_flow_state(struct mctp_i2c_dev *midev, struct sk_buff *skb)
{
enum mctp_i2c_flow_state state;
struct mctp_sk_key *key;
struct mctp_flow *flow;
unsigned long flags;
flow = skb_ext_find(skb, SKB_EXT_MCTP);
if (!flow)
return MCTP_I2C_TX_FLOW_NONE;
key = flow->key;
if (!key)
return MCTP_I2C_TX_FLOW_NONE;
spin_lock_irqsave(&key->lock, flags);
/* If the key is present but invalid, we're unlikely to be able
* to handle the flow at all; just drop now
*/
if (!key->valid) {
state = MCTP_I2C_TX_FLOW_INVALID;
} else if (key->dev_flow_state == MCTP_I2C_FLOW_STATE_NEW) {
key->dev_flow_state = MCTP_I2C_FLOW_STATE_ACTIVE;
state = MCTP_I2C_TX_FLOW_NEW;
} else {
state = MCTP_I2C_TX_FLOW_EXISTING;
}
spin_unlock_irqrestore(&key->lock, flags);
return state;
}
/* We're not contending with ourselves here; we only need to exclude other
* i2c clients from using the bus. refcounts are simply to prevent
* recursive locking.
*/
static void mctp_i2c_lock_nest(struct mctp_i2c_dev *midev)
{
unsigned long flags;
bool lock;
spin_lock_irqsave(&midev->lock, flags);
lock = midev->i2c_lock_count == 0;
midev->i2c_lock_count++;
spin_unlock_irqrestore(&midev->lock, flags);
if (lock)
i2c_lock_bus(midev->adapter, I2C_LOCK_SEGMENT);
}
static void mctp_i2c_unlock_nest(struct mctp_i2c_dev *midev)
{
unsigned long flags;
bool unlock;
spin_lock_irqsave(&midev->lock, flags);
if (!WARN_ONCE(midev->i2c_lock_count == 0, "lock count underflow!"))
midev->i2c_lock_count--;
unlock = midev->i2c_lock_count == 0;
spin_unlock_irqrestore(&midev->lock, flags);
if (unlock)
i2c_unlock_bus(midev->adapter, I2C_LOCK_SEGMENT);
}
/* Unlocks the bus if was previously locked, used for cleanup */
static void mctp_i2c_unlock_reset(struct mctp_i2c_dev *midev)
{
unsigned long flags;
bool unlock;
spin_lock_irqsave(&midev->lock, flags);
unlock = midev->i2c_lock_count > 0;
midev->i2c_lock_count = 0;
spin_unlock_irqrestore(&midev->lock, flags);
if (unlock)
i2c_unlock_bus(midev->adapter, I2C_LOCK_SEGMENT);
}
static void mctp_i2c_xmit(struct mctp_i2c_dev *midev, struct sk_buff *skb)
{
struct net_device_stats *stats = &midev->ndev->stats;
enum mctp_i2c_flow_state fs;
struct mctp_i2c_hdr *hdr;
struct i2c_msg msg = {0};
u8 *pecp;
int rc;
fs = mctp_i2c_get_tx_flow_state(midev, skb);
hdr = (void *)skb_mac_header(skb);
/* Sanity check that packet contents matches skb length,
* and can't exceed MCTP_I2C_BUFSZ
*/
if (skb->len != hdr->byte_count + 3) {
dev_warn_ratelimited(&midev->adapter->dev,
"Bad tx length %d vs skb %u\n",
hdr->byte_count + 3, skb->len);
return;
}
if (skb_tailroom(skb) >= 1) {
/* Linear case with space, we can just append the PEC */
skb_put(skb, 1);
} else {
/* Otherwise need to copy the buffer */
skb_copy_bits(skb, 0, midev->tx_scratch, skb->len);
hdr = (void *)midev->tx_scratch;
}
pecp = (void *)&hdr->source_slave + hdr->byte_count;
*pecp = i2c_smbus_pec(0, (u8 *)hdr, hdr->byte_count + 3);
msg.buf = (void *)&hdr->command;
/* command, bytecount, data, pec */
msg.len = 2 + hdr->byte_count + 1;
msg.addr = hdr->dest_slave >> 1;
switch (fs) {
case MCTP_I2C_TX_FLOW_NONE:
/* no flow: full lock & unlock */
mctp_i2c_lock_nest(midev);
mctp_i2c_device_select(midev->client, midev);
rc = __i2c_transfer(midev->adapter, &msg, 1);
mctp_i2c_unlock_nest(midev);
break;
case MCTP_I2C_TX_FLOW_NEW:
/* new flow: lock, tx, but don't unlock; that will happen
* on flow release
*/
mctp_i2c_lock_nest(midev);
mctp_i2c_device_select(midev->client, midev);
fallthrough;
case MCTP_I2C_TX_FLOW_EXISTING:
/* existing flow: we already have the lock; just tx */
rc = __i2c_transfer(midev->adapter, &msg, 1);
break;
case MCTP_I2C_TX_FLOW_INVALID:
return;
}
if (rc < 0) {
dev_warn_ratelimited(&midev->adapter->dev,
"__i2c_transfer failed %d\n", rc);
stats->tx_errors++;
} else {
stats->tx_bytes += skb->len;
stats->tx_packets++;
}
}
static void mctp_i2c_flow_release(struct mctp_i2c_dev *midev)
{
unsigned long flags;
bool unlock;
spin_lock_irqsave(&midev->lock, flags);
if (midev->release_count > midev->i2c_lock_count) {
WARN_ONCE(1, "release count overflow");
midev->release_count = midev->i2c_lock_count;
}
midev->i2c_lock_count -= midev->release_count;
unlock = midev->i2c_lock_count == 0 && midev->release_count > 0;
midev->release_count = 0;
spin_unlock_irqrestore(&midev->lock, flags);
if (unlock)
i2c_unlock_bus(midev->adapter, I2C_LOCK_SEGMENT);
}
static int mctp_i2c_header_create(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned int len)
{
struct mctp_i2c_hdr *hdr;
struct mctp_hdr *mhdr;
u8 lldst, llsrc;
lldst = *((u8 *)daddr);
llsrc = *((u8 *)saddr);
skb_push(skb, sizeof(struct mctp_i2c_hdr));
skb_reset_mac_header(skb);
hdr = (void *)skb_mac_header(skb);
mhdr = mctp_hdr(skb);
hdr->dest_slave = (lldst << 1) & 0xff;
hdr->command = MCTP_I2C_COMMANDCODE;
hdr->byte_count = len + 1;
if (hdr->byte_count > MCTP_I2C_MAXBLOCK)
return -EMSGSIZE;
hdr->source_slave = ((llsrc << 1) & 0xff) | 0x01;
mhdr->ver = 0x01;
return 0;
}
static int mctp_i2c_tx_thread(void *data)
{
struct mctp_i2c_dev *midev = data;
struct sk_buff *skb;
unsigned long flags;
for (;;) {
if (kthread_should_stop())
break;
spin_lock_irqsave(&midev->tx_queue.lock, flags);
skb = __skb_dequeue(&midev->tx_queue);
if (netif_queue_stopped(midev->ndev))
netif_wake_queue(midev->ndev);
spin_unlock_irqrestore(&midev->tx_queue.lock, flags);
if (skb == &midev->unlock_marker) {
mctp_i2c_flow_release(midev);
} else if (skb) {
mctp_i2c_xmit(midev, skb);
kfree_skb(skb);
} else {
wait_event_idle(midev->tx_wq,
!skb_queue_empty(&midev->tx_queue) ||
kthread_should_stop());
}
}
return 0;
}
static netdev_tx_t mctp_i2c_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct mctp_i2c_dev *midev = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&midev->tx_queue.lock, flags);
if (skb_queue_len(&midev->tx_queue) >= MCTP_I2C_TX_WORK_LEN) {
netif_stop_queue(dev);
spin_unlock_irqrestore(&midev->tx_queue.lock, flags);
netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
__skb_queue_tail(&midev->tx_queue, skb);
if (skb_queue_len(&midev->tx_queue) == MCTP_I2C_TX_WORK_LEN)
netif_stop_queue(dev);
spin_unlock_irqrestore(&midev->tx_queue.lock, flags);
wake_up(&midev->tx_wq);
return NETDEV_TX_OK;
}
static void mctp_i2c_release_flow(struct mctp_dev *mdev,
struct mctp_sk_key *key)
{
struct mctp_i2c_dev *midev = netdev_priv(mdev->dev);
unsigned long flags;
spin_lock_irqsave(&midev->lock, flags);
midev->release_count++;
spin_unlock_irqrestore(&midev->lock, flags);
/* Ensure we have a release operation queued, through the fake
* marker skb
*/
spin_lock(&midev->tx_queue.lock);
if (!midev->unlock_marker.next)
__skb_queue_tail(&midev->tx_queue, &midev->unlock_marker);
spin_unlock(&midev->tx_queue.lock);
wake_up(&midev->tx_wq);
}
static const struct net_device_ops mctp_i2c_ops = {
.ndo_start_xmit = mctp_i2c_start_xmit,
.ndo_uninit = mctp_i2c_ndo_uninit,
.ndo_open = mctp_i2c_ndo_open,
};
static const struct header_ops mctp_i2c_headops = {
.create = mctp_i2c_header_create,
};
static const struct mctp_netdev_ops mctp_i2c_mctp_ops = {
.release_flow = mctp_i2c_release_flow,
};
static void mctp_i2c_net_setup(struct net_device *dev)
{
dev->type = ARPHRD_MCTP;
dev->mtu = MCTP_I2C_MAXMTU;
dev->min_mtu = MCTP_I2C_MINMTU;
dev->max_mtu = MCTP_I2C_MAXMTU;
dev->tx_queue_len = MCTP_I2C_TX_QUEUE_LEN;
dev->hard_header_len = sizeof(struct mctp_i2c_hdr);
dev->addr_len = 1;
dev->netdev_ops = &mctp_i2c_ops;
dev->header_ops = &mctp_i2c_headops;
}
/* Populates the mctp_i2c_dev priv struct for a netdev.
* Returns an error pointer on failure.
*/
static struct mctp_i2c_dev *mctp_i2c_midev_init(struct net_device *dev,
struct mctp_i2c_client *mcli,
struct i2c_adapter *adap)
{
struct mctp_i2c_dev *midev = netdev_priv(dev);
unsigned long flags;
midev->tx_thread = kthread_create(mctp_i2c_tx_thread, midev,
"%s/tx", dev->name);
if (IS_ERR(midev->tx_thread))
return ERR_CAST(midev->tx_thread);
midev->ndev = dev;
get_device(&adap->dev);
midev->adapter = adap;
get_device(&mcli->client->dev);
midev->client = mcli;
INIT_LIST_HEAD(&midev->list);
spin_lock_init(&midev->lock);
midev->i2c_lock_count = 0;
midev->release_count = 0;
init_completion(&midev->rx_done);
complete(&midev->rx_done);
init_waitqueue_head(&midev->tx_wq);
skb_queue_head_init(&midev->tx_queue);
/* Add to the parent mcli */
spin_lock_irqsave(&mcli->sel_lock, flags);
list_add(&midev->list, &mcli->devs);
/* Select a device by default */
if (!mcli->sel)
__mctp_i2c_device_select(mcli, midev);
spin_unlock_irqrestore(&mcli->sel_lock, flags);
/* Start the worker thread */
wake_up_process(midev->tx_thread);
return midev;
}
/* Counterpart of mctp_i2c_midev_init */
static void mctp_i2c_midev_free(struct mctp_i2c_dev *midev)
{
struct mctp_i2c_client *mcli = midev->client;
unsigned long flags;
if (midev->tx_thread) {
kthread_stop(midev->tx_thread);
midev->tx_thread = NULL;
}
/* Unconditionally unlock on close */
mctp_i2c_unlock_reset(midev);
/* Remove the netdev from the parent i2c client. */
spin_lock_irqsave(&mcli->sel_lock, flags);
list_del(&midev->list);
if (mcli->sel == midev) {
struct mctp_i2c_dev *first;
first = list_first_entry_or_null(&mcli->devs, struct mctp_i2c_dev, list);
__mctp_i2c_device_select(mcli, first);
}
spin_unlock_irqrestore(&mcli->sel_lock, flags);
skb_queue_purge(&midev->tx_queue);
put_device(&midev->adapter->dev);
put_device(&mcli->client->dev);
}
/* Stops, unregisters, and frees midev */
static void mctp_i2c_unregister(struct mctp_i2c_dev *midev)
{
unsigned long flags;
/* Stop tx thread prior to unregister, it uses netif_() functions */
kthread_stop(midev->tx_thread);
midev->tx_thread = NULL;
/* Prevent any new rx in mctp_i2c_recv(), let any pending work finish */
spin_lock_irqsave(&midev->lock, flags);
midev->allow_rx = false;
spin_unlock_irqrestore(&midev->lock, flags);
wait_for_completion(&midev->rx_done);
mctp_unregister_netdev(midev->ndev);
/* midev has been freed now by mctp_i2c_ndo_uninit callback */
free_netdev(midev->ndev);
}
static void mctp_i2c_ndo_uninit(struct net_device *dev)
{
struct mctp_i2c_dev *midev = netdev_priv(dev);
/* Perform cleanup here to ensure that mcli->sel isn't holding
* a reference that would prevent unregister_netdevice()
* from completing.
*/
mctp_i2c_midev_free(midev);
}
static int mctp_i2c_ndo_open(struct net_device *dev)
{
struct mctp_i2c_dev *midev = netdev_priv(dev);
unsigned long flags;
/* i2c rx handler can only pass packets once the netdev is registered */
spin_lock_irqsave(&midev->lock, flags);
midev->allow_rx = true;
spin_unlock_irqrestore(&midev->lock, flags);
return 0;
}
static int mctp_i2c_add_netdev(struct mctp_i2c_client *mcli,
struct i2c_adapter *adap)
{
struct mctp_i2c_dev *midev = NULL;
struct net_device *ndev = NULL;
struct i2c_adapter *root;
unsigned long flags;
char namebuf[30];
int rc;
root = mux_root_adapter(adap);
if (root != mcli->client->adapter) {
dev_err(&mcli->client->dev,
"I2C adapter %s is not a child bus of %s\n",
mcli->client->adapter->name, root->name);
return -EINVAL;
}
WARN_ON(!mutex_is_locked(&driver_clients_lock));
snprintf(namebuf, sizeof(namebuf), "mctpi2c%d", adap->nr);
ndev = alloc_netdev(sizeof(*midev), namebuf, NET_NAME_ENUM, mctp_i2c_net_setup);
if (!ndev) {
dev_err(&mcli->client->dev, "alloc netdev failed\n");
rc = -ENOMEM;
goto err;
}
dev_net_set(ndev, current->nsproxy->net_ns);
SET_NETDEV_DEV(ndev, &adap->dev);
dev_addr_set(ndev, &mcli->lladdr);
midev = mctp_i2c_midev_init(ndev, mcli, adap);
if (IS_ERR(midev)) {
rc = PTR_ERR(midev);
midev = NULL;
goto err;
}
rc = mctp_register_netdev(ndev, &mctp_i2c_mctp_ops);
if (rc < 0) {
dev_err(&mcli->client->dev,
"register netdev \"%s\" failed %d\n",
ndev->name, rc);
goto err;
}
spin_lock_irqsave(&midev->lock, flags);
midev->allow_rx = false;
spin_unlock_irqrestore(&midev->lock, flags);
return 0;
err:
if (midev)
mctp_i2c_midev_free(midev);
if (ndev)
free_netdev(ndev);
return rc;
}
/* Removes any netdev for adap. mcli is the parent root i2c client */
static void mctp_i2c_remove_netdev(struct mctp_i2c_client *mcli,
struct i2c_adapter *adap)
{
struct mctp_i2c_dev *midev = NULL, *m = NULL;
unsigned long flags;
WARN_ON(!mutex_is_locked(&driver_clients_lock));
spin_lock_irqsave(&mcli->sel_lock, flags);
/* List size is limited by number of MCTP netdevs on a single hardware bus */
list_for_each_entry(m, &mcli->devs, list)
if (m->adapter == adap) {
midev = m;
break;
}
spin_unlock_irqrestore(&mcli->sel_lock, flags);
if (midev)
mctp_i2c_unregister(midev);
}
/* Determines whether a device is an i2c adapter.
* Optionally returns the root i2c_adapter
*/
static struct i2c_adapter *mctp_i2c_get_adapter(struct device *dev,
struct i2c_adapter **ret_root)
{
struct i2c_adapter *root, *adap;
if (dev->type != &i2c_adapter_type)
return NULL;
adap = to_i2c_adapter(dev);
root = mux_root_adapter(adap);
WARN_ONCE(!root, "MCTP I2C failed to find root adapter for %s\n",
dev_name(dev));
if (!root)
return NULL;
if (ret_root)
*ret_root = root;
return adap;
}
/* Determines whether a device is an i2c adapter with the "mctp-controller"
* devicetree property set. If adap is not an OF node, returns match_no_of
*/
static bool mctp_i2c_adapter_match(struct i2c_adapter *adap, bool match_no_of)
{
if (!adap->dev.of_node)
return match_no_of;
return of_property_read_bool(adap->dev.of_node, MCTP_I2C_OF_PROP);
}
/* Called for each existing i2c device (adapter or client) when a
* new mctp-i2c client is probed.
*/
static int mctp_i2c_client_try_attach(struct device *dev, void *data)
{
struct i2c_adapter *adap = NULL, *root = NULL;
struct mctp_i2c_client *mcli = data;
adap = mctp_i2c_get_adapter(dev, &root);
if (!adap)
return 0;
if (mcli->client->adapter != root)
return 0;
/* Must either have mctp-controller property on the adapter, or
* be a root adapter if it's non-devicetree
*/
if (!mctp_i2c_adapter_match(adap, adap == root))
return 0;
return mctp_i2c_add_netdev(mcli, adap);
}
static void mctp_i2c_notify_add(struct device *dev)
{
struct mctp_i2c_client *mcli = NULL, *m = NULL;
struct i2c_adapter *root = NULL, *adap = NULL;
int rc;
adap = mctp_i2c_get_adapter(dev, &root);
if (!adap)
return;
/* Check for mctp-controller property on the adapter */
if (!mctp_i2c_adapter_match(adap, false))
return;
/* Find an existing mcli for adap's root */
mutex_lock(&driver_clients_lock);
list_for_each_entry(m, &driver_clients, list) {
if (m->client->adapter == root) {
mcli = m;
break;
}
}
if (mcli) {
rc = mctp_i2c_add_netdev(mcli, adap);
if (rc < 0)
dev_warn(dev, "Failed adding mctp-i2c net device\n");
}
mutex_unlock(&driver_clients_lock);
}
static void mctp_i2c_notify_del(struct device *dev)
{
struct i2c_adapter *root = NULL, *adap = NULL;
struct mctp_i2c_client *mcli = NULL;
adap = mctp_i2c_get_adapter(dev, &root);
if (!adap)
return;
mutex_lock(&driver_clients_lock);
list_for_each_entry(mcli, &driver_clients, list) {
if (mcli->client->adapter == root) {
mctp_i2c_remove_netdev(mcli, adap);
break;
}
}
mutex_unlock(&driver_clients_lock);
}
static int mctp_i2c_probe(struct i2c_client *client)
{
struct mctp_i2c_client *mcli = NULL;
int rc;
mutex_lock(&driver_clients_lock);
mcli = mctp_i2c_new_client(client);
if (IS_ERR(mcli)) {
rc = PTR_ERR(mcli);
mcli = NULL;
goto out;
} else {
list_add(&mcli->list, &driver_clients);
}
/* Add a netdev for adapters that have a 'mctp-controller' property */
i2c_for_each_dev(mcli, mctp_i2c_client_try_attach);
rc = 0;
out:
mutex_unlock(&driver_clients_lock);
return rc;
}
static int mctp_i2c_remove(struct i2c_client *client)
{
struct mctp_i2c_client *mcli = i2c_get_clientdata(client);
struct mctp_i2c_dev *midev = NULL, *tmp = NULL;
mutex_lock(&driver_clients_lock);
list_del(&mcli->list);
/* Remove all child adapter netdevs */
list_for_each_entry_safe(midev, tmp, &mcli->devs, list)
mctp_i2c_unregister(midev);
mctp_i2c_free_client(mcli);
mutex_unlock(&driver_clients_lock);
/* Callers ignore return code */
return 0;
}
/* We look for a 'mctp-controller' property on I2C busses as they are
* added/deleted, creating/removing netdevs as required.
*/
static int mctp_i2c_notifier_call(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev = data;
switch (action) {
case BUS_NOTIFY_ADD_DEVICE:
mctp_i2c_notify_add(dev);
break;
case BUS_NOTIFY_DEL_DEVICE:
mctp_i2c_notify_del(dev);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block mctp_i2c_notifier = {
.notifier_call = mctp_i2c_notifier_call,
};
static const struct i2c_device_id mctp_i2c_id[] = {
{ "mctp-i2c-interface", 0 },
{},
};
MODULE_DEVICE_TABLE(i2c, mctp_i2c_id);
static const struct of_device_id mctp_i2c_of_match[] = {
{ .compatible = "mctp-i2c-controller" },
{},
};
MODULE_DEVICE_TABLE(of, mctp_i2c_of_match);
static struct i2c_driver mctp_i2c_driver = {
.driver = {
.name = "mctp-i2c-interface",
.of_match_table = mctp_i2c_of_match,
},
.probe_new = mctp_i2c_probe,
.remove = mctp_i2c_remove,
.id_table = mctp_i2c_id,
};
static __init int mctp_i2c_mod_init(void)
{
int rc;
pr_info("MCTP I2C interface driver\n");
rc = i2c_add_driver(&mctp_i2c_driver);
if (rc < 0)
return rc;
rc = bus_register_notifier(&i2c_bus_type, &mctp_i2c_notifier);
if (rc < 0) {
i2c_del_driver(&mctp_i2c_driver);
return rc;
}
return 0;
}
static __exit void mctp_i2c_mod_exit(void)
{
int rc;
rc = bus_unregister_notifier(&i2c_bus_type, &mctp_i2c_notifier);
if (rc < 0)
pr_warn("MCTP I2C could not unregister notifier, %d\n", rc);
i2c_del_driver(&mctp_i2c_driver);
}
module_init(mctp_i2c_mod_init);
module_exit(mctp_i2c_mod_exit);
MODULE_DESCRIPTION("MCTP I2C device");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Matt Johnston <matt@codeconstruct.com.au>");