2019-05-27 08:55:01 +02:00
/* SPDX-License-Identifier: GPL-2.0-or-later */
2007-12-17 21:51:27 +08:00
/*
* Symmetric key ciphers .
*
2015-08-20 15:21:45 +08:00
* Copyright ( c ) 2007 - 2015 Herbert Xu < herbert @ gondor . apana . org . au >
2007-12-17 21:51:27 +08:00
*/
# ifndef _CRYPTO_SKCIPHER_H
# define _CRYPTO_SKCIPHER_H
# include <linux/crypto.h>
2007-12-01 18:35:38 +11:00
# include <linux/kernel.h>
# include <linux/slab.h>
2007-12-17 21:51:27 +08:00
2015-08-20 15:21:45 +08:00
/**
* struct skcipher_request - Symmetric key cipher request
* @ cryptlen : Number of bytes to encrypt or decrypt
* @ iv : Initialisation Vector
* @ src : Source SG list
* @ dst : Destination SG list
2020-07-17 16:35:49 -07:00
* @ base : Underlying async request
2015-08-20 15:21:45 +08:00
* @ __ctx : Start of private context data
*/
struct skcipher_request {
unsigned int cryptlen ;
u8 * iv ;
struct scatterlist * src ;
struct scatterlist * dst ;
struct crypto_async_request base ;
void * __ctx [ ] CRYPTO_MINALIGN_ATTR ;
} ;
struct crypto_skcipher {
unsigned int reqsize ;
2016-01-11 21:26:50 +08:00
2015-08-20 15:21:45 +08:00
struct crypto_tfm base ;
} ;
2018-09-18 19:10:38 -07:00
struct crypto_sync_skcipher {
struct crypto_skcipher base ;
} ;
2016-07-12 13:17:31 +08:00
/**
* struct skcipher_alg - symmetric key cipher definition
* @ min_keysize : Minimum key size supported by the transformation . This is the
* smallest key length supported by this transformation algorithm .
* This must be set to one of the pre - defined values as this is
* not hardware specific . Possible values for this field can be
* found via git grep " _MIN_KEY_SIZE " include / crypto /
* @ max_keysize : Maximum key size supported by the transformation . This is the
* largest key length supported by this transformation algorithm .
* This must be set to one of the pre - defined values as this is
* not hardware specific . Possible values for this field can be
* found via git grep " _MAX_KEY_SIZE " include / crypto /
* @ setkey : Set key for the transformation . This function is used to either
* program a supplied key into the hardware or store the key in the
* transformation context for programming it later . Note that this
* function does modify the transformation context . This function can
* be called multiple times during the existence of the transformation
* object , so one must make sure the key is properly reprogrammed into
* the hardware . This function is also responsible for checking the key
* length for validity . In case a software fallback was put in place in
* the @ cra_init call , this function might need to use the fallback if
* the algorithm doesn ' t support all of the key sizes .
* @ encrypt : Encrypt a scatterlist of blocks . This function is used to encrypt
* the supplied scatterlist containing the blocks of data . The crypto
* API consumer is responsible for aligning the entries of the
* scatterlist properly and making sure the chunks are correctly
* sized . In case a software fallback was put in place in the
* @ cra_init call , this function might need to use the fallback if
* the algorithm doesn ' t support all of the key sizes . In case the
* key was stored in transformation context , the key might need to be
* re - programmed into the hardware in this function . This function
* shall not modify the transformation context , as this function may
* be called in parallel with the same transformation object .
* @ decrypt : Decrypt a single block . This is a reverse counterpart to @ encrypt
* and the conditions are exactly the same .
* @ init : Initialize the cryptographic transformation object . This function
* is used to initialize the cryptographic transformation object .
* This function is called only once at the instantiation time , right
* after the transformation context was allocated . In case the
* cryptographic hardware has some special requirements which need to
* be handled by software , this function shall check for the precise
* requirement of the transformation and put any software fallbacks
* in place .
* @ exit : Deinitialize the cryptographic transformation object . This is a
* counterpart to @ init , used to remove various changes set in
* @ init .
* @ ivsize : IV size applicable for transformation . The consumer must provide an
* IV of exactly that size to perform the encrypt or decrypt operation .
* @ chunksize : Equal to the block size except for stream ciphers such as
* CTR where it is set to the underlying block size .
2016-12-29 14:09:08 +00:00
* @ walksize : Equal to the chunk size except in cases where the algorithm is
* considerably more efficient if it can operate on multiple chunks
* in parallel . Should be a multiple of chunksize .
2016-07-19 00:59:30 +08:00
* @ base : Definition of a generic crypto algorithm .
2016-07-12 13:17:31 +08:00
*
* All fields except @ ivsize are mandatory and must be filled .
*/
struct skcipher_alg {
int ( * setkey ) ( struct crypto_skcipher * tfm , const u8 * key ,
unsigned int keylen ) ;
int ( * encrypt ) ( struct skcipher_request * req ) ;
int ( * decrypt ) ( struct skcipher_request * req ) ;
int ( * init ) ( struct crypto_skcipher * tfm ) ;
void ( * exit ) ( struct crypto_skcipher * tfm ) ;
unsigned int min_keysize ;
unsigned int max_keysize ;
unsigned int ivsize ;
unsigned int chunksize ;
2016-12-29 14:09:08 +00:00
unsigned int walksize ;
2016-07-12 13:17:31 +08:00
struct crypto_alg base ;
} ;
2018-09-18 19:10:38 -07:00
# define MAX_SYNC_SKCIPHER_REQSIZE 384
/*
* This performs a type - check against the " tfm " argument to make sure
* all users have the correct skcipher tfm for doing on - stack requests .
*/
# define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
char __ # # name # # _desc [ sizeof ( struct skcipher_request ) + \
MAX_SYNC_SKCIPHER_REQSIZE + \
( ! ( sizeof ( ( struct crypto_sync_skcipher * ) 1 = = \
( typeof ( tfm ) ) 1 ) ) ) \
] CRYPTO_MINALIGN_ATTR ; \
struct skcipher_request * name = ( void * ) __ # # name # # _desc
2015-08-20 15:21:45 +08:00
/**
* DOC : Symmetric Key Cipher API
*
* Symmetric key cipher API is used with the ciphers of type
* CRYPTO_ALG_TYPE_SKCIPHER ( listed as type " skcipher " in / proc / crypto ) .
*
* Asynchronous cipher operations imply that the function invocation for a
* cipher request returns immediately before the completion of the operation .
* The cipher request is scheduled as a separate kernel thread and therefore
* load - balanced on the different CPUs via the process scheduler . To allow
* the kernel crypto API to inform the caller about the completion of a cipher
* request , the caller must provide a callback function . That function is
* invoked with the cipher handle when the request completes .
*
* To support the asynchronous operation , additional information than just the
* cipher handle must be supplied to the kernel crypto API . That additional
* information is given by filling in the skcipher_request data structure .
*
* For the symmetric key cipher API , the state is maintained with the tfm
* cipher handle . A single tfm can be used across multiple calls and in
* parallel . For asynchronous block cipher calls , context data supplied and
* only used by the caller can be referenced the request data structure in
* addition to the IV used for the cipher request . The maintenance of such
* state information would be important for a crypto driver implementer to
* have , because when calling the callback function upon completion of the
* cipher operation , that callback function may need some information about
* which operation just finished if it invoked multiple in parallel . This
* state information is unused by the kernel crypto API .
*/
static inline struct crypto_skcipher * __crypto_skcipher_cast (
struct crypto_tfm * tfm )
{
return container_of ( tfm , struct crypto_skcipher , base ) ;
}
/**
* crypto_alloc_skcipher ( ) - allocate symmetric key cipher handle
* @ alg_name : is the cra_name / name or cra_driver_name / driver name of the
* skcipher cipher
* @ type : specifies the type of the cipher
* @ mask : specifies the mask for the cipher
*
* Allocate a cipher handle for an skcipher . The returned struct
* crypto_skcipher is the cipher handle that is required for any subsequent
* API invocation for that skcipher .
*
* Return : allocated cipher handle in case of success ; IS_ERR ( ) is true in case
* of an error , PTR_ERR ( ) returns the error code .
*/
struct crypto_skcipher * crypto_alloc_skcipher ( const char * alg_name ,
u32 type , u32 mask ) ;
2018-09-18 19:10:38 -07:00
struct crypto_sync_skcipher * crypto_alloc_sync_skcipher ( const char * alg_name ,
u32 type , u32 mask ) ;
2015-08-20 15:21:45 +08:00
static inline struct crypto_tfm * crypto_skcipher_tfm (
struct crypto_skcipher * tfm )
{
return & tfm - > base ;
}
/**
* crypto_free_skcipher ( ) - zeroize and free cipher handle
* @ tfm : cipher handle to be freed
*/
static inline void crypto_free_skcipher ( struct crypto_skcipher * tfm )
{
crypto_destroy_tfm ( tfm , crypto_skcipher_tfm ( tfm ) ) ;
}
2018-09-18 19:10:38 -07:00
static inline void crypto_free_sync_skcipher ( struct crypto_sync_skcipher * tfm )
{
crypto_free_skcipher ( & tfm - > base ) ;
}
2015-08-20 15:21:45 +08:00
/**
* crypto_has_skcipher ( ) - Search for the availability of an skcipher .
* @ alg_name : is the cra_name / name or cra_driver_name / driver name of the
* skcipher
2016-07-12 13:17:31 +08:00
* @ type : specifies the type of the skcipher
* @ mask : specifies the mask for the skcipher
*
* Return : true when the skcipher is known to the kernel crypto API ; false
* otherwise
*/
2019-10-25 12:41:09 -07:00
int crypto_has_skcipher ( const char * alg_name , u32 type , u32 mask ) ;
2016-07-12 13:17:31 +08:00
2016-01-26 22:14:36 +08:00
static inline const char * crypto_skcipher_driver_name (
struct crypto_skcipher * tfm )
{
2016-02-01 21:36:51 +08:00
return crypto_tfm_alg_driver_name ( crypto_skcipher_tfm ( tfm ) ) ;
2016-01-26 22:14:36 +08:00
}
2016-07-12 13:17:31 +08:00
static inline struct skcipher_alg * crypto_skcipher_alg (
struct crypto_skcipher * tfm )
{
return container_of ( crypto_skcipher_tfm ( tfm ) - > __crt_alg ,
struct skcipher_alg , base ) ;
}
static inline unsigned int crypto_skcipher_alg_ivsize ( struct skcipher_alg * alg )
{
return alg - > ivsize ;
}
2015-08-20 15:21:45 +08:00
/**
* crypto_skcipher_ivsize ( ) - obtain IV size
* @ tfm : cipher handle
*
* The size of the IV for the skcipher referenced by the cipher handle is
* returned . This IV size may be zero if the cipher does not need an IV .
*
* Return : IV size in bytes
*/
static inline unsigned int crypto_skcipher_ivsize ( struct crypto_skcipher * tfm )
{
2019-11-29 10:23:03 -08:00
return crypto_skcipher_alg ( tfm ) - > ivsize ;
2015-08-20 15:21:45 +08:00
}
2018-09-18 19:10:38 -07:00
static inline unsigned int crypto_sync_skcipher_ivsize (
struct crypto_sync_skcipher * tfm )
{
return crypto_skcipher_ivsize ( & tfm - > base ) ;
}
2015-08-20 15:21:45 +08:00
/**
* crypto_skcipher_blocksize ( ) - obtain block size of cipher
* @ tfm : cipher handle
*
* The block size for the skcipher referenced with the cipher handle is
* returned . The caller may use that information to allocate appropriate
* memory for the data returned by the encryption or decryption operation
*
* Return : block size of cipher
*/
static inline unsigned int crypto_skcipher_blocksize (
struct crypto_skcipher * tfm )
{
return crypto_tfm_alg_blocksize ( crypto_skcipher_tfm ( tfm ) ) ;
}
2019-09-10 11:42:05 +10:00
static inline unsigned int crypto_skcipher_alg_chunksize (
struct skcipher_alg * alg )
{
return alg - > chunksize ;
}
/**
* crypto_skcipher_chunksize ( ) - obtain chunk size
* @ tfm : cipher handle
*
* The block size is set to one for ciphers such as CTR . However ,
* you still need to provide incremental updates in multiples of
* the underlying block size as the IV does not have sub - block
* granularity . This is known in this API as the chunk size .
*
* Return : chunk size in bytes
*/
static inline unsigned int crypto_skcipher_chunksize (
struct crypto_skcipher * tfm )
{
return crypto_skcipher_alg_chunksize ( crypto_skcipher_alg ( tfm ) ) ;
}
2018-09-18 19:10:38 -07:00
static inline unsigned int crypto_sync_skcipher_blocksize (
struct crypto_sync_skcipher * tfm )
{
return crypto_skcipher_blocksize ( & tfm - > base ) ;
}
2015-08-20 15:21:45 +08:00
static inline unsigned int crypto_skcipher_alignmask (
struct crypto_skcipher * tfm )
{
return crypto_tfm_alg_alignmask ( crypto_skcipher_tfm ( tfm ) ) ;
}
static inline u32 crypto_skcipher_get_flags ( struct crypto_skcipher * tfm )
{
return crypto_tfm_get_flags ( crypto_skcipher_tfm ( tfm ) ) ;
}
static inline void crypto_skcipher_set_flags ( struct crypto_skcipher * tfm ,
u32 flags )
{
crypto_tfm_set_flags ( crypto_skcipher_tfm ( tfm ) , flags ) ;
}
static inline void crypto_skcipher_clear_flags ( struct crypto_skcipher * tfm ,
u32 flags )
{
crypto_tfm_clear_flags ( crypto_skcipher_tfm ( tfm ) , flags ) ;
}
2018-09-18 19:10:38 -07:00
static inline u32 crypto_sync_skcipher_get_flags (
struct crypto_sync_skcipher * tfm )
{
return crypto_skcipher_get_flags ( & tfm - > base ) ;
}
static inline void crypto_sync_skcipher_set_flags (
struct crypto_sync_skcipher * tfm , u32 flags )
{
crypto_skcipher_set_flags ( & tfm - > base , flags ) ;
}
static inline void crypto_sync_skcipher_clear_flags (
struct crypto_sync_skcipher * tfm , u32 flags )
{
crypto_skcipher_clear_flags ( & tfm - > base , flags ) ;
}
2015-08-20 15:21:45 +08:00
/**
* crypto_skcipher_setkey ( ) - set key for cipher
* @ tfm : cipher handle
* @ key : buffer holding the key
* @ keylen : length of the key in bytes
*
* The caller provided key is set for the skcipher referenced by the cipher
* handle .
*
* Note , the key length determines the cipher type . Many block ciphers implement
* different cipher modes depending on the key size , such as AES - 128 vs AES - 192
* vs . AES - 256. When providing a 16 byte key for an AES cipher handle , AES - 128
* is performed .
*
* Return : 0 if the setting of the key was successful ; < 0 if an error occurred
*/
2019-11-29 10:23:05 -08:00
int crypto_skcipher_setkey ( struct crypto_skcipher * tfm ,
const u8 * key , unsigned int keylen ) ;
2015-08-20 15:21:45 +08:00
2018-09-18 19:10:38 -07:00
static inline int crypto_sync_skcipher_setkey ( struct crypto_sync_skcipher * tfm ,
const u8 * key , unsigned int keylen )
{
return crypto_skcipher_setkey ( & tfm - > base , key , keylen ) ;
}
2019-12-01 13:53:25 -08:00
static inline unsigned int crypto_skcipher_min_keysize (
struct crypto_skcipher * tfm )
{
return crypto_skcipher_alg ( tfm ) - > min_keysize ;
}
2019-11-29 10:23:04 -08:00
static inline unsigned int crypto_skcipher_max_keysize (
2016-01-21 17:10:56 +08:00
struct crypto_skcipher * tfm )
{
2019-11-29 10:23:04 -08:00
return crypto_skcipher_alg ( tfm ) - > max_keysize ;
2016-01-11 21:26:50 +08:00
}
2015-08-20 15:21:45 +08:00
/**
* crypto_skcipher_reqtfm ( ) - obtain cipher handle from request
* @ req : skcipher_request out of which the cipher handle is to be obtained
*
* Return the crypto_skcipher handle when furnishing an skcipher_request
* data structure .
*
* Return : crypto_skcipher handle
*/
static inline struct crypto_skcipher * crypto_skcipher_reqtfm (
struct skcipher_request * req )
{
return __crypto_skcipher_cast ( req - > base . tfm ) ;
}
2018-09-18 19:10:38 -07:00
static inline struct crypto_sync_skcipher * crypto_sync_skcipher_reqtfm (
struct skcipher_request * req )
{
struct crypto_skcipher * tfm = crypto_skcipher_reqtfm ( req ) ;
return container_of ( tfm , struct crypto_sync_skcipher , base ) ;
}
2015-08-20 15:21:45 +08:00
/**
* crypto_skcipher_encrypt ( ) - encrypt plaintext
* @ req : reference to the skcipher_request handle that holds all information
* needed to perform the cipher operation
*
* Encrypt plaintext data using the skcipher_request handle . That data
* structure and how it is filled with data is discussed with the
* skcipher_request_ * functions .
*
* Return : 0 if the cipher operation was successful ; < 0 if an error occurred
*/
2019-06-02 22:45:51 -07:00
int crypto_skcipher_encrypt ( struct skcipher_request * req ) ;
2015-08-20 15:21:45 +08:00
/**
* crypto_skcipher_decrypt ( ) - decrypt ciphertext
* @ req : reference to the skcipher_request handle that holds all information
* needed to perform the cipher operation
*
* Decrypt ciphertext data using the skcipher_request handle . That data
* structure and how it is filled with data is discussed with the
* skcipher_request_ * functions .
*
* Return : 0 if the cipher operation was successful ; < 0 if an error occurred
*/
2019-06-02 22:45:51 -07:00
int crypto_skcipher_decrypt ( struct skcipher_request * req ) ;
2015-08-20 15:21:45 +08:00
/**
* DOC : Symmetric Key Cipher Request Handle
*
* The skcipher_request data structure contains all pointers to data
* required for the symmetric key cipher operation . This includes the cipher
* handle ( which can be used by multiple skcipher_request instances ) , pointer
* to plaintext and ciphertext , asynchronous callback function , etc . It acts
* as a handle to the skcipher_request_ * API calls in a similar way as
* skcipher handle to the crypto_skcipher_ * API calls .
*/
/**
* crypto_skcipher_reqsize ( ) - obtain size of the request data structure
* @ tfm : cipher handle
*
* Return : number of bytes
*/
static inline unsigned int crypto_skcipher_reqsize ( struct crypto_skcipher * tfm )
{
return tfm - > reqsize ;
}
/**
* skcipher_request_set_tfm ( ) - update cipher handle reference in request
* @ req : request handle to be modified
* @ tfm : cipher handle that shall be added to the request handle
*
* Allow the caller to replace the existing skcipher handle in the request
* data structure with a different one .
*/
static inline void skcipher_request_set_tfm ( struct skcipher_request * req ,
struct crypto_skcipher * tfm )
{
req - > base . tfm = crypto_skcipher_tfm ( tfm ) ;
}
2018-09-18 19:10:38 -07:00
static inline void skcipher_request_set_sync_tfm ( struct skcipher_request * req ,
struct crypto_sync_skcipher * tfm )
{
skcipher_request_set_tfm ( req , & tfm - > base ) ;
}
2015-08-20 15:21:45 +08:00
static inline struct skcipher_request * skcipher_request_cast (
struct crypto_async_request * req )
{
return container_of ( req , struct skcipher_request , base ) ;
}
/**
* skcipher_request_alloc ( ) - allocate request data structure
* @ tfm : cipher handle to be registered with the request
* @ gfp : memory allocation flag that is handed to kmalloc by the API call .
*
* Allocate the request data structure that must be used with the skcipher
* encrypt and decrypt API calls . During the allocation , the provided skcipher
* handle is registered in the request data structure .
*
2016-04-02 10:54:56 -05:00
* Return : allocated request handle in case of success , or NULL if out of memory
2015-08-20 15:21:45 +08:00
*/
static inline struct skcipher_request * skcipher_request_alloc (
struct crypto_skcipher * tfm , gfp_t gfp )
{
struct skcipher_request * req ;
req = kmalloc ( sizeof ( struct skcipher_request ) +
crypto_skcipher_reqsize ( tfm ) , gfp ) ;
if ( likely ( req ) )
skcipher_request_set_tfm ( req , tfm ) ;
return req ;
}
/**
* skcipher_request_free ( ) - zeroize and free request data structure
* @ req : request data structure cipher handle to be freed
*/
static inline void skcipher_request_free ( struct skcipher_request * req )
{
2020-08-06 23:18:13 -07:00
kfree_sensitive ( req ) ;
2015-08-20 15:21:45 +08:00
}
2016-01-22 23:21:10 +08:00
static inline void skcipher_request_zero ( struct skcipher_request * req )
{
struct crypto_skcipher * tfm = crypto_skcipher_reqtfm ( req ) ;
memzero_explicit ( req , sizeof ( * req ) + crypto_skcipher_reqsize ( tfm ) ) ;
}
2015-08-20 15:21:45 +08:00
/**
* skcipher_request_set_callback ( ) - set asynchronous callback function
* @ req : request handle
* @ flags : specify zero or an ORing of the flags
2016-10-21 04:57:27 +02:00
* CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
2015-08-20 15:21:45 +08:00
* increase the wait queue beyond the initial maximum size ;
* CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
* @ compl : callback function pointer to be registered with the request handle
* @ data : The data pointer refers to memory that is not used by the kernel
* crypto API , but provided to the callback function for it to use . Here ,
* the caller can provide a reference to memory the callback function can
* operate on . As the callback function is invoked asynchronously to the
* related functionality , it may need to access data structures of the
* related functionality which can be referenced using this pointer . The
* callback function can access the memory via the " data " field in the
* crypto_async_request data structure provided to the callback function .
*
* This function allows setting the callback function that is triggered once the
* cipher operation completes .
*
* The callback function is registered with the skcipher_request handle and
2016-10-21 04:57:27 +02:00
* must comply with the following template : :
2015-08-20 15:21:45 +08:00
*
* void callback_function ( struct crypto_async_request * req , int error )
*/
static inline void skcipher_request_set_callback ( struct skcipher_request * req ,
u32 flags ,
crypto_completion_t compl ,
void * data )
{
req - > base . complete = compl ;
req - > base . data = data ;
req - > base . flags = flags ;
}
/**
* skcipher_request_set_crypt ( ) - set data buffers
* @ req : request handle
* @ src : source scatter / gather list
* @ dst : destination scatter / gather list
* @ cryptlen : number of bytes to process from @ src
* @ iv : IV for the cipher operation which must comply with the IV size defined
* by crypto_skcipher_ivsize
*
* This function allows setting of the source data and destination data
* scatter / gather lists .
*
* For encryption , the source is treated as the plaintext and the
* destination is the ciphertext . For a decryption operation , the use is
* reversed - the source is the ciphertext and the destination is the plaintext .
*/
static inline void skcipher_request_set_crypt (
struct skcipher_request * req ,
struct scatterlist * src , struct scatterlist * dst ,
unsigned int cryptlen , void * iv )
{
req - > src = src ;
req - > dst = dst ;
req - > cryptlen = cryptlen ;
req - > iv = iv ;
}
2007-12-17 21:51:27 +08:00
# endif /* _CRYPTO_SKCIPHER_H */