linux/include/xen/arm/page.h

120 lines
3.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_ARM_XEN_PAGE_H
#define _ASM_ARM_XEN_PAGE_H
#include <asm/page.h>
#include <linux/pfn.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
mm: reorder includes after introduction of linux/pgtable.h The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include of the latter in the middle of asm includes. Fix this up with the aid of the below script and manual adjustments here and there. import sys import re if len(sys.argv) is not 3: print "USAGE: %s <file> <header>" % (sys.argv[0]) sys.exit(1) hdr_to_move="#include <linux/%s>" % sys.argv[2] moved = False in_hdrs = False with open(sys.argv[1], "r") as f: lines = f.readlines() for _line in lines: line = _line.rstrip(' ') if line == hdr_to_move: continue if line.startswith("#include <linux/"): in_hdrs = True elif not moved and in_hdrs: moved = True print hdr_to_move print line Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:32:42 -07:00
#include <linux/pgtable.h>
#include <xen/xen.h>
#include <xen/interface/grant_table.h>
#define phys_to_machine_mapping_valid(pfn) (1)
/* Xen machine address */
typedef struct xmaddr {
phys_addr_t maddr;
} xmaddr_t;
/* Xen pseudo-physical address */
typedef struct xpaddr {
phys_addr_t paddr;
} xpaddr_t;
#define XMADDR(x) ((xmaddr_t) { .maddr = (x) })
#define XPADDR(x) ((xpaddr_t) { .paddr = (x) })
#define INVALID_P2M_ENTRY (~0UL)
/*
* The pseudo-physical frame (pfn) used in all the helpers is always based
* on Xen page granularity (i.e 4KB).
*
* A Linux page may be split across multiple non-contiguous Xen page so we
* have to keep track with frame based on 4KB page granularity.
*
* PV drivers should never make a direct usage of those helpers (particularly
* pfn_to_gfn and gfn_to_pfn).
*/
unsigned long __pfn_to_mfn(unsigned long pfn);
extern struct rb_root phys_to_mach;
/* Pseudo-physical <-> Guest conversion */
static inline unsigned long pfn_to_gfn(unsigned long pfn)
{
return pfn;
}
static inline unsigned long gfn_to_pfn(unsigned long gfn)
{
return gfn;
}
/* Pseudo-physical <-> BUS conversion */
static inline unsigned long pfn_to_bfn(unsigned long pfn)
{
unsigned long mfn;
if (phys_to_mach.rb_node != NULL) {
mfn = __pfn_to_mfn(pfn);
if (mfn != INVALID_P2M_ENTRY)
return mfn;
}
return pfn;
}
static inline unsigned long bfn_to_pfn(unsigned long bfn)
{
return bfn;
}
#define bfn_to_local_pfn(bfn) bfn_to_pfn(bfn)
/* VIRT <-> GUEST conversion */
#define virt_to_gfn(v) \
({ \
WARN_ON_ONCE(!virt_addr_valid(v)); \
pfn_to_gfn(virt_to_phys(v) >> XEN_PAGE_SHIFT); \
})
#define gfn_to_virt(m) (__va(gfn_to_pfn(m) << XEN_PAGE_SHIFT))
arm/arm64: xen: Fix to convert percpu address to gfn correctly Use per_cpu_ptr_to_phys() instead of virt_to_phys() for per-cpu address conversion. In xen_starting_cpu(), per-cpu xen_vcpu_info address is converted to gfn by virt_to_gfn() macro. However, since the virt_to_gfn(v) assumes the given virtual address is in linear mapped kernel memory area, it can not convert the per-cpu memory if it is allocated on vmalloc area. This depends on CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK. If it is enabled, the first chunk of percpu memory is linear mapped. In the other case, that is allocated from vmalloc area. Moreover, if the first chunk of percpu has run out until allocating xen_vcpu_info, it will be allocated on the 2nd chunk, which is based on kernel memory or vmalloc memory (depends on CONFIG_NEED_PER_CPU_KM). Without this fix and kernel configured to use vmalloc area for the percpu memory, the Dom0 kernel will fail to boot with following errors. [ 0.466172] Xen: initializing cpu0 [ 0.469601] ------------[ cut here ]------------ [ 0.474295] WARNING: CPU: 0 PID: 1 at arch/arm64/xen/../../arm/xen/enlighten.c:153 xen_starting_cpu+0x160/0x180 [ 0.484435] Modules linked in: [ 0.487565] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.9.0-rc4+ #4 [ 0.493895] Hardware name: Socionext Developer Box (DT) [ 0.499194] pstate: 00000005 (nzcv daif -PAN -UAO BTYPE=--) [ 0.504836] pc : xen_starting_cpu+0x160/0x180 [ 0.509263] lr : xen_starting_cpu+0xb0/0x180 [ 0.513599] sp : ffff8000116cbb60 [ 0.516984] x29: ffff8000116cbb60 x28: ffff80000abec000 [ 0.522366] x27: 0000000000000000 x26: 0000000000000000 [ 0.527754] x25: ffff80001156c000 x24: fffffdffbfcdb600 [ 0.533129] x23: 0000000000000000 x22: 0000000000000000 [ 0.538511] x21: ffff8000113a99c8 x20: ffff800010fe4f68 [ 0.543892] x19: ffff8000113a9988 x18: 0000000000000010 [ 0.549274] x17: 0000000094fe0f81 x16: 00000000deadbeef [ 0.554655] x15: ffffffffffffffff x14: 0720072007200720 [ 0.560037] x13: 0720072007200720 x12: 0720072007200720 [ 0.565418] x11: 0720072007200720 x10: 0720072007200720 [ 0.570801] x9 : ffff8000100fbdc0 x8 : ffff800010715208 [ 0.576182] x7 : 0000000000000054 x6 : ffff00001b790f00 [ 0.581564] x5 : ffff800010bbf880 x4 : 0000000000000000 [ 0.586945] x3 : 0000000000000000 x2 : ffff80000abec000 [ 0.592327] x1 : 000000000000002f x0 : 0000800000000000 [ 0.597716] Call trace: [ 0.600232] xen_starting_cpu+0x160/0x180 [ 0.604309] cpuhp_invoke_callback+0xac/0x640 [ 0.608736] cpuhp_issue_call+0xf4/0x150 [ 0.612728] __cpuhp_setup_state_cpuslocked+0x128/0x2c8 [ 0.618030] __cpuhp_setup_state+0x84/0xf8 [ 0.622192] xen_guest_init+0x324/0x364 [ 0.626097] do_one_initcall+0x54/0x250 [ 0.630003] kernel_init_freeable+0x12c/0x2c8 [ 0.634428] kernel_init+0x1c/0x128 [ 0.637988] ret_from_fork+0x10/0x18 [ 0.641635] ---[ end trace d95b5309a33f8b27 ]--- [ 0.646337] ------------[ cut here ]------------ [ 0.651005] kernel BUG at arch/arm64/xen/../../arm/xen/enlighten.c:158! [ 0.657697] Internal error: Oops - BUG: 0 [#1] SMP [ 0.662548] Modules linked in: [ 0.665676] CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 5.9.0-rc4+ #4 [ 0.673398] Hardware name: Socionext Developer Box (DT) [ 0.678695] pstate: 00000005 (nzcv daif -PAN -UAO BTYPE=--) [ 0.684338] pc : xen_starting_cpu+0x178/0x180 [ 0.688765] lr : xen_starting_cpu+0x144/0x180 [ 0.693188] sp : ffff8000116cbb60 [ 0.696573] x29: ffff8000116cbb60 x28: ffff80000abec000 [ 0.701955] x27: 0000000000000000 x26: 0000000000000000 [ 0.707344] x25: ffff80001156c000 x24: fffffdffbfcdb600 [ 0.712718] x23: 0000000000000000 x22: 0000000000000000 [ 0.718107] x21: ffff8000113a99c8 x20: ffff800010fe4f68 [ 0.723481] x19: ffff8000113a9988 x18: 0000000000000010 [ 0.728863] x17: 0000000094fe0f81 x16: 00000000deadbeef [ 0.734245] x15: ffffffffffffffff x14: 0720072007200720 [ 0.739626] x13: 0720072007200720 x12: 0720072007200720 [ 0.745008] x11: 0720072007200720 x10: 0720072007200720 [ 0.750390] x9 : ffff8000100fbdc0 x8 : ffff800010715208 [ 0.755771] x7 : 0000000000000054 x6 : ffff00001b790f00 [ 0.761153] x5 : ffff800010bbf880 x4 : 0000000000000000 [ 0.766534] x3 : 0000000000000000 x2 : 00000000deadbeef [ 0.771916] x1 : 00000000deadbeef x0 : ffffffffffffffea [ 0.777304] Call trace: [ 0.779819] xen_starting_cpu+0x178/0x180 [ 0.783898] cpuhp_invoke_callback+0xac/0x640 [ 0.788325] cpuhp_issue_call+0xf4/0x150 [ 0.792317] __cpuhp_setup_state_cpuslocked+0x128/0x2c8 [ 0.797619] __cpuhp_setup_state+0x84/0xf8 [ 0.801779] xen_guest_init+0x324/0x364 [ 0.805683] do_one_initcall+0x54/0x250 [ 0.809590] kernel_init_freeable+0x12c/0x2c8 [ 0.814016] kernel_init+0x1c/0x128 [ 0.817583] ret_from_fork+0x10/0x18 [ 0.821226] Code: d0006980 f9427c00 cb000300 17ffffea (d4210000) [ 0.827415] ---[ end trace d95b5309a33f8b28 ]--- [ 0.832076] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b [ 0.839815] ---[ end Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b ]--- Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Reviewed-by: Stefano Stabellini <sstabellini@kernel.org> Link: https://lore.kernel.org/r/160196697165.60224.17470743378683334995.stgit@devnote2 Signed-off-by: Juergen Gross <jgross@suse.com>
2020-10-06 15:49:31 +09:00
#define percpu_to_gfn(v) \
(pfn_to_gfn(per_cpu_ptr_to_phys(v) >> XEN_PAGE_SHIFT))
/* Only used in PV code. But ARM guests are always HVM. */
static inline xmaddr_t arbitrary_virt_to_machine(void *vaddr)
{
BUG();
}
extern int set_foreign_p2m_mapping(struct gnttab_map_grant_ref *map_ops,
struct gnttab_map_grant_ref *kmap_ops,
struct page **pages, unsigned int count);
extern int clear_foreign_p2m_mapping(struct gnttab_unmap_grant_ref *unmap_ops,
struct gnttab_unmap_grant_ref *kunmap_ops,
struct page **pages, unsigned int count);
bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn);
bool __set_phys_to_machine_multi(unsigned long pfn, unsigned long mfn,
unsigned long nr_pages);
static inline bool set_phys_to_machine(unsigned long pfn, unsigned long mfn)
{
return __set_phys_to_machine(pfn, mfn);
}
#define xen_remap(cookie, size) ioremap_cache((cookie), (size))
#define xen_unmap(cookie) iounmap((cookie))
bool xen_arch_need_swiotlb(struct device *dev,
phys_addr_t phys,
dma_addr_t dev_addr);
#endif /* _ASM_ARM_XEN_PAGE_H */