linux/fs/xfs/xfs_log_priv.h

714 lines
26 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#ifndef __XFS_LOG_PRIV_H__
#define __XFS_LOG_PRIV_H__
struct xfs_buf;
struct xlog;
struct xlog_ticket;
struct xfs_mount;
/*
* get client id from packed copy.
*
* this hack is here because the xlog_pack code copies four bytes
* of xlog_op_header containing the fields oh_clientid, oh_flags
* and oh_res2 into the packed copy.
*
* later on this four byte chunk is treated as an int and the
* client id is pulled out.
*
* this has endian issues, of course.
*/
static inline uint xlog_get_client_id(__be32 i)
{
return be32_to_cpu(i) >> 24;
}
/*
* In core log state
*/
enum xlog_iclog_state {
XLOG_STATE_ACTIVE, /* Current IC log being written to */
XLOG_STATE_WANT_SYNC, /* Want to sync this iclog; no more writes */
XLOG_STATE_SYNCING, /* This IC log is syncing */
XLOG_STATE_DONE_SYNC, /* Done syncing to disk */
XLOG_STATE_CALLBACK, /* Callback functions now */
XLOG_STATE_DIRTY, /* Dirty IC log, not ready for ACTIVE status */
};
#define XLOG_STATE_STRINGS \
{ XLOG_STATE_ACTIVE, "XLOG_STATE_ACTIVE" }, \
{ XLOG_STATE_WANT_SYNC, "XLOG_STATE_WANT_SYNC" }, \
{ XLOG_STATE_SYNCING, "XLOG_STATE_SYNCING" }, \
{ XLOG_STATE_DONE_SYNC, "XLOG_STATE_DONE_SYNC" }, \
{ XLOG_STATE_CALLBACK, "XLOG_STATE_CALLBACK" }, \
{ XLOG_STATE_DIRTY, "XLOG_STATE_DIRTY" }
/*
* In core log flags
*/
#define XLOG_ICL_NEED_FLUSH (1u << 0) /* iclog needs REQ_PREFLUSH */
#define XLOG_ICL_NEED_FUA (1u << 1) /* iclog needs REQ_FUA */
#define XLOG_ICL_STRINGS \
{ XLOG_ICL_NEED_FLUSH, "XLOG_ICL_NEED_FLUSH" }, \
{ XLOG_ICL_NEED_FUA, "XLOG_ICL_NEED_FUA" }
/*
* Log ticket flags
*/
#define XLOG_TIC_PERM_RESERV (1u << 0) /* permanent reservation */
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 02:14:59 +03:00
#define XLOG_TIC_FLAGS \
{ XLOG_TIC_PERM_RESERV, "XLOG_TIC_PERM_RESERV" }
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 02:14:59 +03:00
/*
* Below are states for covering allocation transactions.
* By covering, we mean changing the h_tail_lsn in the last on-disk
* log write such that no allocation transactions will be re-done during
* recovery after a system crash. Recovery starts at the last on-disk
* log write.
*
* These states are used to insert dummy log entries to cover
* space allocation transactions which can undo non-transactional changes
* after a crash. Writes to a file with space
* already allocated do not result in any transactions. Allocations
* might include space beyond the EOF. So if we just push the EOF a
* little, the last transaction for the file could contain the wrong
* size. If there is no file system activity, after an allocation
* transaction, and the system crashes, the allocation transaction
* will get replayed and the file will be truncated. This could
* be hours/days/... after the allocation occurred.
*
* The fix for this is to do two dummy transactions when the
* system is idle. We need two dummy transaction because the h_tail_lsn
* in the log record header needs to point beyond the last possible
* non-dummy transaction. The first dummy changes the h_tail_lsn to
* the first transaction before the dummy. The second dummy causes
* h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn.
*
* These dummy transactions get committed when everything
* is idle (after there has been some activity).
*
* There are 5 states used to control this.
*
* IDLE -- no logging has been done on the file system or
* we are done covering previous transactions.
* NEED -- logging has occurred and we need a dummy transaction
* when the log becomes idle.
* DONE -- we were in the NEED state and have committed a dummy
* transaction.
* NEED2 -- we detected that a dummy transaction has gone to the
* on disk log with no other transactions.
* DONE2 -- we committed a dummy transaction when in the NEED2 state.
*
* There are two places where we switch states:
*
* 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2.
* We commit the dummy transaction and switch to DONE or DONE2,
* respectively. In all other states, we don't do anything.
*
* 2.) When we finish writing the on-disk log (xlog_state_clean_log).
*
* No matter what state we are in, if this isn't the dummy
* transaction going out, the next state is NEED.
* So, if we aren't in the DONE or DONE2 states, the next state
* is NEED. We can't be finishing a write of the dummy record
* unless it was committed and the state switched to DONE or DONE2.
*
* If we are in the DONE state and this was a write of the
* dummy transaction, we move to NEED2.
*
* If we are in the DONE2 state and this was a write of the
* dummy transaction, we move to IDLE.
*
*
* Writing only one dummy transaction can get appended to
* one file space allocation. When this happens, the log recovery
* code replays the space allocation and a file could be truncated.
* This is why we have the NEED2 and DONE2 states before going idle.
*/
#define XLOG_STATE_COVER_IDLE 0
#define XLOG_STATE_COVER_NEED 1
#define XLOG_STATE_COVER_DONE 2
#define XLOG_STATE_COVER_NEED2 3
#define XLOG_STATE_COVER_DONE2 4
#define XLOG_COVER_OPS 5
typedef struct xlog_ticket {
xfs: rework per-iclog header CIL reservation For every iclog that a CIL push will use up, we need to ensure we have space reserved for the iclog header in each iclog. It is extremely difficult to do this accurately with a per-cpu counter without expensive summing of the counter in every commit. However, we know what the maximum CIL size is going to be because of the hard space limit we have, and hence we know exactly how many iclogs we are going to need to write out the CIL. We are constrained by the requirement that small transactions only have reservation space for a single iclog header built into them. At commit time we don't know how much of the current transaction reservation is made up of iclog header reservations as calculated by xfs_log_calc_unit_res() when the ticket was reserved. As larger reservations have multiple header spaces reserved, we can steal more than one iclog header reservation at a time, but we only steal the exact number needed for the given log vector size delta. As a result, we don't know exactly when we are going to steal iclog header reservations, nor do we know exactly how many we are going to need for a given CIL. To make things simple, start by calculating the worst case number of iclog headers a full CIL push will require. Record this into an atomic variable in the CIL. Then add a byte counter to the log ticket that records exactly how much iclog header space has been reserved in this ticket by xfs_log_calc_unit_res(). This tells us exactly how much space we can steal from the ticket at transaction commit time. Now, at transaction commit time, we can check if the CIL has a full iclog header reservation and, if not, steal the entire reservation the current ticket holds for iclog headers. This minimises the number of times we need to do atomic operations in the fast path, but still guarantees we get all the reservations we need. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-01 19:12:52 +03:00
struct list_head t_queue; /* reserve/write queue */
struct task_struct *t_task; /* task that owns this ticket */
xlog_tid_t t_tid; /* transaction identifier */
atomic_t t_ref; /* ticket reference count */
int t_curr_res; /* current reservation */
int t_unit_res; /* unit reservation */
char t_ocnt; /* original unit count */
char t_cnt; /* current unit count */
uint8_t t_flags; /* properties of reservation */
int t_iclog_hdrs; /* iclog hdrs in t_curr_res */
} xlog_ticket_t;
/*
* - A log record header is 512 bytes. There is plenty of room to grow the
* xlog_rec_header_t into the reserved space.
* - ic_data follows, so a write to disk can start at the beginning of
* the iclog.
* - ic_forcewait is used to implement synchronous forcing of the iclog to disk.
* - ic_next is the pointer to the next iclog in the ring.
* - ic_log is a pointer back to the global log structure.
* - ic_size is the full size of the log buffer, minus the cycle headers.
* - ic_offset is the current number of bytes written to in this iclog.
* - ic_refcnt is bumped when someone is writing to the log.
* - ic_state is the state of the iclog.
*
* Because of cacheline contention on large machines, we need to separate
* various resources onto different cachelines. To start with, make the
* structure cacheline aligned. The following fields can be contended on
* by independent processes:
*
* - ic_callbacks
* - ic_refcnt
* - fields protected by the global l_icloglock
*
* so we need to ensure that these fields are located in separate cachelines.
* We'll put all the read-only and l_icloglock fields in the first cacheline,
* and move everything else out to subsequent cachelines.
*/
typedef struct xlog_in_core {
wait_queue_head_t ic_force_wait;
wait_queue_head_t ic_write_wait;
struct xlog_in_core *ic_next;
struct xlog_in_core *ic_prev;
struct xlog *ic_log;
u32 ic_size;
u32 ic_offset;
enum xlog_iclog_state ic_state;
xfs: journal IO cache flush reductions Currently every journal IO is issued as REQ_PREFLUSH | REQ_FUA to guarantee the ordering requirements the journal has w.r.t. metadata writeback. THe two ordering constraints are: 1. we cannot overwrite metadata in the journal until we guarantee that the dirty metadata has been written back in place and is stable. 2. we cannot write back dirty metadata until it has been written to the journal and guaranteed to be stable (and hence recoverable) in the journal. The ordering guarantees of #1 are provided by REQ_PREFLUSH. This causes the journal IO to issue a cache flush and wait for it to complete before issuing the write IO to the journal. Hence all completed metadata IO is guaranteed to be stable before the journal overwrites the old metadata. The ordering guarantees of #2 are provided by the REQ_FUA, which ensures the journal writes do not complete until they are on stable storage. Hence by the time the last journal IO in a checkpoint completes, we know that the entire checkpoint is on stable storage and we can unpin the dirty metadata and allow it to be written back. This is the mechanism by which ordering was first implemented in XFS way back in 2002 by commit 95d97c36e5155075ba2eb22b17562cfcc53fcf96 ("Add support for drive write cache flushing") in the xfs-archive tree. A lot has changed since then, most notably we now use delayed logging to checkpoint the filesystem to the journal rather than write each individual transaction to the journal. Cache flushes on journal IO are necessary when individual transactions are wholly contained within a single iclog. However, CIL checkpoints are single transactions that typically span hundreds to thousands of individual journal writes, and so the requirements for device cache flushing have changed. That is, the ordering rules I state above apply to ordering of atomic transactions recorded in the journal, not to the journal IO itself. Hence we need to ensure metadata is stable before we start writing a new transaction to the journal (guarantee #1), and we need to ensure the entire transaction is stable in the journal before we start metadata writeback (guarantee #2). Hence we only need a REQ_PREFLUSH on the journal IO that starts a new journal transaction to provide #1, and it is not on any other journal IO done within the context of that journal transaction. The CIL checkpoint already issues a cache flush before it starts writing to the log, so we no longer need the iclog IO to issue a REQ_REFLUSH for us. Hence if XLOG_START_TRANS is passed to xlog_write(), we no longer need to mark the first iclog in the log write with REQ_PREFLUSH for this case. As an added bonus, this ordering mechanism works for both internal and external logs, meaning we can remove the explicit data device cache flushes from the iclog write code when using external logs. Given the new ordering semantics of commit records for the CIL, we need iclogs containing commit records to issue a REQ_PREFLUSH. We also require unmount records to do this. Hence for both XLOG_COMMIT_TRANS and XLOG_UNMOUNT_TRANS xlog_write() calls we need to mark the first iclog being written with REQ_PREFLUSH. For both commit records and unmount records, we also want them immediately on stable storage, so we want to also mark the iclogs that contain these records to be marked REQ_FUA. That means if a record is split across multiple iclogs, they are all marked REQ_FUA and not just the last one so that when the transaction is completed all the parts of the record are on stable storage. And for external logs, unmount records need a pre-write data device cache flush similar to the CIL checkpoint cache pre-flush as the internal iclog write code does not do this implicitly anymore. As an optimisation, when the commit record lands in the same iclog as the journal transaction starts, we don't need to wait for anything and can simply use REQ_FUA to provide guarantee #2. This means that for fsync() heavy workloads, the cache flush behaviour is completely unchanged and there is no degradation in performance as a result of optimise the multi-IO transaction case. The most notable sign that there is less IO latency on my test machine (nvme SSDs) is that the "noiclogs" rate has dropped substantially. This metric indicates that the CIL push is blocking in xlog_get_iclog_space() waiting for iclog IO completion to occur. With 8 iclogs of 256kB, the rate is appoximately 1 noiclog event to every 4 iclog writes. IOWs, every 4th call to xlog_get_iclog_space() is blocking waiting for log IO. With the changes in this patch, this drops to 1 noiclog event for every 100 iclog writes. Hence it is clear that log IO is completing much faster than it was previously, but it is also clear that for large iclog sizes, this isn't the performance limiting factor on this hardware. With smaller iclogs (32kB), however, there is a substantial difference. With the cache flush modifications, the journal is now running at over 4000 write IOPS, and the journal throughput is largely identical to the 256kB iclogs and the noiclog event rate stays low at about 1:50 iclog writes. The existing code tops out at about 2500 IOPS as the number of cache flushes dominate performance and latency. The noiclog event rate is about 1:4, and the performance variance is quite large as the journal throughput can fall to less than half the peak sustained rate when the cache flush rate prevents metadata writeback from keeping up and the log runs out of space and throttles reservations. As a result: logbsize fsmark create rate rm -rf before 32kb 152851+/-5.3e+04 5m28s patched 32kb 221533+/-1.1e+04 5m24s before 256kb 220239+/-6.2e+03 4m58s patched 256kb 228286+/-9.2e+03 5m06s The rm -rf times are included because I ran them, but the differences are largely noise. This workload is largely metadata read IO latency bound and the changes to the journal cache flushing doesn't really make any noticable difference to behaviour apart from a reduction in noiclog events from background CIL pushing. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:51 +03:00
unsigned int ic_flags;
void *ic_datap; /* pointer to iclog data */
struct list_head ic_callbacks;
/* reference counts need their own cacheline */
atomic_t ic_refcnt ____cacheline_aligned_in_smp;
xlog_in_core_2_t *ic_data;
#define ic_header ic_data->hic_header
#ifdef DEBUG
bool ic_fail_crc : 1;
#endif
struct semaphore ic_sema;
struct work_struct ic_end_io_work;
struct bio ic_bio;
struct bio_vec ic_bvec[];
} xlog_in_core_t;
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
/*
* The CIL context is used to aggregate per-transaction details as well be
* passed to the iclog for checkpoint post-commit processing. After being
* passed to the iclog, another context needs to be allocated for tracking the
* next set of transactions to be aggregated into a checkpoint.
*/
struct xfs_cil;
struct xfs_cil_ctx {
struct xfs_cil *cil;
xfs: xfs_log_force_lsn isn't passed a LSN In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:52 +03:00
xfs_csn_t sequence; /* chkpt sequence # */
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
xfs_lsn_t start_lsn; /* first LSN of chkpt commit */
xfs_lsn_t commit_lsn; /* chkpt commit record lsn */
struct xlog_in_core *commit_iclog;
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
struct xlog_ticket *ticket; /* chkpt ticket */
xfs: implement percpu cil space used calculation Now that we have the CIL percpu structures in place, implement the space used counter as a per-cpu counter. We have to be really careful now about ensuring that the checks and updates run without arbitrary delays, which means they need to run with pre-emption disabled. We do this by careful placement of the get_cpu_ptr/put_cpu_ptr calls to access the per-cpu structures for that CPU. We need to be able to reliably detect that the CIL has reached the hard limit threshold so we can take extra reservations for the iclog headers when the space used overruns the original reservation. hence we factor out xlog_cil_over_hard_limit() from xlog_cil_push_background(). The global CIL space used is an atomic variable that is backed by per-cpu aggregation to minimise the number of atomic updates we do to the global state in the fast path. While we are under the soft limit, we aggregate only when the per-cpu aggregation is over the proportion of the soft limit assigned to that CPU. This means that all CPUs can use all but one byte of their aggregation threshold and we will not go over the soft limit. Hence once we detect that we've gone over both a per-cpu aggregation threshold and the soft limit, we know that we have only exceeded the soft limit by one per-cpu aggregation threshold. Even if all CPUs hit this at the same time, we can't be over the hard limit, so we can run an aggregation back into the atomic counter at this point and still be under the hard limit. At this point, we will be over the soft limit and hence we'll aggregate into the global atomic used space directly rather than the per-cpu counters, hence providing accurate detection of hard limit excursion for accounting and reservation purposes. Hence we get the best of both worlds - lockless, scalable per-cpu fast path plus accurate, atomic detection of hard limit excursion. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 11:50:59 +03:00
atomic_t space_used; /* aggregate size of regions */
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
struct list_head busy_extents; /* busy extents in chkpt */
struct list_head log_items; /* log items in chkpt */
struct list_head lv_chain; /* logvecs being pushed */
struct list_head iclog_entry;
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
struct list_head committing; /* ctx committing list */
struct work_struct discard_endio_work;
xfs: CIL work is serialised, not pipelined Because we use a single work structure attached to the CIL rather than the CIL context, we can only queue a single work item at a time. This results in the CIL being single threaded and limits performance when it becomes CPU bound. The design of the CIL is that it is pipelined and multiple commits can be running concurrently, but the way the work is currently implemented means that it is not pipelining as it was intended. The critical work to switch the CIL context can take a few milliseconds to run, but the rest of the CIL context flush can take hundreds of milliseconds to complete. The context switching is the serialisation point of the CIL, once the context has been switched the rest of the context push can run asynchrnously with all other context pushes. Hence we can move the work to the CIL context so that we can run multiple CIL pushes at the same time and spread the majority of the work out over multiple CPUs. We can keep the per-cpu CIL commit state on the CIL rather than the context, because the context is pinned to the CIL until the switch is done and we aggregate and drain the per-cpu state held on the CIL during the context switch. However, because we no longer serialise the CIL work, we can have effectively unlimited CIL pushes in progress. We don't want to do this - not only does it create contention on the iclogs and the state machine locks, we can run the log right out of space with outstanding pushes. Instead, limit the work concurrency to 4 concurrent works being processed at a time. This is enough concurrency to remove the CIL from being a CPU bound bottleneck but not enough to create new contention points or unbound concurrency issues. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-11 04:00:45 +03:00
struct work_struct push_work;
atomic_t order_id;
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
};
/*
* Per-cpu CIL tracking items
*/
struct xlog_cil_pcp {
xfs: implement percpu cil space used calculation Now that we have the CIL percpu structures in place, implement the space used counter as a per-cpu counter. We have to be really careful now about ensuring that the checks and updates run without arbitrary delays, which means they need to run with pre-emption disabled. We do this by careful placement of the get_cpu_ptr/put_cpu_ptr calls to access the per-cpu structures for that CPU. We need to be able to reliably detect that the CIL has reached the hard limit threshold so we can take extra reservations for the iclog headers when the space used overruns the original reservation. hence we factor out xlog_cil_over_hard_limit() from xlog_cil_push_background(). The global CIL space used is an atomic variable that is backed by per-cpu aggregation to minimise the number of atomic updates we do to the global state in the fast path. While we are under the soft limit, we aggregate only when the per-cpu aggregation is over the proportion of the soft limit assigned to that CPU. This means that all CPUs can use all but one byte of their aggregation threshold and we will not go over the soft limit. Hence once we detect that we've gone over both a per-cpu aggregation threshold and the soft limit, we know that we have only exceeded the soft limit by one per-cpu aggregation threshold. Even if all CPUs hit this at the same time, we can't be over the hard limit, so we can run an aggregation back into the atomic counter at this point and still be under the hard limit. At this point, we will be over the soft limit and hence we'll aggregate into the global atomic used space directly rather than the per-cpu counters, hence providing accurate detection of hard limit excursion for accounting and reservation purposes. Hence we get the best of both worlds - lockless, scalable per-cpu fast path plus accurate, atomic detection of hard limit excursion. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 11:50:59 +03:00
int32_t space_used;
uint32_t space_reserved;
struct list_head busy_extents;
struct list_head log_items;
};
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
/*
* Committed Item List structure
*
* This structure is used to track log items that have been committed but not
* yet written into the log. It is used only when the delayed logging mount
* option is enabled.
*
* This structure tracks the list of committing checkpoint contexts so
* we can avoid the problem of having to hold out new transactions during a
* flush until we have a the commit record LSN of the checkpoint. We can
* traverse the list of committing contexts in xlog_cil_push_lsn() to find a
* sequence match and extract the commit LSN directly from there. If the
* checkpoint is still in the process of committing, we can block waiting for
* the commit LSN to be determined as well. This should make synchronous
* operations almost as efficient as the old logging methods.
*/
struct xfs_cil {
struct xlog *xc_log;
unsigned long xc_flags;
xfs: rework per-iclog header CIL reservation For every iclog that a CIL push will use up, we need to ensure we have space reserved for the iclog header in each iclog. It is extremely difficult to do this accurately with a per-cpu counter without expensive summing of the counter in every commit. However, we know what the maximum CIL size is going to be because of the hard space limit we have, and hence we know exactly how many iclogs we are going to need to write out the CIL. We are constrained by the requirement that small transactions only have reservation space for a single iclog header built into them. At commit time we don't know how much of the current transaction reservation is made up of iclog header reservations as calculated by xfs_log_calc_unit_res() when the ticket was reserved. As larger reservations have multiple header spaces reserved, we can steal more than one iclog header reservation at a time, but we only steal the exact number needed for the given log vector size delta. As a result, we don't know exactly when we are going to steal iclog header reservations, nor do we know exactly how many we are going to need for a given CIL. To make things simple, start by calculating the worst case number of iclog headers a full CIL push will require. Record this into an atomic variable in the CIL. Then add a byte counter to the log ticket that records exactly how much iclog header space has been reserved in this ticket by xfs_log_calc_unit_res(). This tells us exactly how much space we can steal from the ticket at transaction commit time. Now, at transaction commit time, we can check if the CIL has a full iclog header reservation and, if not, steal the entire reservation the current ticket holds for iclog headers. This minimises the number of times we need to do atomic operations in the fast path, but still guarantees we get all the reservations we need. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-01 19:12:52 +03:00
atomic_t xc_iclog_hdrs;
struct workqueue_struct *xc_push_wq;
struct rw_semaphore xc_ctx_lock ____cacheline_aligned_in_smp;
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
struct xfs_cil_ctx *xc_ctx;
spinlock_t xc_push_lock ____cacheline_aligned_in_smp;
xfs: xfs_log_force_lsn isn't passed a LSN In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:52 +03:00
xfs_csn_t xc_push_seq;
xfs: AIL needs asynchronous CIL forcing The AIL pushing is stalling on log forces when it comes across pinned items. This is happening on removal workloads where the AIL is dominated by stale items that are removed from AIL when the checkpoint that marks the items stale is committed to the journal. This results is relatively few items in the AIL, but those that are are often pinned as directories items are being removed from are still being logged. As a result, many push cycles through the CIL will first issue a blocking log force to unpin the items. This can take some time to complete, with tracing regularly showing push delays of half a second and sometimes up into the range of several seconds. Sequences like this aren't uncommon: .... 399.829437: xfsaild: last lsn 0x11002dd000 count 101 stuck 101 flushing 0 tout 20 <wanted 20ms, got 270ms delay> 400.099622: xfsaild: target 0x11002f3600, prev 0x11002f3600, last lsn 0x0 400.099623: xfsaild: first lsn 0x11002f3600 400.099679: xfsaild: last lsn 0x1100305000 count 16 stuck 11 flushing 0 tout 50 <wanted 50ms, got 500ms delay> 400.589348: xfsaild: target 0x110032e600, prev 0x11002f3600, last lsn 0x0 400.589349: xfsaild: first lsn 0x1100305000 400.589595: xfsaild: last lsn 0x110032e600 count 156 stuck 101 flushing 30 tout 50 <wanted 50ms, got 460ms delay> 400.950341: xfsaild: target 0x1100353000, prev 0x110032e600, last lsn 0x0 400.950343: xfsaild: first lsn 0x1100317c00 400.950436: xfsaild: last lsn 0x110033d200 count 105 stuck 101 flushing 0 tout 20 <wanted 20ms, got 200ms delay> 401.142333: xfsaild: target 0x1100361600, prev 0x1100353000, last lsn 0x0 401.142334: xfsaild: first lsn 0x110032e600 401.142535: xfsaild: last lsn 0x1100353000 count 122 stuck 101 flushing 8 tout 10 <wanted 10ms, got 10ms delay> 401.154323: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x1100353000 401.154328: xfsaild: first lsn 0x1100353000 401.154389: xfsaild: last lsn 0x1100353000 count 101 stuck 101 flushing 0 tout 20 <wanted 20ms, got 300ms delay> 401.451525: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0 401.451526: xfsaild: first lsn 0x1100353000 401.451804: xfsaild: last lsn 0x1100377200 count 170 stuck 22 flushing 122 tout 50 <wanted 50ms, got 500ms delay> 401.933581: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0 .... In each of these cases, every AIL pass saw 101 log items stuck on the AIL (pinned) with very few other items being found. Each pass, a log force was issued, and delay between last/first is the sleep time + the sync log force time. Some of these 101 items pinned the tail of the log. The tail of the log does slowly creep forward (first lsn), but the problem is that the log is actually out of reservation space because it's been running so many transactions that stale items that never reach the AIL but consume log space. Hence we have a largely empty AIL, with long term pins on items that pin the tail of the log that don't get pushed frequently enough to keep log space available. The problem is the hundreds of milliseconds that we block in the log force pushing the CIL out to disk. The AIL should not be stalled like this - it needs to run and flush items that are at the tail of the log with minimal latency. What we really need to do is trigger a log flush, but then not wait for it at all - we've already done our waiting for stuff to complete when we backed off prior to the log force being issued. Even if we remove the XFS_LOG_SYNC from the xfs_log_force() call, we still do a blocking flush of the CIL and that is what is causing the issue. Hence we need a new interface for the CIL to trigger an immediate background push of the CIL to get it moving faster but not to wait on that to occur. While the CIL is pushing, the AIL can also be pushing. We already have an internal interface to do this - xlog_cil_push_now() - but we need a wrapper for it to be used externally. xlog_cil_force_seq() can easily be extended to do what we need as it already implements the synchronous CIL push via xlog_cil_push_now(). Add the necessary flags and "push current sequence" semantics to xlog_cil_force_seq() and convert the AIL pushing to use it. One of the complexities here is that the CIL push does not guarantee that the commit record for the CIL checkpoint is written to disk. The current log force ensures this by submitting the current ACTIVE iclog that the commit record was written to. We need the CIL to actually write this commit record to disk for an async push to ensure that the checkpoint actually makes it to disk and unpins the pinned items in the checkpoint on completion. Hence we need to pass down to the CIL push that we are doing an async flush so that it can switch out the commit_iclog if necessary to get written to disk when the commit iclog is finally released. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-11 04:00:44 +03:00
bool xc_push_commit_stable;
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
struct list_head xc_committing;
wait_queue_head_t xc_commit_wait;
xfs: order CIL checkpoint start records Because log recovery depends on strictly ordered start records as well as strictly ordered commit records. This is a zero day bug in the way XFS writes pipelined transactions to the journal which is exposed by fixing the zero day bug that prevents the CIL from pipelining checkpoints. This re-introduces explicit concurrent commits back into the on-disk journal and hence out of order start records. The XFS journal commit code has never ordered start records and we have relied on strict commit record ordering for correct recovery ordering of concurrently written transactions. Unfortunately, root cause analysis uncovered the fact that log recovery uses the LSN of the start record for transaction commit processing. Hence, whilst the commits are processed in strict order by recovery, the LSNs associated with the commits can be out of order and so recovery may stamp incorrect LSNs into objects and/or misorder intents in the AIL for later processing. This can result in log recovery failures and/or on disk corruption, sometimes silent. Because this is a long standing log recovery issue, we can't just fix log recovery and call it good. This still leaves older kernels susceptible to recovery failures and corruption when replaying a log from a kernel that pipelines checkpoints. There is also the issue that in-memory ordering for AIL pushing and data integrity operations are based on checkpoint start LSNs, and if the start LSN is incorrect in the journal, it is also incorrect in memory. Hence there's really only one choice for fixing this zero-day bug: we need to strictly order checkpoint start records in ascending sequence order in the log, the same way we already strictly order commit records. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-11 04:00:44 +03:00
wait_queue_head_t xc_start_wait;
xfs: xfs_log_force_lsn isn't passed a LSN In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:52 +03:00
xfs_csn_t xc_current_sequence;
wait_queue_head_t xc_push_wait; /* background push throttle */
void __percpu *xc_pcp; /* percpu CIL structures */
#ifdef CONFIG_HOTPLUG_CPU
struct list_head xc_pcp_list;
#endif
} ____cacheline_aligned_in_smp;
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
/* xc_flags bit values */
#define XLOG_CIL_EMPTY 1
xfs: implement percpu cil space used calculation Now that we have the CIL percpu structures in place, implement the space used counter as a per-cpu counter. We have to be really careful now about ensuring that the checks and updates run without arbitrary delays, which means they need to run with pre-emption disabled. We do this by careful placement of the get_cpu_ptr/put_cpu_ptr calls to access the per-cpu structures for that CPU. We need to be able to reliably detect that the CIL has reached the hard limit threshold so we can take extra reservations for the iclog headers when the space used overruns the original reservation. hence we factor out xlog_cil_over_hard_limit() from xlog_cil_push_background(). The global CIL space used is an atomic variable that is backed by per-cpu aggregation to minimise the number of atomic updates we do to the global state in the fast path. While we are under the soft limit, we aggregate only when the per-cpu aggregation is over the proportion of the soft limit assigned to that CPU. This means that all CPUs can use all but one byte of their aggregation threshold and we will not go over the soft limit. Hence once we detect that we've gone over both a per-cpu aggregation threshold and the soft limit, we know that we have only exceeded the soft limit by one per-cpu aggregation threshold. Even if all CPUs hit this at the same time, we can't be over the hard limit, so we can run an aggregation back into the atomic counter at this point and still be under the hard limit. At this point, we will be over the soft limit and hence we'll aggregate into the global atomic used space directly rather than the per-cpu counters, hence providing accurate detection of hard limit excursion for accounting and reservation purposes. Hence we get the best of both worlds - lockless, scalable per-cpu fast path plus accurate, atomic detection of hard limit excursion. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 11:50:59 +03:00
#define XLOG_CIL_PCP_SPACE 2
/*
xfs: force background CIL push under sustained load I have been seeing occasional pauses in transaction throughput up to 30s long under heavy parallel workloads. The only notable thing was that the xfsaild was trying to be active during the pauses, but making no progress. It was running exactly 20 times a second (on the 50ms no-progress backoff), and the number of pushbuf events was constant across this time as well. IOWs, the xfsaild appeared to be stuck on buffers that it could not push out. Further investigation indicated that it was trying to push out inode buffers that were pinned and/or locked. The xfsbufd was also getting woken at the same frequency (by the xfsaild, no doubt) to push out delayed write buffers. The xfsbufd was not making any progress because all the buffers in the delwri queue were pinned. This scan- and-make-no-progress dance went one in the trace for some seconds, before the xfssyncd came along an issued a log force, and then things started going again. However, I noticed something strange about the log force - there were way too many IO's issued. 516 log buffers were written, to be exact. That added up to 129MB of log IO, which got me very interested because it's almost exactly 25% of the size of the log. He delayed logging code is suppose to aggregate the minimum of 25% of the log or 8MB worth of changes before flushing. That's what really puzzled me - why did a log force write 129MB instead of only 8MB? Essentially what has happened is that no CIL pushes had occurred since the previous tail push which cleared out 25% of the log space. That caused all the new transactions to block because there wasn't log space for them, but they kick the xfsaild to push the tail. However, the xfsaild was not making progress because there were buffers it could not lock and flush, and the xfsbufd could not flush them because they were pinned. As a result, both the xfsaild and the xfsbufd could not move the tail of the log forward without the CIL first committing. The cause of the problem was that the background CIL push, which should happen when 8MB of aggregated changes have been committed, is being held off by the concurrent transaction commit load. The background push does a down_write_trylock() which will fail if there is a concurrent transaction commit holding the push lock in read mode. With 8 CPUs all doing transactions as fast as they can, there was enough concurrent transaction commits to hold off the background push until tail-pushing could no longer free log space, and the halt would occur. It should be noted that there is no reason why it would halt at 25% of log space used by a single CIL checkpoint. This bug could definitely violate the "no transaction should be larger than half the log" requirement and hence result in corruption if the system crashed under heavy load. This sort of bug is exactly the reason why delayed logging was tagged as experimental.... The fix is to start blocking background pushes once the threshold has been exceeded. Rework the threshold calculations to keep the amount of log space a CIL checkpoint can use to below that of the AIL push threshold to avoid the problem completely. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Alex Elder <aelder@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-09-24 12:13:44 +04:00
* The amount of log space we allow the CIL to aggregate is difficult to size.
* Whatever we choose, we have to make sure we can get a reservation for the
* log space effectively, that it is large enough to capture sufficient
* relogging to reduce log buffer IO significantly, but it is not too large for
* the log or induces too much latency when writing out through the iclogs. We
* track both space consumed and the number of vectors in the checkpoint
* context, so we need to decide which to use for limiting.
*
* Every log buffer we write out during a push needs a header reserved, which
* is at least one sector and more for v2 logs. Hence we need a reservation of
* at least 512 bytes per 32k of log space just for the LR headers. That means
* 16KB of reservation per megabyte of delayed logging space we will consume,
* plus various headers. The number of headers will vary based on the num of
* io vectors, so limiting on a specific number of vectors is going to result
* in transactions of varying size. IOWs, it is more consistent to track and
* limit space consumed in the log rather than by the number of objects being
* logged in order to prevent checkpoint ticket overruns.
*
* Further, use of static reservations through the log grant mechanism is
* problematic. It introduces a lot of complexity (e.g. reserve grant vs write
* grant) and a significant deadlock potential because regranting write space
* can block on log pushes. Hence if we have to regrant log space during a log
* push, we can deadlock.
*
* However, we can avoid this by use of a dynamic "reservation stealing"
* technique during transaction commit whereby unused reservation space in the
* transaction ticket is transferred to the CIL ctx commit ticket to cover the
* space needed by the checkpoint transaction. This means that we never need to
* specifically reserve space for the CIL checkpoint transaction, nor do we
* need to regrant space once the checkpoint completes. This also means the
* checkpoint transaction ticket is specific to the checkpoint context, rather
* than the CIL itself.
*
xfs: force background CIL push under sustained load I have been seeing occasional pauses in transaction throughput up to 30s long under heavy parallel workloads. The only notable thing was that the xfsaild was trying to be active during the pauses, but making no progress. It was running exactly 20 times a second (on the 50ms no-progress backoff), and the number of pushbuf events was constant across this time as well. IOWs, the xfsaild appeared to be stuck on buffers that it could not push out. Further investigation indicated that it was trying to push out inode buffers that were pinned and/or locked. The xfsbufd was also getting woken at the same frequency (by the xfsaild, no doubt) to push out delayed write buffers. The xfsbufd was not making any progress because all the buffers in the delwri queue were pinned. This scan- and-make-no-progress dance went one in the trace for some seconds, before the xfssyncd came along an issued a log force, and then things started going again. However, I noticed something strange about the log force - there were way too many IO's issued. 516 log buffers were written, to be exact. That added up to 129MB of log IO, which got me very interested because it's almost exactly 25% of the size of the log. He delayed logging code is suppose to aggregate the minimum of 25% of the log or 8MB worth of changes before flushing. That's what really puzzled me - why did a log force write 129MB instead of only 8MB? Essentially what has happened is that no CIL pushes had occurred since the previous tail push which cleared out 25% of the log space. That caused all the new transactions to block because there wasn't log space for them, but they kick the xfsaild to push the tail. However, the xfsaild was not making progress because there were buffers it could not lock and flush, and the xfsbufd could not flush them because they were pinned. As a result, both the xfsaild and the xfsbufd could not move the tail of the log forward without the CIL first committing. The cause of the problem was that the background CIL push, which should happen when 8MB of aggregated changes have been committed, is being held off by the concurrent transaction commit load. The background push does a down_write_trylock() which will fail if there is a concurrent transaction commit holding the push lock in read mode. With 8 CPUs all doing transactions as fast as they can, there was enough concurrent transaction commits to hold off the background push until tail-pushing could no longer free log space, and the halt would occur. It should be noted that there is no reason why it would halt at 25% of log space used by a single CIL checkpoint. This bug could definitely violate the "no transaction should be larger than half the log" requirement and hence result in corruption if the system crashed under heavy load. This sort of bug is exactly the reason why delayed logging was tagged as experimental.... The fix is to start blocking background pushes once the threshold has been exceeded. Rework the threshold calculations to keep the amount of log space a CIL checkpoint can use to below that of the AIL push threshold to avoid the problem completely. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Alex Elder <aelder@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-09-24 12:13:44 +04:00
* With dynamic reservations, we can effectively make up arbitrary limits for
* the checkpoint size so long as they don't violate any other size rules.
* Recovery imposes a rule that no transaction exceed half the log, so we are
* limited by that. Furthermore, the log transaction reservation subsystem
* tries to keep 25% of the log free, so we need to keep below that limit or we
* risk running out of free log space to start any new transactions.
*
xfs: Lower CIL flush limit for large logs The current CIL size aggregation limit is 1/8th the log size. This means for large logs we might be aggregating at least 250MB of dirty objects in memory before the CIL is flushed to the journal. With CIL shadow buffers sitting around, this means the CIL is often consuming >500MB of temporary memory that is all allocated under GFP_NOFS conditions. Flushing the CIL can take some time to do if there is other IO ongoing, and can introduce substantial log force latency by itself. It also pins the memory until the objects are in the AIL and can be written back and reclaimed by shrinkers. Hence this threshold also tends to determine the minimum amount of memory XFS can operate in under heavy modification without triggering the OOM killer. Modify the CIL space limit to prevent such huge amounts of pinned metadata from aggregating. We can have 2MB of log IO in flight at once, so limit aggregation to 16x this size. This threshold was chosen as it little impact on performance (on 16-way fsmark) or log traffic but pins a lot less memory on large logs especially under heavy memory pressure. An aggregation limit of 8x had 5-10% performance degradation and a 50% increase in log throughput for the same workload, so clearly that was too small for highly concurrent workloads on large logs. This was found via trace analysis of AIL behaviour. e.g. insertion from a single CIL flush: xfs_ail_insert: old lsn 0/0 new lsn 1/3033090 type XFS_LI_INODE flags IN_AIL $ grep xfs_ail_insert /mnt/scratch/s.t |grep "new lsn 1/3033090" |wc -l 1721823 $ So there were 1.7 million objects inserted into the AIL from this CIL checkpoint, the first at 2323.392108, the last at 2325.667566 which was the end of the trace (i.e. it hadn't finished). Clearly a major problem. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Allison Collins <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-03-25 06:10:26 +03:00
* In order to keep background CIL push efficient, we only need to ensure the
* CIL is large enough to maintain sufficient in-memory relogging to avoid
* repeated physical writes of frequently modified metadata. If we allow the CIL
* to grow to a substantial fraction of the log, then we may be pinning hundreds
* of megabytes of metadata in memory until the CIL flushes. This can cause
* issues when we are running low on memory - pinned memory cannot be reclaimed,
* and the CIL consumes a lot of memory. Hence we need to set an upper physical
* size limit for the CIL that limits the maximum amount of memory pinned by the
* CIL but does not limit performance by reducing relogging efficiency
* significantly.
*
* As such, the CIL push threshold ends up being the smaller of two thresholds:
* - a threshold large enough that it allows CIL to be pushed and progress to be
* made without excessive blocking of incoming transaction commits. This is
* defined to be 12.5% of the log space - half the 25% push threshold of the
* AIL.
* - small enough that it doesn't pin excessive amounts of memory but maintains
* close to peak relogging efficiency. This is defined to be 16x the iclog
* buffer window (32MB) as measurements have shown this to be roughly the
* point of diminishing performance increases under highly concurrent
* modification workloads.
*
* To prevent the CIL from overflowing upper commit size bounds, we introduce a
* new threshold at which we block committing transactions until the background
* CIL commit commences and switches to a new context. While this is not a hard
* limit, it forces the process committing a transaction to the CIL to block and
* yeild the CPU, giving the CIL push work a chance to be scheduled and start
* work. This prevents a process running lots of transactions from overfilling
* the CIL because it is not yielding the CPU. We set the blocking limit at
* twice the background push space threshold so we keep in line with the AIL
* push thresholds.
*
* Note: this is not a -hard- limit as blocking is applied after the transaction
* is inserted into the CIL and the push has been triggered. It is largely a
* throttling mechanism that allows the CIL push to be scheduled and run. A hard
* limit will be difficult to implement without introducing global serialisation
* in the CIL commit fast path, and it's not at all clear that we actually need
* such hard limits given the ~7 years we've run without a hard limit before
* finding the first situation where a checkpoint size overflow actually
* occurred. Hence the simple throttle, and an ASSERT check to tell us that
* we've overrun the max size.
*/
xfs: Lower CIL flush limit for large logs The current CIL size aggregation limit is 1/8th the log size. This means for large logs we might be aggregating at least 250MB of dirty objects in memory before the CIL is flushed to the journal. With CIL shadow buffers sitting around, this means the CIL is often consuming >500MB of temporary memory that is all allocated under GFP_NOFS conditions. Flushing the CIL can take some time to do if there is other IO ongoing, and can introduce substantial log force latency by itself. It also pins the memory until the objects are in the AIL and can be written back and reclaimed by shrinkers. Hence this threshold also tends to determine the minimum amount of memory XFS can operate in under heavy modification without triggering the OOM killer. Modify the CIL space limit to prevent such huge amounts of pinned metadata from aggregating. We can have 2MB of log IO in flight at once, so limit aggregation to 16x this size. This threshold was chosen as it little impact on performance (on 16-way fsmark) or log traffic but pins a lot less memory on large logs especially under heavy memory pressure. An aggregation limit of 8x had 5-10% performance degradation and a 50% increase in log throughput for the same workload, so clearly that was too small for highly concurrent workloads on large logs. This was found via trace analysis of AIL behaviour. e.g. insertion from a single CIL flush: xfs_ail_insert: old lsn 0/0 new lsn 1/3033090 type XFS_LI_INODE flags IN_AIL $ grep xfs_ail_insert /mnt/scratch/s.t |grep "new lsn 1/3033090" |wc -l 1721823 $ So there were 1.7 million objects inserted into the AIL from this CIL checkpoint, the first at 2323.392108, the last at 2325.667566 which was the end of the trace (i.e. it hadn't finished). Clearly a major problem. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Allison Collins <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-03-25 06:10:26 +03:00
#define XLOG_CIL_SPACE_LIMIT(log) \
min_t(int, (log)->l_logsize >> 3, BBTOB(XLOG_TOTAL_REC_SHIFT(log)) << 4)
#define XLOG_CIL_BLOCKING_SPACE_LIMIT(log) \
(XLOG_CIL_SPACE_LIMIT(log) * 2)
/*
* ticket grant locks, queues and accounting have their own cachlines
* as these are quite hot and can be operated on concurrently.
*/
struct xlog_grant_head {
spinlock_t lock ____cacheline_aligned_in_smp;
struct list_head waiters;
atomic64_t grant;
};
/*
* The reservation head lsn is not made up of a cycle number and block number.
* Instead, it uses a cycle number and byte number. Logs don't expect to
* overflow 31 bits worth of byte offset, so using a byte number will mean
* that round off problems won't occur when releasing partial reservations.
*/
struct xlog {
/* The following fields don't need locking */
struct xfs_mount *l_mp; /* mount point */
struct xfs_ail *l_ailp; /* AIL log is working with */
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
struct xfs_cil *l_cilp; /* CIL log is working with */
struct xfs_buftarg *l_targ; /* buftarg of log */
struct workqueue_struct *l_ioend_workqueue; /* for I/O completions */
struct delayed_work l_work; /* background flush work */
long l_opstate; /* operational state */
uint l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */
struct list_head *l_buf_cancel_table;
int l_iclog_hsize; /* size of iclog header */
int l_iclog_heads; /* # of iclog header sectors */
uint l_sectBBsize; /* sector size in BBs (2^n) */
int l_iclog_size; /* size of log in bytes */
int l_iclog_bufs; /* number of iclog buffers */
xfs_daddr_t l_logBBstart; /* start block of log */
int l_logsize; /* size of log in bytes */
int l_logBBsize; /* size of log in BB chunks */
/* The following block of fields are changed while holding icloglock */
wait_queue_head_t l_flush_wait ____cacheline_aligned_in_smp;
/* waiting for iclog flush */
int l_covered_state;/* state of "covering disk
* log entries" */
xlog_in_core_t *l_iclog; /* head log queue */
spinlock_t l_icloglock; /* grab to change iclog state */
int l_curr_cycle; /* Cycle number of log writes */
int l_prev_cycle; /* Cycle number before last
* block increment */
int l_curr_block; /* current logical log block */
int l_prev_block; /* previous logical log block */
/*
* l_last_sync_lsn and l_tail_lsn are atomics so they can be set and
* read without needing to hold specific locks. To avoid operations
* contending with other hot objects, place each of them on a separate
* cacheline.
*/
/* lsn of last LR on disk */
atomic64_t l_last_sync_lsn ____cacheline_aligned_in_smp;
/* lsn of 1st LR with unflushed * buffers */
atomic64_t l_tail_lsn ____cacheline_aligned_in_smp;
struct xlog_grant_head l_reserve_head;
struct xlog_grant_head l_write_head;
struct xfs_kobj l_kobj;
/* log recovery lsn tracking (for buffer submission */
xfs_lsn_t l_recovery_lsn;
uint32_t l_iclog_roundoff;/* padding roundoff */
/* Users of log incompat features should take a read lock. */
struct rw_semaphore l_incompat_users;
};
/*
* Bits for operational state
*/
#define XLOG_ACTIVE_RECOVERY 0 /* in the middle of recovery */
#define XLOG_RECOVERY_NEEDED 1 /* log was recovered */
#define XLOG_IO_ERROR 2 /* log hit an I/O error, and being
shutdown */
#define XLOG_TAIL_WARN 3 /* log tail verify warning issued */
static inline bool
xlog_recovery_needed(struct xlog *log)
{
return test_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
}
static inline bool
xlog_in_recovery(struct xlog *log)
{
return test_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
}
static inline bool
xlog_is_shutdown(struct xlog *log)
{
return test_bit(XLOG_IO_ERROR, &log->l_opstate);
}
xfs: xfs_do_force_shutdown needs to block racing shutdowns When we call xfs_forced_shutdown(), the caller often expects the filesystem to be completely shut down when it returns. However, if we have racing xfs_forced_shutdown() calls, the first caller sets the mount shutdown flag then goes to shutdown the log. The second caller sees the mount shutdown flag and returns immediately - it does not wait for the log to be shut down. Unfortunately, xfs_forced_shutdown() is used in some places that expect it to completely shut down the filesystem before it returns (e.g. xfs_trans_log_inode()). As such, returning before the log has been shut down leaves us in a place where the transaction failed to complete correctly but we still call xfs_trans_commit(). This situation arises because xfs_trans_log_inode() does not return an error and instead calls xfs_force_shutdown() to ensure that the transaction being committed is aborted. Unfortunately, we have a race condition where xfs_trans_commit() needs to check xlog_is_shutdown() because it can't abort log items before the log is shut down, but it needs to use xfs_is_shutdown() because xfs_forced_shutdown() does not block waiting for the log to shut down. To fix this conundrum, first we make all calls to xfs_forced_shutdown() block until the log is also shut down. This means we can then safely use xfs_forced_shutdown() as a mechanism that ensures the currently running transaction will be aborted by xfs_trans_commit() regardless of the shutdown check it uses. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-03-30 04:22:01 +03:00
/*
* Wait until the xlog_force_shutdown() has marked the log as shut down
* so xlog_is_shutdown() will always return true.
*/
static inline void
xlog_shutdown_wait(
struct xlog *log)
{
wait_var_event(&log->l_opstate, xlog_is_shutdown(log));
}
/* common routines */
extern int
xlog_recover(
struct xlog *log);
extern int
xlog_recover_finish(
struct xlog *log);
extern void
xlog_recover_cancel(struct xlog *);
2012-11-12 15:54:24 +04:00
extern __le32 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead,
2012-11-12 15:54:24 +04:00
char *dp, int size);
extern struct kmem_cache *xfs_log_ticket_cache;
struct xlog_ticket *xlog_ticket_alloc(struct xlog *log, int unit_bytes,
int count, bool permanent);
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
void xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket);
void xlog_print_trans(struct xfs_trans *);
int xlog_write(struct xlog *log, struct xfs_cil_ctx *ctx,
struct list_head *lv_chain, struct xlog_ticket *tic,
uint32_t len);
void xfs_log_ticket_ungrant(struct xlog *log, struct xlog_ticket *ticket);
void xfs_log_ticket_regrant(struct xlog *log, struct xlog_ticket *ticket);
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
xfs: AIL needs asynchronous CIL forcing The AIL pushing is stalling on log forces when it comes across pinned items. This is happening on removal workloads where the AIL is dominated by stale items that are removed from AIL when the checkpoint that marks the items stale is committed to the journal. This results is relatively few items in the AIL, but those that are are often pinned as directories items are being removed from are still being logged. As a result, many push cycles through the CIL will first issue a blocking log force to unpin the items. This can take some time to complete, with tracing regularly showing push delays of half a second and sometimes up into the range of several seconds. Sequences like this aren't uncommon: .... 399.829437: xfsaild: last lsn 0x11002dd000 count 101 stuck 101 flushing 0 tout 20 <wanted 20ms, got 270ms delay> 400.099622: xfsaild: target 0x11002f3600, prev 0x11002f3600, last lsn 0x0 400.099623: xfsaild: first lsn 0x11002f3600 400.099679: xfsaild: last lsn 0x1100305000 count 16 stuck 11 flushing 0 tout 50 <wanted 50ms, got 500ms delay> 400.589348: xfsaild: target 0x110032e600, prev 0x11002f3600, last lsn 0x0 400.589349: xfsaild: first lsn 0x1100305000 400.589595: xfsaild: last lsn 0x110032e600 count 156 stuck 101 flushing 30 tout 50 <wanted 50ms, got 460ms delay> 400.950341: xfsaild: target 0x1100353000, prev 0x110032e600, last lsn 0x0 400.950343: xfsaild: first lsn 0x1100317c00 400.950436: xfsaild: last lsn 0x110033d200 count 105 stuck 101 flushing 0 tout 20 <wanted 20ms, got 200ms delay> 401.142333: xfsaild: target 0x1100361600, prev 0x1100353000, last lsn 0x0 401.142334: xfsaild: first lsn 0x110032e600 401.142535: xfsaild: last lsn 0x1100353000 count 122 stuck 101 flushing 8 tout 10 <wanted 10ms, got 10ms delay> 401.154323: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x1100353000 401.154328: xfsaild: first lsn 0x1100353000 401.154389: xfsaild: last lsn 0x1100353000 count 101 stuck 101 flushing 0 tout 20 <wanted 20ms, got 300ms delay> 401.451525: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0 401.451526: xfsaild: first lsn 0x1100353000 401.451804: xfsaild: last lsn 0x1100377200 count 170 stuck 22 flushing 122 tout 50 <wanted 50ms, got 500ms delay> 401.933581: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0 .... In each of these cases, every AIL pass saw 101 log items stuck on the AIL (pinned) with very few other items being found. Each pass, a log force was issued, and delay between last/first is the sleep time + the sync log force time. Some of these 101 items pinned the tail of the log. The tail of the log does slowly creep forward (first lsn), but the problem is that the log is actually out of reservation space because it's been running so many transactions that stale items that never reach the AIL but consume log space. Hence we have a largely empty AIL, with long term pins on items that pin the tail of the log that don't get pushed frequently enough to keep log space available. The problem is the hundreds of milliseconds that we block in the log force pushing the CIL out to disk. The AIL should not be stalled like this - it needs to run and flush items that are at the tail of the log with minimal latency. What we really need to do is trigger a log flush, but then not wait for it at all - we've already done our waiting for stuff to complete when we backed off prior to the log force being issued. Even if we remove the XFS_LOG_SYNC from the xfs_log_force() call, we still do a blocking flush of the CIL and that is what is causing the issue. Hence we need a new interface for the CIL to trigger an immediate background push of the CIL to get it moving faster but not to wait on that to occur. While the CIL is pushing, the AIL can also be pushing. We already have an internal interface to do this - xlog_cil_push_now() - but we need a wrapper for it to be used externally. xlog_cil_force_seq() can easily be extended to do what we need as it already implements the synchronous CIL push via xlog_cil_push_now(). Add the necessary flags and "push current sequence" semantics to xlog_cil_force_seq() and convert the AIL pushing to use it. One of the complexities here is that the CIL push does not guarantee that the commit record for the CIL checkpoint is written to disk. The current log force ensures this by submitting the current ACTIVE iclog that the commit record was written to. We need the CIL to actually write this commit record to disk for an async push to ensure that the checkpoint actually makes it to disk and unpins the pinned items in the checkpoint on completion. Hence we need to pass down to the CIL push that we are doing an async flush so that it can switch out the commit_iclog if necessary to get written to disk when the commit iclog is finally released. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-11 04:00:44 +03:00
void xlog_state_switch_iclogs(struct xlog *log, struct xlog_in_core *iclog,
int eventual_size);
xfs: xlog_sync() manually adjusts grant head space When xlog_sync() rounds off the tail the iclog that is being flushed, it manually subtracts that space from the grant heads. This space is actually reserved by the transaction ticket that covers the xlog_sync() call from xlog_write(), but we don't plumb the ticket down far enough for it to account for the space consumed in the current log ticket. The grant heads are hot, so we really should be accounting this to the ticket is we can, rather than adding thousands of extra grant head updates every CIL commit. Interestingly, this actually indicates a potential log space overrun can occur when we force the log. By the time that xfs_log_force() pushes out an active iclog and consumes the roundoff space, the reservation for that roundoff space has been returned to the grant heads and is no longer covered by a reservation. In theory the roundoff added to log force on an already full log could push the write head past the tail. In practice, the CIL commit that writes to the log and needs the iclog pushed will have reserved space for roundoff, so when it releases the ticket there will still be physical space for the roundoff to be committed to the log, even though it is no longer reserved. This roundoff won't be enough space to allow a transaction to be woken if the log is full, so overruns should not actually occur in practice. That said, it indicates that we should not release the CIL context log ticket until after we've released the commit iclog. It also means that xlog_sync() still needs the direct grant head manipulation if we don't provide it with a ticket. Log forces are rare when we are in fast paths running 1.5 million transactions/s that make the grant heads hot, so let's optimise the hot case and pass CIL log tickets down to the xlog_sync() code. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 11:56:09 +03:00
int xlog_state_release_iclog(struct xlog *log, struct xlog_in_core *iclog,
struct xlog_ticket *ticket);
xfs: journal IO cache flush reductions Currently every journal IO is issued as REQ_PREFLUSH | REQ_FUA to guarantee the ordering requirements the journal has w.r.t. metadata writeback. THe two ordering constraints are: 1. we cannot overwrite metadata in the journal until we guarantee that the dirty metadata has been written back in place and is stable. 2. we cannot write back dirty metadata until it has been written to the journal and guaranteed to be stable (and hence recoverable) in the journal. The ordering guarantees of #1 are provided by REQ_PREFLUSH. This causes the journal IO to issue a cache flush and wait for it to complete before issuing the write IO to the journal. Hence all completed metadata IO is guaranteed to be stable before the journal overwrites the old metadata. The ordering guarantees of #2 are provided by the REQ_FUA, which ensures the journal writes do not complete until they are on stable storage. Hence by the time the last journal IO in a checkpoint completes, we know that the entire checkpoint is on stable storage and we can unpin the dirty metadata and allow it to be written back. This is the mechanism by which ordering was first implemented in XFS way back in 2002 by commit 95d97c36e5155075ba2eb22b17562cfcc53fcf96 ("Add support for drive write cache flushing") in the xfs-archive tree. A lot has changed since then, most notably we now use delayed logging to checkpoint the filesystem to the journal rather than write each individual transaction to the journal. Cache flushes on journal IO are necessary when individual transactions are wholly contained within a single iclog. However, CIL checkpoints are single transactions that typically span hundreds to thousands of individual journal writes, and so the requirements for device cache flushing have changed. That is, the ordering rules I state above apply to ordering of atomic transactions recorded in the journal, not to the journal IO itself. Hence we need to ensure metadata is stable before we start writing a new transaction to the journal (guarantee #1), and we need to ensure the entire transaction is stable in the journal before we start metadata writeback (guarantee #2). Hence we only need a REQ_PREFLUSH on the journal IO that starts a new journal transaction to provide #1, and it is not on any other journal IO done within the context of that journal transaction. The CIL checkpoint already issues a cache flush before it starts writing to the log, so we no longer need the iclog IO to issue a REQ_REFLUSH for us. Hence if XLOG_START_TRANS is passed to xlog_write(), we no longer need to mark the first iclog in the log write with REQ_PREFLUSH for this case. As an added bonus, this ordering mechanism works for both internal and external logs, meaning we can remove the explicit data device cache flushes from the iclog write code when using external logs. Given the new ordering semantics of commit records for the CIL, we need iclogs containing commit records to issue a REQ_PREFLUSH. We also require unmount records to do this. Hence for both XLOG_COMMIT_TRANS and XLOG_UNMOUNT_TRANS xlog_write() calls we need to mark the first iclog being written with REQ_PREFLUSH. For both commit records and unmount records, we also want them immediately on stable storage, so we want to also mark the iclogs that contain these records to be marked REQ_FUA. That means if a record is split across multiple iclogs, they are all marked REQ_FUA and not just the last one so that when the transaction is completed all the parts of the record are on stable storage. And for external logs, unmount records need a pre-write data device cache flush similar to the CIL checkpoint cache pre-flush as the internal iclog write code does not do this implicitly anymore. As an optimisation, when the commit record lands in the same iclog as the journal transaction starts, we don't need to wait for anything and can simply use REQ_FUA to provide guarantee #2. This means that for fsync() heavy workloads, the cache flush behaviour is completely unchanged and there is no degradation in performance as a result of optimise the multi-IO transaction case. The most notable sign that there is less IO latency on my test machine (nvme SSDs) is that the "noiclogs" rate has dropped substantially. This metric indicates that the CIL push is blocking in xlog_get_iclog_space() waiting for iclog IO completion to occur. With 8 iclogs of 256kB, the rate is appoximately 1 noiclog event to every 4 iclog writes. IOWs, every 4th call to xlog_get_iclog_space() is blocking waiting for log IO. With the changes in this patch, this drops to 1 noiclog event for every 100 iclog writes. Hence it is clear that log IO is completing much faster than it was previously, but it is also clear that for large iclog sizes, this isn't the performance limiting factor on this hardware. With smaller iclogs (32kB), however, there is a substantial difference. With the cache flush modifications, the journal is now running at over 4000 write IOPS, and the journal throughput is largely identical to the 256kB iclogs and the noiclog event rate stays low at about 1:50 iclog writes. The existing code tops out at about 2500 IOPS as the number of cache flushes dominate performance and latency. The noiclog event rate is about 1:4, and the performance variance is quite large as the journal throughput can fall to less than half the peak sustained rate when the cache flush rate prevents metadata writeback from keeping up and the log runs out of space and throttles reservations. As a result: logbsize fsmark create rate rm -rf before 32kb 152851+/-5.3e+04 5m28s patched 32kb 221533+/-1.1e+04 5m24s before 256kb 220239+/-6.2e+03 4m58s patched 256kb 228286+/-9.2e+03 5m06s The rm -rf times are included because I ran them, but the differences are largely noise. This workload is largely metadata read IO latency bound and the changes to the journal cache flushing doesn't really make any noticable difference to behaviour apart from a reduction in noiclog events from background CIL pushing. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:51 +03:00
/*
* When we crack an atomic LSN, we sample it first so that the value will not
* change while we are cracking it into the component values. This means we
* will always get consistent component values to work from. This should always
* be used to sample and crack LSNs that are stored and updated in atomic
* variables.
*/
static inline void
xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block)
{
xfs_lsn_t val = atomic64_read(lsn);
*cycle = CYCLE_LSN(val);
*block = BLOCK_LSN(val);
}
/*
* Calculate and assign a value to an atomic LSN variable from component pieces.
*/
static inline void
xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block)
{
atomic64_set(lsn, xlog_assign_lsn(cycle, block));
}
/*
* When we crack the grant head, we sample it first so that the value will not
* change while we are cracking it into the component values. This means we
* will always get consistent component values to work from.
*/
static inline void
xlog_crack_grant_head_val(int64_t val, int *cycle, int *space)
{
*cycle = val >> 32;
*space = val & 0xffffffff;
}
static inline void
xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space)
{
xlog_crack_grant_head_val(atomic64_read(head), cycle, space);
}
static inline int64_t
xlog_assign_grant_head_val(int cycle, int space)
{
return ((int64_t)cycle << 32) | space;
}
static inline void
xlog_assign_grant_head(atomic64_t *head, int cycle, int space)
{
atomic64_set(head, xlog_assign_grant_head_val(cycle, space));
}
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
/*
* Committed Item List interfaces
*/
xfs: prevent deadlock trying to cover an active log Recent analysis of a deadlocked XFS filesystem from a kernel crash dump indicated that the filesystem was stuck waiting for log space. The short story of the hang on the RHEL6 kernel is this: - the tail of the log is pinned by an inode - the inode has been pushed by the xfsaild - the inode has been flushed to it's backing buffer and is currently flush locked and hence waiting for backing buffer IO to complete and remove it from the AIL - the backing buffer is marked for write - it is on the delayed write queue - the inode buffer has been modified directly and logged recently due to unlinked inode list modification - the backing buffer is pinned in memory as it is in the active CIL context. - the xfsbufd won't start buffer writeback because it is pinned - xfssyncd won't force the log because it sees the log as needing to be covered and hence wants to issue a dummy transaction to move the log covering state machine along. Hence there is no trigger to force the CIL to the log and hence unpin the inode buffer and therefore complete the inode IO, remove it from the AIL and hence move the tail of the log along, allowing transactions to start again. Mainline kernels also have the same deadlock, though the signature is slightly different - the inode buffer never reaches the delayed write lists because xfs_buf_item_push() sees that it is pinned and hence never adds it to the delayed write list that the xfsaild flushes. There are two possible solutions here. The first is to simply force the log before trying to cover the log and so ensure that the CIL is emptied before we try to reserve space for the dummy transaction in the xfs_log_worker(). While this might work most of the time, it is still racy and is no guarantee that we don't get stuck in xfs_trans_reserve waiting for log space to come free. Hence it's not the best way to solve the problem. The second solution is to modify xfs_log_need_covered() to be aware of the CIL. We only should be attempting to cover the log if there is no current activity in the log - covering the log is the process of ensuring that the head and tail in the log on disk are identical (i.e. the log is clean and at idle). Hence, by definition, if there are items in the CIL then the log is not at idle and so we don't need to attempt to cover it. When we don't need to cover the log because it is active or idle, we issue a log force from xfs_log_worker() - if the log is idle, then this does nothing. However, if the log is active due to there being items in the CIL, it will force the items in the CIL to the log and unpin them. In the case of the above deadlock scenario, instead of xfs_log_worker() getting stuck in xfs_trans_reserve() attempting to cover the log, it will instead force the log, thereby unpinning the inode buffer, allowing IO to be issued and complete and hence removing the inode that was pinning the tail of the log from the AIL. At that point, everything will start moving along again. i.e. the xfs_log_worker turns back into a watchdog that can alleviate deadlocks based around pinned items that prevent the tail of the log from being moved... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-15 02:17:49 +04:00
int xlog_cil_init(struct xlog *log);
void xlog_cil_init_post_recovery(struct xlog *log);
void xlog_cil_destroy(struct xlog *log);
bool xlog_cil_empty(struct xlog *log);
xfs: xfs_log_force_lsn isn't passed a LSN In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:52 +03:00
void xlog_cil_commit(struct xlog *log, struct xfs_trans *tp,
xfs_csn_t *commit_seq, bool regrant);
void xlog_cil_set_ctx_write_state(struct xfs_cil_ctx *ctx,
struct xlog_in_core *iclog);
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
xfs: Reduce log force overhead for delayed logging Delayed logging adds some serialisation to the log force process to ensure that it does not deference a bad commit context structure when determining if a CIL push is necessary or not. It does this by grabing the CIL context lock exclusively, then dropping it before pushing the CIL if necessary. This causes serialisation of all log forces and pushes regardless of whether a force is necessary or not. As a result fsync heavy workloads (like dbench) can be significantly slower with delayed logging than without. To avoid this penalty, copy the current sequence from the context to the CIL structure when they are swapped. This allows us to do unlocked checks on the current sequence without having to worry about dereferencing context structures that may have already been freed. Hence we can remove the CIL context locking in the forcing code and only call into the push code if the current context matches the sequence we need to force. By passing the sequence into the push code, we can check the sequence again once we have the CIL lock held exclusive and abort if the sequence has already been pushed. This avoids a lock round-trip and unnecessary CIL pushes when we have racing push calls. The result is that the regression in dbench performance goes away - this change improves dbench performance on a ramdisk from ~2100MB/s to ~2500MB/s. This compares favourably to not using delayed logging which retuns ~2500MB/s for the same workload. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-08-24 05:40:03 +04:00
/*
* CIL force routines
*/
xfs: AIL needs asynchronous CIL forcing The AIL pushing is stalling on log forces when it comes across pinned items. This is happening on removal workloads where the AIL is dominated by stale items that are removed from AIL when the checkpoint that marks the items stale is committed to the journal. This results is relatively few items in the AIL, but those that are are often pinned as directories items are being removed from are still being logged. As a result, many push cycles through the CIL will first issue a blocking log force to unpin the items. This can take some time to complete, with tracing regularly showing push delays of half a second and sometimes up into the range of several seconds. Sequences like this aren't uncommon: .... 399.829437: xfsaild: last lsn 0x11002dd000 count 101 stuck 101 flushing 0 tout 20 <wanted 20ms, got 270ms delay> 400.099622: xfsaild: target 0x11002f3600, prev 0x11002f3600, last lsn 0x0 400.099623: xfsaild: first lsn 0x11002f3600 400.099679: xfsaild: last lsn 0x1100305000 count 16 stuck 11 flushing 0 tout 50 <wanted 50ms, got 500ms delay> 400.589348: xfsaild: target 0x110032e600, prev 0x11002f3600, last lsn 0x0 400.589349: xfsaild: first lsn 0x1100305000 400.589595: xfsaild: last lsn 0x110032e600 count 156 stuck 101 flushing 30 tout 50 <wanted 50ms, got 460ms delay> 400.950341: xfsaild: target 0x1100353000, prev 0x110032e600, last lsn 0x0 400.950343: xfsaild: first lsn 0x1100317c00 400.950436: xfsaild: last lsn 0x110033d200 count 105 stuck 101 flushing 0 tout 20 <wanted 20ms, got 200ms delay> 401.142333: xfsaild: target 0x1100361600, prev 0x1100353000, last lsn 0x0 401.142334: xfsaild: first lsn 0x110032e600 401.142535: xfsaild: last lsn 0x1100353000 count 122 stuck 101 flushing 8 tout 10 <wanted 10ms, got 10ms delay> 401.154323: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x1100353000 401.154328: xfsaild: first lsn 0x1100353000 401.154389: xfsaild: last lsn 0x1100353000 count 101 stuck 101 flushing 0 tout 20 <wanted 20ms, got 300ms delay> 401.451525: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0 401.451526: xfsaild: first lsn 0x1100353000 401.451804: xfsaild: last lsn 0x1100377200 count 170 stuck 22 flushing 122 tout 50 <wanted 50ms, got 500ms delay> 401.933581: xfsaild: target 0x1100361600, prev 0x1100361600, last lsn 0x0 .... In each of these cases, every AIL pass saw 101 log items stuck on the AIL (pinned) with very few other items being found. Each pass, a log force was issued, and delay between last/first is the sleep time + the sync log force time. Some of these 101 items pinned the tail of the log. The tail of the log does slowly creep forward (first lsn), but the problem is that the log is actually out of reservation space because it's been running so many transactions that stale items that never reach the AIL but consume log space. Hence we have a largely empty AIL, with long term pins on items that pin the tail of the log that don't get pushed frequently enough to keep log space available. The problem is the hundreds of milliseconds that we block in the log force pushing the CIL out to disk. The AIL should not be stalled like this - it needs to run and flush items that are at the tail of the log with minimal latency. What we really need to do is trigger a log flush, but then not wait for it at all - we've already done our waiting for stuff to complete when we backed off prior to the log force being issued. Even if we remove the XFS_LOG_SYNC from the xfs_log_force() call, we still do a blocking flush of the CIL and that is what is causing the issue. Hence we need a new interface for the CIL to trigger an immediate background push of the CIL to get it moving faster but not to wait on that to occur. While the CIL is pushing, the AIL can also be pushing. We already have an internal interface to do this - xlog_cil_push_now() - but we need a wrapper for it to be used externally. xlog_cil_force_seq() can easily be extended to do what we need as it already implements the synchronous CIL push via xlog_cil_push_now(). Add the necessary flags and "push current sequence" semantics to xlog_cil_force_seq() and convert the AIL pushing to use it. One of the complexities here is that the CIL push does not guarantee that the commit record for the CIL checkpoint is written to disk. The current log force ensures this by submitting the current ACTIVE iclog that the commit record was written to. We need the CIL to actually write this commit record to disk for an async push to ensure that the checkpoint actually makes it to disk and unpins the pinned items in the checkpoint on completion. Hence we need to pass down to the CIL push that we are doing an async flush so that it can switch out the commit_iclog if necessary to get written to disk when the commit iclog is finally released. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-11 04:00:44 +03:00
void xlog_cil_flush(struct xlog *log);
xfs: xfs_log_force_lsn isn't passed a LSN In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:52 +03:00
xfs_lsn_t xlog_cil_force_seq(struct xlog *log, xfs_csn_t sequence);
xfs: Reduce log force overhead for delayed logging Delayed logging adds some serialisation to the log force process to ensure that it does not deference a bad commit context structure when determining if a CIL push is necessary or not. It does this by grabing the CIL context lock exclusively, then dropping it before pushing the CIL if necessary. This causes serialisation of all log forces and pushes regardless of whether a force is necessary or not. As a result fsync heavy workloads (like dbench) can be significantly slower with delayed logging than without. To avoid this penalty, copy the current sequence from the context to the CIL structure when they are swapped. This allows us to do unlocked checks on the current sequence without having to worry about dereferencing context structures that may have already been freed. Hence we can remove the CIL context locking in the forcing code and only call into the push code if the current context matches the sequence we need to force. By passing the sequence into the push code, we can check the sequence again once we have the CIL lock held exclusive and abort if the sequence has already been pushed. This avoids a lock round-trip and unnecessary CIL pushes when we have racing push calls. The result is that the regression in dbench performance goes away - this change improves dbench performance on a ramdisk from ~2100MB/s to ~2500MB/s. This compares favourably to not using delayed logging which retuns ~2500MB/s for the same workload. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-08-24 05:40:03 +04:00
static inline void
xlog_cil_force(struct xlog *log)
xfs: Reduce log force overhead for delayed logging Delayed logging adds some serialisation to the log force process to ensure that it does not deference a bad commit context structure when determining if a CIL push is necessary or not. It does this by grabing the CIL context lock exclusively, then dropping it before pushing the CIL if necessary. This causes serialisation of all log forces and pushes regardless of whether a force is necessary or not. As a result fsync heavy workloads (like dbench) can be significantly slower with delayed logging than without. To avoid this penalty, copy the current sequence from the context to the CIL structure when they are swapped. This allows us to do unlocked checks on the current sequence without having to worry about dereferencing context structures that may have already been freed. Hence we can remove the CIL context locking in the forcing code and only call into the push code if the current context matches the sequence we need to force. By passing the sequence into the push code, we can check the sequence again once we have the CIL lock held exclusive and abort if the sequence has already been pushed. This avoids a lock round-trip and unnecessary CIL pushes when we have racing push calls. The result is that the regression in dbench performance goes away - this change improves dbench performance on a ramdisk from ~2100MB/s to ~2500MB/s. This compares favourably to not using delayed logging which retuns ~2500MB/s for the same workload. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-08-24 05:40:03 +04:00
{
xfs: xfs_log_force_lsn isn't passed a LSN In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:52 +03:00
xlog_cil_force_seq(log, log->l_cilp->xc_current_sequence);
xfs: Reduce log force overhead for delayed logging Delayed logging adds some serialisation to the log force process to ensure that it does not deference a bad commit context structure when determining if a CIL push is necessary or not. It does this by grabing the CIL context lock exclusively, then dropping it before pushing the CIL if necessary. This causes serialisation of all log forces and pushes regardless of whether a force is necessary or not. As a result fsync heavy workloads (like dbench) can be significantly slower with delayed logging than without. To avoid this penalty, copy the current sequence from the context to the CIL structure when they are swapped. This allows us to do unlocked checks on the current sequence without having to worry about dereferencing context structures that may have already been freed. Hence we can remove the CIL context locking in the forcing code and only call into the push code if the current context matches the sequence we need to force. By passing the sequence into the push code, we can check the sequence again once we have the CIL lock held exclusive and abort if the sequence has already been pushed. This avoids a lock round-trip and unnecessary CIL pushes when we have racing push calls. The result is that the regression in dbench performance goes away - this change improves dbench performance on a ramdisk from ~2100MB/s to ~2500MB/s. This compares favourably to not using delayed logging which retuns ~2500MB/s for the same workload. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2010-08-24 05:40:03 +04:00
}
xfs: Introduce delayed logging core code The delayed logging code only changes in-memory structures and as such can be enabled and disabled with a mount option. Add the mount option and emit a warning that this is an experimental feature that should not be used in production yet. We also need infrastructure to track committed items that have not yet been written to the log. This is what the Committed Item List (CIL) is for. The log item also needs to be extended to track the current log vector, the associated memory buffer and it's location in the Commit Item List. Extend the log item and log vector structures to enable this tracking. To maintain the current log format for transactions with delayed logging, we need to introduce a checkpoint transaction and a context for tracking each checkpoint from initiation to transaction completion. This includes adding a log ticket for tracking space log required/used by the context checkpoint. To track all the changes we need an io vector array per log item, rather than a single array for the entire transaction. Using the new log vector structure for this requires two passes - the first to allocate the log vector structures and chain them together, and the second to fill them out. This log vector chain can then be passed to the CIL for formatting, pinning and insertion into the CIL. Formatting of the log vector chain is relatively simple - it's just a loop over the iovecs on each log vector, but it is made slightly more complex because we re-write the iovec after the copy to point back at the memory buffer we just copied into. This code also needs to pin log items. If the log item is not already tracked in this checkpoint context, then it needs to be pinned. Otherwise it is already pinned and we don't need to pin it again. The only other complexity is calculating the amount of new log space the formatting has consumed. This needs to be accounted to the transaction in progress, and the accounting is made more complex becase we need also to steal space from it for log metadata in the checkpoint transaction. Calculate all this at insert time and update all the tickets, counters, etc correctly. Once we've formatted all the log items in the transaction, attach the busy extents to the checkpoint context so the busy extents live until checkpoint completion and can be processed at that point in time. Transactions can then be freed at this point in time. Now we need to issue checkpoints - we are tracking the amount of log space used by the items in the CIL, so we can trigger background checkpoints when the space usage gets to a certain threshold. Otherwise, checkpoints need ot be triggered when a log synchronisation point is reached - a log force event. Because the log write code already handles chained log vectors, writing the transaction is trivial, too. Construct a transaction header, add it to the head of the chain and write it into the log, then issue a commit record write. Then we can release the checkpoint log ticket and attach the context to the log buffer so it can be called during Io completion to complete the checkpoint. We also need to allow for synchronising multiple in-flight checkpoints. This is needed for two things - the first is to ensure that checkpoint commit records appear in the log in the correct sequence order (so they are replayed in the correct order). The second is so that xfs_log_force_lsn() operates correctly and only flushes and/or waits for the specific sequence it was provided with. To do this we need a wait variable and a list tracking the checkpoint commits in progress. We can walk this list and wait for the checkpoints to change state or complete easily, an this provides the necessary synchronisation for correct operation in both cases. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 08:37:18 +04:00
/*
* Wrapper function for waiting on a wait queue serialised against wakeups
* by a spinlock. This matches the semantics of all the wait queues used in the
* log code.
*/
static inline void
xlog_wait(
struct wait_queue_head *wq,
struct spinlock *lock)
__releases(lock)
{
DECLARE_WAITQUEUE(wait, current);
add_wait_queue_exclusive(wq, &wait);
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock(lock);
schedule();
remove_wait_queue(wq, &wait);
}
xfs: separate CIL commit record IO To allow for iclog IO device cache flush behaviour to be optimised, we first need to separate out the commit record iclog IO from the rest of the checkpoint so we can wait for the checkpoint IO to complete before we issue the commit record. This separation is only necessary if the commit record is being written into a different iclog to the start of the checkpoint as the upcoming cache flushing changes requires completion ordering against the other iclogs submitted by the checkpoint. If the entire checkpoint and commit is in the one iclog, then they are both covered by the one set of cache flush primitives on the iclog and hence there is no need to separate them for ordering. Otherwise, we need to wait for all the previous iclogs to complete so they are ordered correctly and made stable by the REQ_PREFLUSH that the commit record iclog IO issues. This guarantees that if a reader sees the commit record in the journal, they will also see the entire checkpoint that commit record closes off. This also provides the guarantee that when the commit record IO completes, we can safely unpin all the log items in the checkpoint so they can be written back because the entire checkpoint is stable in the journal. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-18 18:21:48 +03:00
int xlog_wait_on_iclog(struct xlog_in_core *iclog);
xfs: validate metadata LSNs against log on v5 superblocks Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 07:59:25 +03:00
/*
* The LSN is valid so long as it is behind the current LSN. If it isn't, this
* means that the next log record that includes this metadata could have a
* smaller LSN. In turn, this means that the modification in the log would not
* replay.
*/
static inline bool
xlog_valid_lsn(
struct xlog *log,
xfs_lsn_t lsn)
{
int cur_cycle;
int cur_block;
bool valid = true;
/*
* First, sample the current lsn without locking to avoid added
* contention from metadata I/O. The current cycle and block are updated
* (in xlog_state_switch_iclogs()) and read here in a particular order
* to avoid false negatives (e.g., thinking the metadata LSN is valid
* when it is not).
*
* The current block is always rewound before the cycle is bumped in
* xlog_state_switch_iclogs() to ensure the current LSN is never seen in
* a transiently forward state. Instead, we can see the LSN in a
* transiently behind state if we happen to race with a cycle wrap.
*/
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 00:07:29 +03:00
cur_cycle = READ_ONCE(log->l_curr_cycle);
xfs: validate metadata LSNs against log on v5 superblocks Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 07:59:25 +03:00
smp_rmb();
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 00:07:29 +03:00
cur_block = READ_ONCE(log->l_curr_block);
xfs: validate metadata LSNs against log on v5 superblocks Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 07:59:25 +03:00
if ((CYCLE_LSN(lsn) > cur_cycle) ||
(CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) {
/*
* If the metadata LSN appears invalid, it's possible the check
* above raced with a wrap to the next log cycle. Grab the lock
* to check for sure.
*/
spin_lock(&log->l_icloglock);
cur_cycle = log->l_curr_cycle;
cur_block = log->l_curr_block;
spin_unlock(&log->l_icloglock);
if ((CYCLE_LSN(lsn) > cur_cycle) ||
(CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block))
valid = false;
}
return valid;
}
xfs: can't use kmem_zalloc() for attribute buffers Because heap allocation of 64kB buffers will fail: .... XFS: fs_mark(8414) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8417) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8409) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8428) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8430) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8437) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8433) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8406) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8412) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8432) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) XFS: fs_mark(8424) possible memory allocation deadlock size 65768 in kmem_alloc (mode:0x2d40) .... I'd use kvmalloc() instead, but.... - 48.19% xfs_attr_create_intent - 46.89% xfs_attri_init - kvmalloc_node - 46.04% __kmalloc_node - kmalloc_large_node - 45.99% __alloc_pages - 39.39% __alloc_pages_slowpath.constprop.0 - 38.89% __alloc_pages_direct_compact - 38.71% try_to_compact_pages - compact_zone_order - compact_zone - 21.09% isolate_migratepages_block 10.31% PageHuge 5.82% set_pfnblock_flags_mask 0.86% get_pfnblock_flags_mask - 4.48% __reset_isolation_suitable 4.44% __reset_isolation_pfn - 3.56% __pageblock_pfn_to_page 1.33% pfn_to_online_page 2.83% get_pfnblock_flags_mask - 0.87% migrate_pages 0.86% compaction_alloc 0.84% find_suitable_fallback - 6.60% get_page_from_freelist 4.99% clear_page_erms - 1.19% _raw_spin_lock_irqsave - do_raw_spin_lock __pv_queued_spin_lock_slowpath - 0.86% __vmalloc_node_range 0.65% __alloc_pages_bulk .... this is just yet another reminder of how much kvmalloc() sucks. So lift xlog_cil_kvmalloc(), rename it to xlog_kvmalloc() and use that instead.... We also clean up the attribute name and value lengths as they no longer need to be rounded out to sizes compatible with log vectors. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-12 08:12:57 +03:00
/*
* Log vector and shadow buffers can be large, so we need to use kvmalloc() here
* to ensure success. Unfortunately, kvmalloc() only allows GFP_KERNEL contexts
* to fall back to vmalloc, so we can't actually do anything useful with gfp
* flags to control the kmalloc() behaviour within kvmalloc(). Hence kmalloc()
* will do direct reclaim and compaction in the slow path, both of which are
* horrendously expensive. We just want kmalloc to fail fast and fall back to
* vmalloc if it can't get somethign straight away from the free lists or
* buddy allocator. Hence we have to open code kvmalloc outselves here.
*
* This assumes that the caller uses memalloc_nofs_save task context here, so
* despite the use of GFP_KERNEL here, we are going to be doing GFP_NOFS
* allocations. This is actually the only way to make vmalloc() do GFP_NOFS
* allocations, so lets just all pretend this is a GFP_KERNEL context
* operation....
*/
static inline void *
xlog_kvmalloc(
size_t buf_size)
{
gfp_t flags = GFP_KERNEL;
void *p;
flags &= ~__GFP_DIRECT_RECLAIM;
flags |= __GFP_NOWARN | __GFP_NORETRY;
do {
p = kmalloc(buf_size, flags);
if (!p)
p = vmalloc(buf_size);
} while (!p);
return p;
}
/*
* CIL CPU dead notifier
*/
void xlog_cil_pcp_dead(struct xlog *log, unsigned int cpu);
#endif /* __XFS_LOG_PRIV_H__ */