linux/tools/perf/util/stat-shadow.c

1316 lines
37 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
// SPDX-License-Identifier: GPL-2.0
#include <math.h>
#include <stdio.h>
#include "evsel.h"
#include "stat.h"
#include "color.h"
#include "debug.h"
#include "pmu.h"
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
#include "rblist.h"
#include "evlist.h"
#include "expr.h"
perf stat: Support JSON metrics in perf stat Add generic support for standalone metrics specified in JSON files to perf stat. A metric is a formula that uses multiple events to compute a higher level result (e.g. IPC). Previously metrics were always tied to an event and automatically enabled with that event. But now change it that we can have standalone metrics. They are in the same JSON data structure as events, but don't have an event name. We also allow to organize the metrics in metric groups, which allows a short cut to select several related metrics at once. Add a new -M / --metrics option to perf stat that adds the metrics or metric groups specified. Add the core code to manage and parse the metric groups. They are collected from the JSON data structures into a separate rblist. When computing shadow values look for metrics in that list. Then they are computed using the existing saved values infrastructure in stat-shadow.c The actual JSON metrics are in a separate pull request. % perf stat -M Summary --metric-only -a sleep 1 Performance counter stats for 'system wide': Instructions CLKS CPU_Utilization GFLOPs SMT_2T_Utilization Kernel_Utilization 317614222.0 1392930775.0 0.0 0.0 0.2 0.1 1.001497549 seconds time elapsed % perf stat -M GFLOPs flops Performance counter stats for 'flops': 3,999,541,471 fp_comp_ops_exe.sse_scalar_single # 1.2 GFLOPs (66.65%) 14 fp_comp_ops_exe.sse_scalar_double (66.65%) 0 fp_comp_ops_exe.sse_packed_double (66.67%) 0 fp_comp_ops_exe.sse_packed_single (66.70%) 0 simd_fp_256.packed_double (66.70%) 0 simd_fp_256.packed_single (66.67%) 0 duration_time 3.238372845 seconds time elapsed v2: Add missing header file v3: Move find_map to pmu.c Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170831194036.30146-7-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-08-31 12:40:31 -07:00
#include "metricgroup.h"
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
#include "cgroup.h"
perf stat: Improve readability of shadow stats This adds function convert_unit_double() and selects appropriate unit for shadow stats between K/M/G. $ sudo perf stat -a -- sleep 1 Before: Unit 'M' is selected even the number is very small. Performance counter stats for 'system wide': 4,003.06 msec cpu-clock # 3.998 CPUs utilized 16,179 context-switches # 0.004 M/sec 161 cpu-migrations # 0.040 K/sec 4,699 page-faults # 0.001 M/sec 6,135,801,925 cycles # 1.533 GHz (83.21%) 5,783,308,491 stalled-cycles-frontend # 94.26% frontend cycles idle (83.21%) 4,543,694,050 stalled-cycles-backend # 74.05% backend cycles idle (66.49%) 4,720,130,587 instructions # 0.77 insn per cycle # 1.23 stalled cycles per insn (83.28%) 753,848,078 branches # 188.318 M/sec (83.61%) 37,457,747 branch-misses # 4.97% of all branches (83.48%) 1.001283725 seconds time elapsed After: $ sudo perf stat -a -- sleep 2 Performance counter stats for 'system wide': 8,005.52 msec cpu-clock # 3.999 CPUs utilized 10,715 context-switches # 1.338 K/sec 785 cpu-migrations # 98.057 /sec 102 page-faults # 12.741 /sec 1,948,202,279 cycles # 0.243 GHz 2,816,470,932 stalled-cycles-frontend # 144.57% frontend cycles idle 2,661,172,207 stalled-cycles-backend # 136.60% backend cycles idle 464,172,105 instructions # 0.24 insn per cycle # 6.07 stalled cycles per insn 91,567,662 branches # 11.438 M/sec 7,756,054 branch-misses # 8.47% of all branches 2.002040043 seconds time elapsed v2: o do not change 'sec' to 'cpu-sec'. o use convert_unit_double to implement convert_unit. Signed-off-by: Changbin Du <changbin.du@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210315143047.3867-1-changbin.du@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-03-15 22:30:47 +08:00
#include "units.h"
#include <linux/zalloc.h>
#include "iostat.h"
perf stat: Support metrics in --per-core/socket mode Enable metrics printing in --per-core / --per-socket mode. We need to save the shadow metrics in a unique place. Always use the first CPU in the aggregation. Then use the same CPU to retrieve the shadow value later. Example output: % perf stat --per-core -a ./BC1s Performance counter stats for 'system wide': S0-C0 2 2966.020381 task-clock (msec) # 2.004 CPUs utilized (100.00%) S0-C0 2 49 context-switches # 0.017 K/sec (100.00%) S0-C0 2 4 cpu-migrations # 0.001 K/sec (100.00%) S0-C0 2 467 page-faults # 0.157 K/sec S0-C0 2 4,599,061,773 cycles # 1.551 GHz (100.00%) S0-C0 2 9,755,886,883 instructions # 2.12 insn per cycle (100.00%) S0-C0 2 1,906,272,125 branches # 642.704 M/sec (100.00%) S0-C0 2 81,180,867 branch-misses # 4.26% of all branches S0-C1 2 2965.995373 task-clock (msec) # 2.003 CPUs utilized (100.00%) S0-C1 2 62 context-switches # 0.021 K/sec (100.00%) S0-C1 2 8 cpu-migrations # 0.003 K/sec (100.00%) S0-C1 2 281 page-faults # 0.095 K/sec S0-C1 2 6,347,290 cycles # 0.002 GHz (100.00%) S0-C1 2 4,654,156 instructions # 0.73 insn per cycle (100.00%) S0-C1 2 947,121 branches # 0.319 M/sec (100.00%) S0-C1 2 37,322 branch-misses # 3.94% of all branches 1.480409747 seconds time elapsed v2: Rebase to older patches v3: Document shadow cpus. Fix aggr_get_id argument. Fix -A shadows (Jiri) Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/1456785386-19481-4-git-send-email-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-02-29 14:36:22 -08:00
/*
* AGGR_GLOBAL: Use CPU 0
* AGGR_SOCKET: Use first CPU of socket
* AGGR_DIE: Use first CPU of die
perf stat: Support metrics in --per-core/socket mode Enable metrics printing in --per-core / --per-socket mode. We need to save the shadow metrics in a unique place. Always use the first CPU in the aggregation. Then use the same CPU to retrieve the shadow value later. Example output: % perf stat --per-core -a ./BC1s Performance counter stats for 'system wide': S0-C0 2 2966.020381 task-clock (msec) # 2.004 CPUs utilized (100.00%) S0-C0 2 49 context-switches # 0.017 K/sec (100.00%) S0-C0 2 4 cpu-migrations # 0.001 K/sec (100.00%) S0-C0 2 467 page-faults # 0.157 K/sec S0-C0 2 4,599,061,773 cycles # 1.551 GHz (100.00%) S0-C0 2 9,755,886,883 instructions # 2.12 insn per cycle (100.00%) S0-C0 2 1,906,272,125 branches # 642.704 M/sec (100.00%) S0-C0 2 81,180,867 branch-misses # 4.26% of all branches S0-C1 2 2965.995373 task-clock (msec) # 2.003 CPUs utilized (100.00%) S0-C1 2 62 context-switches # 0.021 K/sec (100.00%) S0-C1 2 8 cpu-migrations # 0.003 K/sec (100.00%) S0-C1 2 281 page-faults # 0.095 K/sec S0-C1 2 6,347,290 cycles # 0.002 GHz (100.00%) S0-C1 2 4,654,156 instructions # 0.73 insn per cycle (100.00%) S0-C1 2 947,121 branches # 0.319 M/sec (100.00%) S0-C1 2 37,322 branch-misses # 3.94% of all branches 1.480409747 seconds time elapsed v2: Rebase to older patches v3: Document shadow cpus. Fix aggr_get_id argument. Fix -A shadows (Jiri) Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/1456785386-19481-4-git-send-email-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-02-29 14:36:22 -08:00
* AGGR_CORE: Use first CPU of core
* AGGR_NONE: Use matching CPU
* AGGR_THREAD: Not supported?
*/
struct runtime_stat rt_stat;
struct stats walltime_nsecs_stats;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
struct saved_value {
struct rb_node rb_node;
struct evsel *evsel;
enum stat_type type;
int ctx;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
int cpu;
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
struct cgroup *cgrp;
struct runtime_stat *stat;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
struct stats stats;
perf metricgroup: Support multiple events for metricgroup Some uncore metrics don't work as expected. For example, on cascadelakex: root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1841092 unc_m_pmm_rpq_inserts 3680816 unc_m_pmm_wpq_inserts 1.001775055 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 860649746 unc_m_pmm_rpq_occupancy.all 1840557 unc_m_pmm_rpq_inserts 12790627455 unc_m_clockticks 1.001773348 seconds time elapsed No metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' or 'UNC_M_PMM_READ_LATENCY' are reported. The issue is, the case of an alias expanding to mulitple events is not supported, typically the uncore events. (see comments in find_evsel_group()). For UNC_M_PMM_BANDWIDTH.TOTAL in above example, the expanded event group is '{unc_m_pmm_rpq_inserts,unc_m_pmm_wpq_inserts}:W', but the actual events passed to find_evsel_group are: unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts For this multiple events case, it's not supported well. This patch introduces a new field 'metric_leader' in struct evsel. The first event is considered as a metric leader. For the rest of same events, they point to the first event via it's metric_leader field in struct evsel. This design is for adding the counting results of all same events to the first event in group (the metric_leader). With this patch, root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1842108 unc_m_pmm_rpq_inserts # 337.2 MB/sec UNC_M_PMM_BANDWIDTH.TOTAL 3682209 unc_m_pmm_wpq_inserts 1.001819706 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 861970685 unc_m_pmm_rpq_occupancy.all # 219.4 ns UNC_M_PMM_READ_LATENCY 1842772 unc_m_pmm_rpq_inserts 12790196356 unc_m_clockticks 1.001749103 seconds time elapsed Now we can see the correct metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' and 'UNC_M_PMM_READ_LATENCY'. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20190828055932.8269-5-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-08-28 13:59:32 +08:00
u64 metric_total;
int metric_other;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
};
static int saved_value_cmp(struct rb_node *rb_node, const void *entry)
{
struct saved_value *a = container_of(rb_node,
struct saved_value,
rb_node);
const struct saved_value *b = entry;
if (a->cpu != b->cpu)
return a->cpu - b->cpu;
/*
* Previously the rbtree was used to link generic metrics.
* The keys were evsel/cpu. Now the rbtree is extended to support
* per-thread shadow stats. For shadow stats case, the keys
* are cpu/type/ctx/stat (evsel is NULL). For generic metrics
* case, the keys are still evsel/cpu (type/ctx/stat are 0 or NULL).
*/
if (a->type != b->type)
return a->type - b->type;
if (a->ctx != b->ctx)
return a->ctx - b->ctx;
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
if (a->cgrp != b->cgrp)
return (char *)a->cgrp < (char *)b->cgrp ? -1 : +1;
if (a->evsel == NULL && b->evsel == NULL) {
if (a->stat == b->stat)
return 0;
if ((char *)a->stat < (char *)b->stat)
return -1;
return 1;
}
if (a->evsel == b->evsel)
return 0;
if ((char *)a->evsel < (char *)b->evsel)
return -1;
return +1;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
}
static struct rb_node *saved_value_new(struct rblist *rblist __maybe_unused,
const void *entry)
{
struct saved_value *nd = malloc(sizeof(struct saved_value));
if (!nd)
return NULL;
memcpy(nd, entry, sizeof(struct saved_value));
return &nd->rb_node;
}
static void saved_value_delete(struct rblist *rblist __maybe_unused,
struct rb_node *rb_node)
{
struct saved_value *v;
BUG_ON(!rb_node);
v = container_of(rb_node, struct saved_value, rb_node);
free(v);
}
static struct saved_value *saved_value_lookup(struct evsel *evsel,
int cpu,
bool create,
enum stat_type type,
int ctx,
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
struct runtime_stat *st,
struct cgroup *cgrp)
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
{
struct rblist *rblist;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
struct rb_node *nd;
struct saved_value dm = {
.cpu = cpu,
.evsel = evsel,
.type = type,
.ctx = ctx,
.stat = st,
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
.cgrp = cgrp,
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
};
rblist = &st->value_list;
/* don't use context info for clock events */
if (type == STAT_NSECS)
dm.ctx = 0;
nd = rblist__find(rblist, &dm);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
if (nd)
return container_of(nd, struct saved_value, rb_node);
if (create) {
rblist__add_node(rblist, &dm);
nd = rblist__find(rblist, &dm);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
if (nd)
return container_of(nd, struct saved_value, rb_node);
}
return NULL;
}
void runtime_stat__init(struct runtime_stat *st)
{
struct rblist *rblist = &st->value_list;
rblist__init(rblist);
rblist->node_cmp = saved_value_cmp;
rblist->node_new = saved_value_new;
rblist->node_delete = saved_value_delete;
}
void runtime_stat__exit(struct runtime_stat *st)
{
rblist__exit(&st->value_list);
}
void perf_stat__init_shadow_stats(void)
{
runtime_stat__init(&rt_stat);
}
static int evsel_context(struct evsel *evsel)
{
int ctx = 0;
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
if (evsel->core.attr.exclude_kernel)
ctx |= CTX_BIT_KERNEL;
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
if (evsel->core.attr.exclude_user)
ctx |= CTX_BIT_USER;
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
if (evsel->core.attr.exclude_hv)
ctx |= CTX_BIT_HV;
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
if (evsel->core.attr.exclude_host)
ctx |= CTX_BIT_HOST;
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
if (evsel->core.attr.exclude_idle)
ctx |= CTX_BIT_IDLE;
return ctx;
}
static void reset_stat(struct runtime_stat *st)
{
struct rblist *rblist;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
struct rb_node *pos, *next;
rblist = &st->value_list;
next = rb_first_cached(&rblist->entries);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
while (next) {
pos = next;
next = rb_next(pos);
memset(&container_of(pos, struct saved_value, rb_node)->stats,
0,
sizeof(struct stats));
}
}
void perf_stat__reset_shadow_stats(void)
{
reset_stat(&rt_stat);
memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats));
}
void perf_stat__reset_shadow_per_stat(struct runtime_stat *st)
{
reset_stat(st);
}
struct runtime_stat_data {
int ctx;
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
struct cgroup *cgrp;
};
static void update_runtime_stat(struct runtime_stat *st,
enum stat_type type,
int cpu, u64 count,
struct runtime_stat_data *rsd)
{
struct saved_value *v = saved_value_lookup(NULL, cpu, true, type,
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
rsd->ctx, st, rsd->cgrp);
if (v)
update_stats(&v->stats, count);
}
/*
* Update various tracking values we maintain to print
* more semantic information such as miss/hit ratios,
* instruction rates, etc:
*/
void perf_stat__update_shadow_stats(struct evsel *counter, u64 count,
int cpu, struct runtime_stat *st)
{
u64 count_ns = count;
perf metricgroup: Support multiple events for metricgroup Some uncore metrics don't work as expected. For example, on cascadelakex: root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1841092 unc_m_pmm_rpq_inserts 3680816 unc_m_pmm_wpq_inserts 1.001775055 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 860649746 unc_m_pmm_rpq_occupancy.all 1840557 unc_m_pmm_rpq_inserts 12790627455 unc_m_clockticks 1.001773348 seconds time elapsed No metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' or 'UNC_M_PMM_READ_LATENCY' are reported. The issue is, the case of an alias expanding to mulitple events is not supported, typically the uncore events. (see comments in find_evsel_group()). For UNC_M_PMM_BANDWIDTH.TOTAL in above example, the expanded event group is '{unc_m_pmm_rpq_inserts,unc_m_pmm_wpq_inserts}:W', but the actual events passed to find_evsel_group are: unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts For this multiple events case, it's not supported well. This patch introduces a new field 'metric_leader' in struct evsel. The first event is considered as a metric leader. For the rest of same events, they point to the first event via it's metric_leader field in struct evsel. This design is for adding the counting results of all same events to the first event in group (the metric_leader). With this patch, root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1842108 unc_m_pmm_rpq_inserts # 337.2 MB/sec UNC_M_PMM_BANDWIDTH.TOTAL 3682209 unc_m_pmm_wpq_inserts 1.001819706 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 861970685 unc_m_pmm_rpq_occupancy.all # 219.4 ns UNC_M_PMM_READ_LATENCY 1842772 unc_m_pmm_rpq_inserts 12790196356 unc_m_clockticks 1.001749103 seconds time elapsed Now we can see the correct metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' and 'UNC_M_PMM_READ_LATENCY'. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20190828055932.8269-5-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-08-28 13:59:32 +08:00
struct saved_value *v;
struct runtime_stat_data rsd = {
.ctx = evsel_context(counter),
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
.cgrp = counter->cgrp,
};
count *= counter->scale;
if (evsel__is_clock(counter))
update_runtime_stat(st, STAT_NSECS, cpu, count_ns, &rsd);
else if (evsel__match(counter, HARDWARE, HW_CPU_CYCLES))
update_runtime_stat(st, STAT_CYCLES, cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, CYCLES_IN_TX))
update_runtime_stat(st, STAT_CYCLES_IN_TX, cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TRANSACTION_START))
update_runtime_stat(st, STAT_TRANSACTION, cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, ELISION_START))
update_runtime_stat(st, STAT_ELISION, cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_TOTAL_SLOTS))
update_runtime_stat(st, STAT_TOPDOWN_TOTAL_SLOTS,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_ISSUED))
update_runtime_stat(st, STAT_TOPDOWN_SLOTS_ISSUED,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_RETIRED))
update_runtime_stat(st, STAT_TOPDOWN_SLOTS_RETIRED,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_FETCH_BUBBLES))
update_runtime_stat(st, STAT_TOPDOWN_FETCH_BUBBLES,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_RECOVERY_BUBBLES))
update_runtime_stat(st, STAT_TOPDOWN_RECOVERY_BUBBLES,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_RETIRING))
update_runtime_stat(st, STAT_TOPDOWN_RETIRING,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_BAD_SPEC))
update_runtime_stat(st, STAT_TOPDOWN_BAD_SPEC,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_FE_BOUND))
update_runtime_stat(st, STAT_TOPDOWN_FE_BOUND,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_BE_BOUND))
update_runtime_stat(st, STAT_TOPDOWN_BE_BOUND,
cpu, count, &rsd);
perf stat: Support L2 Topdown events The TMA method level 2 metrics is supported from the Intel Sapphire Rapids server, which expose four L2 Topdown metrics events to user space. There are eight L2 events in total. The other four L2 Topdown metrics events are calculated from the corresponding L1 and the exposed L2 events. Now, the --topdown prints the complete top-down metrics that supported by the CPU. For the Intel Sapphire Rapids server, there are 4 L1 events and 8 L2 events displyed in one line. Add a new option, --td-level, to display the top-down statistics that equal to or lower than the input level. The L2 event is marked only when both its L1 parent event and itself crosse the threshold. Here is an example: $ perf stat --topdown --td-level=2 --no-metric-only sleep 1 Topdown accuracy may decrease when measuring long periods. Please print the result regularly, e.g. -I1000 Performance counter stats for 'sleep 1': 16,734,390 slots 2,100,001 topdown-retiring # 12.6% retiring 2,034,376 topdown-bad-spec # 12.3% bad speculation 4,003,128 topdown-fe-bound # 24.1% frontend bound 328,125 topdown-heavy-ops # 2.0% heavy operations # 10.6% light operations 1,968,751 topdown-br-mispredict # 11.9% branch mispredict # 0.4% machine clears 2,953,127 topdown-fetch-lat # 17.8% fetch latency # 6.3% fetch bandwidth 5,906,255 topdown-mem-bound # 35.6% memory bound # 15.4% core bound Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/1612296553-21962-9-git-send-email-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-02-02 12:09:12 -08:00
else if (perf_stat_evsel__is(counter, TOPDOWN_HEAVY_OPS))
update_runtime_stat(st, STAT_TOPDOWN_HEAVY_OPS,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_BR_MISPREDICT))
update_runtime_stat(st, STAT_TOPDOWN_BR_MISPREDICT,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_FETCH_LAT))
update_runtime_stat(st, STAT_TOPDOWN_FETCH_LAT,
cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_MEM_BOUND))
update_runtime_stat(st, STAT_TOPDOWN_MEM_BOUND,
cpu, count, &rsd);
else if (evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND))
update_runtime_stat(st, STAT_STALLED_CYCLES_FRONT,
cpu, count, &rsd);
else if (evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND))
update_runtime_stat(st, STAT_STALLED_CYCLES_BACK,
cpu, count, &rsd);
else if (evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS))
update_runtime_stat(st, STAT_BRANCHES, cpu, count, &rsd);
else if (evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES))
update_runtime_stat(st, STAT_CACHEREFS, cpu, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_L1D))
update_runtime_stat(st, STAT_L1_DCACHE, cpu, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_L1I))
update_runtime_stat(st, STAT_L1_ICACHE, cpu, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_LL))
update_runtime_stat(st, STAT_LL_CACHE, cpu, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_DTLB))
update_runtime_stat(st, STAT_DTLB_CACHE, cpu, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_ITLB))
update_runtime_stat(st, STAT_ITLB_CACHE, cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, SMI_NUM))
update_runtime_stat(st, STAT_SMI_NUM, cpu, count, &rsd);
else if (perf_stat_evsel__is(counter, APERF))
update_runtime_stat(st, STAT_APERF, cpu, count, &rsd);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
if (counter->collect_stat) {
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
v = saved_value_lookup(counter, cpu, true, STAT_NONE, 0, st,
rsd.cgrp);
update_stats(&v->stats, count);
perf metricgroup: Support multiple events for metricgroup Some uncore metrics don't work as expected. For example, on cascadelakex: root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1841092 unc_m_pmm_rpq_inserts 3680816 unc_m_pmm_wpq_inserts 1.001775055 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 860649746 unc_m_pmm_rpq_occupancy.all 1840557 unc_m_pmm_rpq_inserts 12790627455 unc_m_clockticks 1.001773348 seconds time elapsed No metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' or 'UNC_M_PMM_READ_LATENCY' are reported. The issue is, the case of an alias expanding to mulitple events is not supported, typically the uncore events. (see comments in find_evsel_group()). For UNC_M_PMM_BANDWIDTH.TOTAL in above example, the expanded event group is '{unc_m_pmm_rpq_inserts,unc_m_pmm_wpq_inserts}:W', but the actual events passed to find_evsel_group are: unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts For this multiple events case, it's not supported well. This patch introduces a new field 'metric_leader' in struct evsel. The first event is considered as a metric leader. For the rest of same events, they point to the first event via it's metric_leader field in struct evsel. This design is for adding the counting results of all same events to the first event in group (the metric_leader). With this patch, root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1842108 unc_m_pmm_rpq_inserts # 337.2 MB/sec UNC_M_PMM_BANDWIDTH.TOTAL 3682209 unc_m_pmm_wpq_inserts 1.001819706 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 861970685 unc_m_pmm_rpq_occupancy.all # 219.4 ns UNC_M_PMM_READ_LATENCY 1842772 unc_m_pmm_rpq_inserts 12790196356 unc_m_clockticks 1.001749103 seconds time elapsed Now we can see the correct metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' and 'UNC_M_PMM_READ_LATENCY'. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20190828055932.8269-5-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-08-28 13:59:32 +08:00
if (counter->metric_leader)
v->metric_total += count;
} else if (counter->metric_leader) {
v = saved_value_lookup(counter->metric_leader,
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
cpu, true, STAT_NONE, 0, st, rsd.cgrp);
perf metricgroup: Support multiple events for metricgroup Some uncore metrics don't work as expected. For example, on cascadelakex: root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1841092 unc_m_pmm_rpq_inserts 3680816 unc_m_pmm_wpq_inserts 1.001775055 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 860649746 unc_m_pmm_rpq_occupancy.all 1840557 unc_m_pmm_rpq_inserts 12790627455 unc_m_clockticks 1.001773348 seconds time elapsed No metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' or 'UNC_M_PMM_READ_LATENCY' are reported. The issue is, the case of an alias expanding to mulitple events is not supported, typically the uncore events. (see comments in find_evsel_group()). For UNC_M_PMM_BANDWIDTH.TOTAL in above example, the expanded event group is '{unc_m_pmm_rpq_inserts,unc_m_pmm_wpq_inserts}:W', but the actual events passed to find_evsel_group are: unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts For this multiple events case, it's not supported well. This patch introduces a new field 'metric_leader' in struct evsel. The first event is considered as a metric leader. For the rest of same events, they point to the first event via it's metric_leader field in struct evsel. This design is for adding the counting results of all same events to the first event in group (the metric_leader). With this patch, root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1842108 unc_m_pmm_rpq_inserts # 337.2 MB/sec UNC_M_PMM_BANDWIDTH.TOTAL 3682209 unc_m_pmm_wpq_inserts 1.001819706 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 861970685 unc_m_pmm_rpq_occupancy.all # 219.4 ns UNC_M_PMM_READ_LATENCY 1842772 unc_m_pmm_rpq_inserts 12790196356 unc_m_clockticks 1.001749103 seconds time elapsed Now we can see the correct metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' and 'UNC_M_PMM_READ_LATENCY'. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20190828055932.8269-5-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-08-28 13:59:32 +08:00
v->metric_total += count;
v->metric_other++;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
}
}
/* used for get_ratio_color() */
enum grc_type {
GRC_STALLED_CYCLES_FE,
GRC_STALLED_CYCLES_BE,
GRC_CACHE_MISSES,
GRC_MAX_NR
};
static const char *get_ratio_color(enum grc_type type, double ratio)
{
static const double grc_table[GRC_MAX_NR][3] = {
[GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 },
[GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 },
[GRC_CACHE_MISSES] = { 20.0, 10.0, 5.0 },
};
const char *color = PERF_COLOR_NORMAL;
if (ratio > grc_table[type][0])
color = PERF_COLOR_RED;
else if (ratio > grc_table[type][1])
color = PERF_COLOR_MAGENTA;
else if (ratio > grc_table[type][2])
color = PERF_COLOR_YELLOW;
return color;
}
static struct evsel *perf_stat__find_event(struct evlist *evsel_list,
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
const char *name)
{
struct evsel *c2;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
evlist__for_each_entry (evsel_list, c2) {
if (!strcasecmp(c2->name, name) && !c2->collect_stat)
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
return c2;
}
return NULL;
}
/* Mark MetricExpr target events and link events using them to them. */
void perf_stat__collect_metric_expr(struct evlist *evsel_list)
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
{
struct evsel *counter, *leader, **metric_events, *oc;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
bool found;
struct expr_parse_ctx *ctx;
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
struct hashmap_entry *cur;
size_t bkt;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
int i;
ctx = expr__ctx_new();
if (!ctx) {
pr_debug("expr__ctx_new failed");
return;
}
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
evlist__for_each_entry(evsel_list, counter) {
bool invalid = false;
leader = evsel__leader(counter);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
if (!counter->metric_expr)
continue;
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
expr__ctx_clear(ctx);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
metric_events = counter->metric_events;
if (!metric_events) {
if (expr__find_ids(counter->metric_expr,
counter->name,
perf metric: Move runtime value to the expr context The runtime value is needed when recursively parsing metrics, currently a value of 1 is passed which is incorrect. Rather than add more arguments to the bison parser, add runtime to the context. Fix call sites not to pass a value. The runtime value is defaulted to 0, which is arbitrary. In some places this replaces a value of 1, which was also arbitrary. This shouldn't affect anything other than PPC. The use of 0 or 1 shouldn't matter as a proper runtime value would be needed in a case that it did matter. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Antonov <alexander.antonov@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Kilroy <andrew.kilroy@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Changbin Du <changbin.du@intel.com> Cc: Denys Zagorui <dzagorui@cisco.com> Cc: Fabian Hemmer <copy@copy.sh> Cc: Felix Fietkau <nbd@nbd.name> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joakim Zhang <qiangqing.zhang@nxp.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kees Kook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nicholas Fraser <nfraser@codeweavers.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Paul Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: ShihCheng Tu <mrtoastcheng@gmail.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Sumanth Korikkar <sumanthk@linux.ibm.com> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Wan Jiabing <wanjiabing@vivo.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20211015172132.1162559-6-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-10-15 10:21:16 -07:00
ctx) < 0)
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
continue;
metric_events = calloc(sizeof(struct evsel *),
hashmap__size(ctx->ids) + 1);
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
if (!metric_events) {
expr__ctx_free(ctx);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
return;
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
}
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
counter->metric_events = metric_events;
}
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
i = 0;
hashmap__for_each_entry(ctx->ids, cur, bkt) {
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
const char *metric_name = (const char *)cur->key;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
found = false;
if (leader) {
/* Search in group */
for_each_group_member (oc, leader) {
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
if (!strcasecmp(oc->name,
metric_name) &&
!oc->collect_stat) {
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
found = true;
break;
}
}
}
if (!found) {
/* Search ignoring groups */
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
oc = perf_stat__find_event(evsel_list,
metric_name);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
}
if (!oc) {
/* Deduping one is good enough to handle duplicated PMUs. */
static char *printed;
/*
* Adding events automatically would be difficult, because
* it would risk creating groups that are not schedulable.
* perf stat doesn't understand all the scheduling constraints
* of events. So we ask the user instead to add the missing
* events.
*/
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
if (!printed ||
strcasecmp(printed, metric_name)) {
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
fprintf(stderr,
"Add %s event to groups to get metric expression for %s\n",
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
metric_name,
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
counter->name);
free(printed);
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
printed = strdup(metric_name);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
}
invalid = true;
continue;
}
perf expr: Migrate expr ids table to a hashmap Use a hashmap between a char* string and a double* value. While bpf's hashmap entries are size_t in size, we can't guarantee sizeof(size_t) >= sizeof(double). Avoid a memory allocation when gathering ids by making 0.0 a special value encoded as NULL. Original map suggestion by Andi Kleen: https://lore.kernel.org/lkml/20200224210308.GQ160988@tassilo.jf.intel.com/ and seconded by Jiri Olsa: https://lore.kernel.org/lkml/20200423112915.GH1136647@krava/ Committer notes: There are fixes that need to land upstream before we can use libbpf's headers, for now use our copy unconditionally, since the data structures at this point are exactly the same, no problem. When the fixes for libbpf's hashmap land upstream, we can fix this up. Testing it: Building with LIBBPF=1, i.e. the default: $ perf -vv | grep -i bpf bpf: [ on ] # HAVE_LIBBPF_SUPPORT $ nm ~/bin/perf | grep -i libbpf_ | wc -l 39 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 17 $ Explicitely building without LIBBPF: $ perf -vv | grep -i bpf bpf: [ OFF ] # HAVE_LIBBPF_SUPPORT $ $ nm ~/bin/perf | grep -i libbpf_ | wc -l 0 $ nm ~/bin/perf | grep -i hashmap_ | wc -l 9 $ Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Leo Yan <leo.yan@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Yonghong Song <yhs@fb.com> Cc: bpf@vger.kernel.org Cc: kp singh <kpsingh@chromium.org> Cc: netdev@vger.kernel.org Link: http://lore.kernel.org/lkml/20200515221732.44078-8-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-05-15 15:17:32 -07:00
metric_events[i++] = oc;
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
oc->collect_stat = true;
}
metric_events[i] = NULL;
if (invalid) {
free(metric_events);
counter->metric_events = NULL;
counter->metric_expr = NULL;
}
}
expr__ctx_free(ctx);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
}
static double runtime_stat_avg(struct runtime_stat *st,
enum stat_type type, int cpu,
struct runtime_stat_data *rsd)
{
struct saved_value *v;
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
v = saved_value_lookup(NULL, cpu, false, type, rsd->ctx, st, rsd->cgrp);
if (!v)
return 0.0;
return avg_stats(&v->stats);
}
static double runtime_stat_n(struct runtime_stat *st,
enum stat_type type, int cpu,
struct runtime_stat_data *rsd)
{
struct saved_value *v;
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
v = saved_value_lookup(NULL, cpu, false, type, rsd->ctx, st, rsd->cgrp);
if (!v)
return 0.0;
return v->stats.n;
}
static void print_stalled_cycles_frontend(struct perf_stat_config *config,
int cpu, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_CYCLES, cpu, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio);
if (ratio)
out->print_metric(config, out->ctx, color, "%7.2f%%", "frontend cycles idle",
ratio);
else
out->print_metric(config, out->ctx, NULL, NULL, "frontend cycles idle", 0);
}
static void print_stalled_cycles_backend(struct perf_stat_config *config,
int cpu, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_CYCLES, cpu, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "backend cycles idle", ratio);
}
static void print_branch_misses(struct perf_stat_config *config,
int cpu, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_BRANCHES, cpu, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all branches", ratio);
}
static void print_l1_dcache_misses(struct perf_stat_config *config,
int cpu, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_L1_DCACHE, cpu, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all L1-dcache accesses", ratio);
}
static void print_l1_icache_misses(struct perf_stat_config *config,
int cpu, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_L1_ICACHE, cpu, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all L1-icache accesses", ratio);
}
static void print_dtlb_cache_misses(struct perf_stat_config *config,
int cpu, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_DTLB_CACHE, cpu, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all dTLB cache accesses", ratio);
}
static void print_itlb_cache_misses(struct perf_stat_config *config,
int cpu, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_ITLB_CACHE, cpu, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all iTLB cache accesses", ratio);
}
static void print_ll_cache_misses(struct perf_stat_config *config,
int cpu, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_LL_CACHE, cpu, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all LL-cache accesses", ratio);
}
/*
* High level "TopDown" CPU core pipe line bottleneck break down.
*
* Basic concept following
* Yasin, A Top Down Method for Performance analysis and Counter architecture
* ISPASS14
*
* The CPU pipeline is divided into 4 areas that can be bottlenecks:
*
* Frontend -> Backend -> Retiring
* BadSpeculation in addition means out of order execution that is thrown away
* (for example branch mispredictions)
* Frontend is instruction decoding.
* Backend is execution, like computation and accessing data in memory
* Retiring is good execution that is not directly bottlenecked
*
* The formulas are computed in slots.
* A slot is an entry in the pipeline each for the pipeline width
* (for example a 4-wide pipeline has 4 slots for each cycle)
*
* Formulas:
* BadSpeculation = ((SlotsIssued - SlotsRetired) + RecoveryBubbles) /
* TotalSlots
* Retiring = SlotsRetired / TotalSlots
* FrontendBound = FetchBubbles / TotalSlots
* BackendBound = 1.0 - BadSpeculation - Retiring - FrontendBound
*
* The kernel provides the mapping to the low level CPU events and any scaling
* needed for the CPU pipeline width, for example:
*
* TotalSlots = Cycles * 4
*
* The scaling factor is communicated in the sysfs unit.
*
* In some cases the CPU may not be able to measure all the formulas due to
* missing events. In this case multiple formulas are combined, as possible.
*
* Full TopDown supports more levels to sub-divide each area: for example
* BackendBound into computing bound and memory bound. For now we only
* support Level 1 TopDown.
*/
static double sanitize_val(double x)
{
if (x < 0 && x >= -0.02)
return 0.0;
return x;
}
static double td_total_slots(int cpu, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
return runtime_stat_avg(st, STAT_TOPDOWN_TOTAL_SLOTS, cpu, rsd);
}
static double td_bad_spec(int cpu, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double bad_spec = 0;
double total_slots;
double total;
total = runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_ISSUED, cpu, rsd) -
runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_RETIRED, cpu, rsd) +
runtime_stat_avg(st, STAT_TOPDOWN_RECOVERY_BUBBLES, cpu, rsd);
total_slots = td_total_slots(cpu, st, rsd);
if (total_slots)
bad_spec = total / total_slots;
return sanitize_val(bad_spec);
}
static double td_retiring(int cpu, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double retiring = 0;
double total_slots = td_total_slots(cpu, st, rsd);
double ret_slots = runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_RETIRED,
cpu, rsd);
if (total_slots)
retiring = ret_slots / total_slots;
return retiring;
}
static double td_fe_bound(int cpu, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double fe_bound = 0;
double total_slots = td_total_slots(cpu, st, rsd);
double fetch_bub = runtime_stat_avg(st, STAT_TOPDOWN_FETCH_BUBBLES,
cpu, rsd);
if (total_slots)
fe_bound = fetch_bub / total_slots;
return fe_bound;
}
static double td_be_bound(int cpu, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double sum = (td_fe_bound(cpu, st, rsd) +
td_bad_spec(cpu, st, rsd) +
td_retiring(cpu, st, rsd));
if (sum == 0)
return 0;
return sanitize_val(1.0 - sum);
}
/*
* Kernel reports metrics multiplied with slots. To get back
* the ratios we need to recreate the sum.
*/
static double td_metric_ratio(int cpu, enum stat_type type,
struct runtime_stat *stat,
struct runtime_stat_data *rsd)
{
double sum = runtime_stat_avg(stat, STAT_TOPDOWN_RETIRING, cpu, rsd) +
runtime_stat_avg(stat, STAT_TOPDOWN_FE_BOUND, cpu, rsd) +
runtime_stat_avg(stat, STAT_TOPDOWN_BE_BOUND, cpu, rsd) +
runtime_stat_avg(stat, STAT_TOPDOWN_BAD_SPEC, cpu, rsd);
double d = runtime_stat_avg(stat, type, cpu, rsd);
if (sum)
return d / sum;
return 0;
}
/*
* ... but only if most of the values are actually available.
* We allow two missing.
*/
static bool full_td(int cpu, struct runtime_stat *stat,
struct runtime_stat_data *rsd)
{
int c = 0;
if (runtime_stat_avg(stat, STAT_TOPDOWN_RETIRING, cpu, rsd) > 0)
c++;
if (runtime_stat_avg(stat, STAT_TOPDOWN_BE_BOUND, cpu, rsd) > 0)
c++;
if (runtime_stat_avg(stat, STAT_TOPDOWN_FE_BOUND, cpu, rsd) > 0)
c++;
if (runtime_stat_avg(stat, STAT_TOPDOWN_BAD_SPEC, cpu, rsd) > 0)
c++;
return c >= 2;
}
static void print_smi_cost(struct perf_stat_config *config, int cpu,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double smi_num, aperf, cycles, cost = 0.0;
const char *color = NULL;
smi_num = runtime_stat_avg(st, STAT_SMI_NUM, cpu, rsd);
aperf = runtime_stat_avg(st, STAT_APERF, cpu, rsd);
cycles = runtime_stat_avg(st, STAT_CYCLES, cpu, rsd);
if ((cycles == 0) || (aperf == 0))
return;
if (smi_num)
cost = (aperf - cycles) / aperf * 100.00;
if (cost > 10)
color = PERF_COLOR_RED;
out->print_metric(config, out->ctx, color, "%8.1f%%", "SMI cycles%", cost);
out->print_metric(config, out->ctx, NULL, "%4.0f", "SMI#", smi_num);
}
static int prepare_metric(struct evsel **metric_events,
struct metric_ref *metric_refs,
struct expr_parse_ctx *pctx,
int cpu,
struct runtime_stat *st)
{
double scale;
perf metric: Encode and use metric-id as qualifier For a metric like IPC a group of events like {instructions,cycles}:W would be formed. If the events names were changed in parsing then the metric expression parser would fail to find them. This change makes the event encoding be something like: {instructions/metric-id=instructions/, cycles/metric-id=cycles/} and then uses the evsel's stable metric-id value to locate the events. This fixes the case that an event is restricted to user because of the paranoia setting: $ echo 2 > /proc/sys/kernel/perf_event_paranoid $ perf stat -M IPC /bin/true Performance counter stats for '/bin/true': 150,298 inst_retired.any:u # 0.77 IPC 187,095 cpu_clk_unhalted.thread:u 0.002042731 seconds time elapsed 0.000000000 seconds user 0.002377000 seconds sys Adding the metric-id as a qualifier has a complication in that qualifiers will become embedded in qualifiers. For example, msr/tsc/ could become msr/tsc,metric-id=msr/tsc// which will fail parse-events. To solve this problem the metric is encoded and decoded for the metric-id with !<num> standing in for an encoded value. Previously ! wasn't parsed. With this msr/tsc/ becomes msr/tsc,metric-id=msr!3tsc!3/ The metric expression parser is changed so that @ isn't changed to /, instead this is done when the ID is encoded for parse events. metricgroup__add_metric_non_group() and metricgroup__add_metric_weak_group() need to inject the metric-id qualifier, so to avoid repetition they are merged into a single metricgroup__build_event_string with error codes more rigorously checked. stat-shadow's prepare_metric() uses the metric-id to match the metricgroup code. As "metric-id=..." is added to all events, it is adding during testing with the fake PMU. This complicates pmu_str_check code as PE_PMU_EVENT_FAKE won't match as part of a configuration. The testing fake PMU case is fixed so that if a known qualifier with an ! is parsed then it isn't reported as a fake PMU. This is sufficient to pass all testing but it and the original mechanism are somewhat brittle. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Antonov <alexander.antonov@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Kilroy <andrew.kilroy@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Changbin Du <changbin.du@intel.com> Cc: Denys Zagorui <dzagorui@cisco.com> Cc: Fabian Hemmer <copy@copy.sh> Cc: Felix Fietkau <nbd@nbd.name> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joakim Zhang <qiangqing.zhang@nxp.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kees Kook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nicholas Fraser <nfraser@codeweavers.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Paul Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: ShihCheng Tu <mrtoastcheng@gmail.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Sumanth Korikkar <sumanthk@linux.ibm.com> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Wan Jiabing <wanjiabing@vivo.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20211015172132.1162559-17-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-10-15 10:21:27 -07:00
char *n;
int i, j, ret;
for (i = 0; metric_events[i]; i++) {
struct saved_value *v;
struct stats *stats;
perf metricgroup: Support multiple events for metricgroup Some uncore metrics don't work as expected. For example, on cascadelakex: root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1841092 unc_m_pmm_rpq_inserts 3680816 unc_m_pmm_wpq_inserts 1.001775055 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 860649746 unc_m_pmm_rpq_occupancy.all 1840557 unc_m_pmm_rpq_inserts 12790627455 unc_m_clockticks 1.001773348 seconds time elapsed No metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' or 'UNC_M_PMM_READ_LATENCY' are reported. The issue is, the case of an alias expanding to mulitple events is not supported, typically the uncore events. (see comments in find_evsel_group()). For UNC_M_PMM_BANDWIDTH.TOTAL in above example, the expanded event group is '{unc_m_pmm_rpq_inserts,unc_m_pmm_wpq_inserts}:W', but the actual events passed to find_evsel_group are: unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts For this multiple events case, it's not supported well. This patch introduces a new field 'metric_leader' in struct evsel. The first event is considered as a metric leader. For the rest of same events, they point to the first event via it's metric_leader field in struct evsel. This design is for adding the counting results of all same events to the first event in group (the metric_leader). With this patch, root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1842108 unc_m_pmm_rpq_inserts # 337.2 MB/sec UNC_M_PMM_BANDWIDTH.TOTAL 3682209 unc_m_pmm_wpq_inserts 1.001819706 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 861970685 unc_m_pmm_rpq_occupancy.all # 219.4 ns UNC_M_PMM_READ_LATENCY 1842772 unc_m_pmm_rpq_inserts 12790196356 unc_m_clockticks 1.001749103 seconds time elapsed Now we can see the correct metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' and 'UNC_M_PMM_READ_LATENCY'. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20190828055932.8269-5-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-08-28 13:59:32 +08:00
u64 metric_total = 0;
int source_count;
if (!strcmp(metric_events[i]->name, "duration_time")) {
stats = &walltime_nsecs_stats;
scale = 1e-9;
source_count = 1;
} else {
v = saved_value_lookup(metric_events[i], cpu, false,
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
STAT_NONE, 0, st,
metric_events[i]->cgrp);
if (!v)
break;
stats = &v->stats;
scale = 1.0;
source_count = evsel__source_count(metric_events[i]);
perf metricgroup: Support multiple events for metricgroup Some uncore metrics don't work as expected. For example, on cascadelakex: root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1841092 unc_m_pmm_rpq_inserts 3680816 unc_m_pmm_wpq_inserts 1.001775055 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 860649746 unc_m_pmm_rpq_occupancy.all 1840557 unc_m_pmm_rpq_inserts 12790627455 unc_m_clockticks 1.001773348 seconds time elapsed No metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' or 'UNC_M_PMM_READ_LATENCY' are reported. The issue is, the case of an alias expanding to mulitple events is not supported, typically the uncore events. (see comments in find_evsel_group()). For UNC_M_PMM_BANDWIDTH.TOTAL in above example, the expanded event group is '{unc_m_pmm_rpq_inserts,unc_m_pmm_wpq_inserts}:W', but the actual events passed to find_evsel_group are: unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts For this multiple events case, it's not supported well. This patch introduces a new field 'metric_leader' in struct evsel. The first event is considered as a metric leader. For the rest of same events, they point to the first event via it's metric_leader field in struct evsel. This design is for adding the counting results of all same events to the first event in group (the metric_leader). With this patch, root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1842108 unc_m_pmm_rpq_inserts # 337.2 MB/sec UNC_M_PMM_BANDWIDTH.TOTAL 3682209 unc_m_pmm_wpq_inserts 1.001819706 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 861970685 unc_m_pmm_rpq_occupancy.all # 219.4 ns UNC_M_PMM_READ_LATENCY 1842772 unc_m_pmm_rpq_inserts 12790196356 unc_m_clockticks 1.001749103 seconds time elapsed Now we can see the correct metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' and 'UNC_M_PMM_READ_LATENCY'. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20190828055932.8269-5-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-08-28 13:59:32 +08:00
if (v->metric_other)
metric_total = v->metric_total;
}
perf metric: Encode and use metric-id as qualifier For a metric like IPC a group of events like {instructions,cycles}:W would be formed. If the events names were changed in parsing then the metric expression parser would fail to find them. This change makes the event encoding be something like: {instructions/metric-id=instructions/, cycles/metric-id=cycles/} and then uses the evsel's stable metric-id value to locate the events. This fixes the case that an event is restricted to user because of the paranoia setting: $ echo 2 > /proc/sys/kernel/perf_event_paranoid $ perf stat -M IPC /bin/true Performance counter stats for '/bin/true': 150,298 inst_retired.any:u # 0.77 IPC 187,095 cpu_clk_unhalted.thread:u 0.002042731 seconds time elapsed 0.000000000 seconds user 0.002377000 seconds sys Adding the metric-id as a qualifier has a complication in that qualifiers will become embedded in qualifiers. For example, msr/tsc/ could become msr/tsc,metric-id=msr/tsc// which will fail parse-events. To solve this problem the metric is encoded and decoded for the metric-id with !<num> standing in for an encoded value. Previously ! wasn't parsed. With this msr/tsc/ becomes msr/tsc,metric-id=msr!3tsc!3/ The metric expression parser is changed so that @ isn't changed to /, instead this is done when the ID is encoded for parse events. metricgroup__add_metric_non_group() and metricgroup__add_metric_weak_group() need to inject the metric-id qualifier, so to avoid repetition they are merged into a single metricgroup__build_event_string with error codes more rigorously checked. stat-shadow's prepare_metric() uses the metric-id to match the metricgroup code. As "metric-id=..." is added to all events, it is adding during testing with the fake PMU. This complicates pmu_str_check code as PE_PMU_EVENT_FAKE won't match as part of a configuration. The testing fake PMU case is fixed so that if a known qualifier with an ! is parsed then it isn't reported as a fake PMU. This is sufficient to pass all testing but it and the original mechanism are somewhat brittle. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Antonov <alexander.antonov@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Kilroy <andrew.kilroy@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Changbin Du <changbin.du@intel.com> Cc: Denys Zagorui <dzagorui@cisco.com> Cc: Fabian Hemmer <copy@copy.sh> Cc: Felix Fietkau <nbd@nbd.name> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joakim Zhang <qiangqing.zhang@nxp.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kees Kook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nicholas Fraser <nfraser@codeweavers.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Paul Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: ShihCheng Tu <mrtoastcheng@gmail.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Sumanth Korikkar <sumanthk@linux.ibm.com> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Wan Jiabing <wanjiabing@vivo.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20211015172132.1162559-17-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-10-15 10:21:27 -07:00
n = strdup(evsel__metric_id(metric_events[i]));
if (!n)
return -ENOMEM;
perf metric: Encode and use metric-id as qualifier For a metric like IPC a group of events like {instructions,cycles}:W would be formed. If the events names were changed in parsing then the metric expression parser would fail to find them. This change makes the event encoding be something like: {instructions/metric-id=instructions/, cycles/metric-id=cycles/} and then uses the evsel's stable metric-id value to locate the events. This fixes the case that an event is restricted to user because of the paranoia setting: $ echo 2 > /proc/sys/kernel/perf_event_paranoid $ perf stat -M IPC /bin/true Performance counter stats for '/bin/true': 150,298 inst_retired.any:u # 0.77 IPC 187,095 cpu_clk_unhalted.thread:u 0.002042731 seconds time elapsed 0.000000000 seconds user 0.002377000 seconds sys Adding the metric-id as a qualifier has a complication in that qualifiers will become embedded in qualifiers. For example, msr/tsc/ could become msr/tsc,metric-id=msr/tsc// which will fail parse-events. To solve this problem the metric is encoded and decoded for the metric-id with !<num> standing in for an encoded value. Previously ! wasn't parsed. With this msr/tsc/ becomes msr/tsc,metric-id=msr!3tsc!3/ The metric expression parser is changed so that @ isn't changed to /, instead this is done when the ID is encoded for parse events. metricgroup__add_metric_non_group() and metricgroup__add_metric_weak_group() need to inject the metric-id qualifier, so to avoid repetition they are merged into a single metricgroup__build_event_string with error codes more rigorously checked. stat-shadow's prepare_metric() uses the metric-id to match the metricgroup code. As "metric-id=..." is added to all events, it is adding during testing with the fake PMU. This complicates pmu_str_check code as PE_PMU_EVENT_FAKE won't match as part of a configuration. The testing fake PMU case is fixed so that if a known qualifier with an ! is parsed then it isn't reported as a fake PMU. This is sufficient to pass all testing but it and the original mechanism are somewhat brittle. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Antonov <alexander.antonov@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Kilroy <andrew.kilroy@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Changbin Du <changbin.du@intel.com> Cc: Denys Zagorui <dzagorui@cisco.com> Cc: Fabian Hemmer <copy@copy.sh> Cc: Felix Fietkau <nbd@nbd.name> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joakim Zhang <qiangqing.zhang@nxp.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kees Kook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nicholas Fraser <nfraser@codeweavers.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Paul Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: ShihCheng Tu <mrtoastcheng@gmail.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Sumanth Korikkar <sumanthk@linux.ibm.com> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Wan Jiabing <wanjiabing@vivo.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20211015172132.1162559-17-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-10-15 10:21:27 -07:00
expr__add_id_val_source_count(pctx, n,
metric_total ? : avg_stats(stats) * scale,
source_count);
}
perf metricgroup: Support multiple events for metricgroup Some uncore metrics don't work as expected. For example, on cascadelakex: root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1841092 unc_m_pmm_rpq_inserts 3680816 unc_m_pmm_wpq_inserts 1.001775055 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 860649746 unc_m_pmm_rpq_occupancy.all 1840557 unc_m_pmm_rpq_inserts 12790627455 unc_m_clockticks 1.001773348 seconds time elapsed No metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' or 'UNC_M_PMM_READ_LATENCY' are reported. The issue is, the case of an alias expanding to mulitple events is not supported, typically the uncore events. (see comments in find_evsel_group()). For UNC_M_PMM_BANDWIDTH.TOTAL in above example, the expanded event group is '{unc_m_pmm_rpq_inserts,unc_m_pmm_wpq_inserts}:W', but the actual events passed to find_evsel_group are: unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_rpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts unc_m_pmm_wpq_inserts For this multiple events case, it's not supported well. This patch introduces a new field 'metric_leader' in struct evsel. The first event is considered as a metric leader. For the rest of same events, they point to the first event via it's metric_leader field in struct evsel. This design is for adding the counting results of all same events to the first event in group (the metric_leader). With this patch, root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_BANDWIDTH.TOTAL -a -- sleep 1 Performance counter stats for 'system wide': 1842108 unc_m_pmm_rpq_inserts # 337.2 MB/sec UNC_M_PMM_BANDWIDTH.TOTAL 3682209 unc_m_pmm_wpq_inserts 1.001819706 seconds time elapsed root@lkp-csl-2sp2:~# perf stat -M UNC_M_PMM_READ_LATENCY -a -- sleep 1 Performance counter stats for 'system wide': 861970685 unc_m_pmm_rpq_occupancy.all # 219.4 ns UNC_M_PMM_READ_LATENCY 1842772 unc_m_pmm_rpq_inserts 12790196356 unc_m_clockticks 1.001749103 seconds time elapsed Now we can see the correct metrics 'UNC_M_PMM_BANDWIDTH.TOTAL' and 'UNC_M_PMM_READ_LATENCY'. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20190828055932.8269-5-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-08-28 13:59:32 +08:00
for (j = 0; metric_refs && metric_refs[j].metric_name; j++) {
ret = expr__add_ref(pctx, &metric_refs[j]);
if (ret)
return ret;
}
return i;
}
static void generic_metric(struct perf_stat_config *config,
const char *metric_expr,
struct evsel **metric_events,
struct metric_ref *metric_refs,
char *name,
const char *metric_name,
const char *metric_unit,
int runtime,
int cpu,
struct perf_stat_output_ctx *out,
struct runtime_stat *st)
{
print_metric_t print_metric = out->print_metric;
struct expr_parse_ctx *pctx;
double ratio, scale;
int i;
void *ctxp = out->ctx;
pctx = expr__ctx_new();
if (!pctx)
return;
perf metric: Move runtime value to the expr context The runtime value is needed when recursively parsing metrics, currently a value of 1 is passed which is incorrect. Rather than add more arguments to the bison parser, add runtime to the context. Fix call sites not to pass a value. The runtime value is defaulted to 0, which is arbitrary. In some places this replaces a value of 1, which was also arbitrary. This shouldn't affect anything other than PPC. The use of 0 or 1 shouldn't matter as a proper runtime value would be needed in a case that it did matter. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Antonov <alexander.antonov@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Kilroy <andrew.kilroy@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Changbin Du <changbin.du@intel.com> Cc: Denys Zagorui <dzagorui@cisco.com> Cc: Fabian Hemmer <copy@copy.sh> Cc: Felix Fietkau <nbd@nbd.name> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joakim Zhang <qiangqing.zhang@nxp.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kees Kook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nicholas Fraser <nfraser@codeweavers.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Paul Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: ShihCheng Tu <mrtoastcheng@gmail.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Sumanth Korikkar <sumanthk@linux.ibm.com> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Wan Jiabing <wanjiabing@vivo.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20211015172132.1162559-6-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-10-15 10:21:16 -07:00
pctx->runtime = runtime;
i = prepare_metric(metric_events, metric_refs, pctx, cpu, st);
if (i < 0) {
expr__ctx_free(pctx);
return;
}
if (!metric_events[i]) {
perf metric: Move runtime value to the expr context The runtime value is needed when recursively parsing metrics, currently a value of 1 is passed which is incorrect. Rather than add more arguments to the bison parser, add runtime to the context. Fix call sites not to pass a value. The runtime value is defaulted to 0, which is arbitrary. In some places this replaces a value of 1, which was also arbitrary. This shouldn't affect anything other than PPC. The use of 0 or 1 shouldn't matter as a proper runtime value would be needed in a case that it did matter. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Antonov <alexander.antonov@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Kilroy <andrew.kilroy@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Changbin Du <changbin.du@intel.com> Cc: Denys Zagorui <dzagorui@cisco.com> Cc: Fabian Hemmer <copy@copy.sh> Cc: Felix Fietkau <nbd@nbd.name> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joakim Zhang <qiangqing.zhang@nxp.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kees Kook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nicholas Fraser <nfraser@codeweavers.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Paul Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: ShihCheng Tu <mrtoastcheng@gmail.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Sumanth Korikkar <sumanthk@linux.ibm.com> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Wan Jiabing <wanjiabing@vivo.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20211015172132.1162559-6-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-10-15 10:21:16 -07:00
if (expr__parse(&ratio, pctx, metric_expr) == 0) {
char *unit;
char metric_bf[64];
if (metric_unit && metric_name) {
if (perf_pmu__convert_scale(metric_unit,
&unit, &scale) >= 0) {
ratio *= scale;
}
perf metricgroups: Enhance JSON/metric infrastructure to handle "?" Patch enhances current metric infrastructure to handle "?" in the metric expression. The "?" can be use for parameters whose value not known while creating metric events and which can be replace later at runtime to the proper value. It also add flexibility to create multiple events out of single metric event added in JSON file. Patch adds function 'arch_get_runtimeparam' which is a arch specific function, returns the count of metric events need to be created. By default it return 1. This infrastructure needed for hv_24x7 socket/chip level events. "hv_24x7" chip level events needs specific chip-id to which the data is requested. Function 'arch_get_runtimeparam' implemented in header.c which extract number of sockets from sysfs file "sockets" under "/sys/devices/hv_24x7/interface/". With this patch basically we are trying to create as many metric events as define by runtime_param. For that one loop is added in function 'metricgroup__add_metric', which create multiple events at run time depend on return value of 'arch_get_runtimeparam' and merge that event in 'group_list'. To achieve that we are actually passing this parameter value as part of `expr__find_other` function and changing "?" present in metric expression with this value. As in our JSON file, there gonna be single metric event, and out of which we are creating multiple events. To understand which data count belongs to which parameter value, we also printing param value in generic_metric function. For example, command:# ./perf stat -M PowerBUS_Frequency -C 0 -I 1000 1.000101867 9,356,933 hv_24x7/pm_pb_cyc,chip=0/ # 2.3 GHz PowerBUS_Frequency_0 1.000101867 9,366,134 hv_24x7/pm_pb_cyc,chip=1/ # 2.3 GHz PowerBUS_Frequency_1 2.000314878 9,365,868 hv_24x7/pm_pb_cyc,chip=0/ # 2.3 GHz PowerBUS_Frequency_0 2.000314878 9,366,092 hv_24x7/pm_pb_cyc,chip=1/ # 2.3 GHz PowerBUS_Frequency_1 So, here _0 and _1 after PowerBUS_Frequency specify parameter value. Signed-off-by: Kajol Jain <kjain@linux.ibm.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Anju T Sudhakar <anju@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Joe Mario <jmario@redhat.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Cc: Mamatha Inamdar <mamatha4@linux.vnet.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linuxppc-dev@lists.ozlabs.org Link: http://lore.kernel.org/lkml/20200401203340.31402-5-kjain@linux.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-02 02:03:37 +05:30
if (strstr(metric_expr, "?"))
scnprintf(metric_bf, sizeof(metric_bf),
"%s %s_%d", unit, metric_name, runtime);
else
scnprintf(metric_bf, sizeof(metric_bf),
"%s %s", unit, metric_name);
perf metricgroups: Enhance JSON/metric infrastructure to handle "?" Patch enhances current metric infrastructure to handle "?" in the metric expression. The "?" can be use for parameters whose value not known while creating metric events and which can be replace later at runtime to the proper value. It also add flexibility to create multiple events out of single metric event added in JSON file. Patch adds function 'arch_get_runtimeparam' which is a arch specific function, returns the count of metric events need to be created. By default it return 1. This infrastructure needed for hv_24x7 socket/chip level events. "hv_24x7" chip level events needs specific chip-id to which the data is requested. Function 'arch_get_runtimeparam' implemented in header.c which extract number of sockets from sysfs file "sockets" under "/sys/devices/hv_24x7/interface/". With this patch basically we are trying to create as many metric events as define by runtime_param. For that one loop is added in function 'metricgroup__add_metric', which create multiple events at run time depend on return value of 'arch_get_runtimeparam' and merge that event in 'group_list'. To achieve that we are actually passing this parameter value as part of `expr__find_other` function and changing "?" present in metric expression with this value. As in our JSON file, there gonna be single metric event, and out of which we are creating multiple events. To understand which data count belongs to which parameter value, we also printing param value in generic_metric function. For example, command:# ./perf stat -M PowerBUS_Frequency -C 0 -I 1000 1.000101867 9,356,933 hv_24x7/pm_pb_cyc,chip=0/ # 2.3 GHz PowerBUS_Frequency_0 1.000101867 9,366,134 hv_24x7/pm_pb_cyc,chip=1/ # 2.3 GHz PowerBUS_Frequency_1 2.000314878 9,365,868 hv_24x7/pm_pb_cyc,chip=0/ # 2.3 GHz PowerBUS_Frequency_0 2.000314878 9,366,092 hv_24x7/pm_pb_cyc,chip=1/ # 2.3 GHz PowerBUS_Frequency_1 So, here _0 and _1 after PowerBUS_Frequency specify parameter value. Signed-off-by: Kajol Jain <kjain@linux.ibm.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Anju T Sudhakar <anju@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Joe Mario <jmario@redhat.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Cc: Mamatha Inamdar <mamatha4@linux.vnet.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linuxppc-dev@lists.ozlabs.org Link: http://lore.kernel.org/lkml/20200401203340.31402-5-kjain@linux.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-02 02:03:37 +05:30
print_metric(config, ctxp, NULL, "%8.1f",
metric_bf, ratio);
} else {
print_metric(config, ctxp, NULL, "%8.2f",
metric_name ?
metric_name :
out->force_header ? name : "",
ratio);
}
} else {
print_metric(config, ctxp, NULL, NULL,
out->force_header ?
(metric_name ? metric_name : name) : "", 0);
}
} else {
print_metric(config, ctxp, NULL, NULL,
out->force_header ?
(metric_name ? metric_name : name) : "", 0);
}
expr__ctx_free(pctx);
}
double test_generic_metric(struct metric_expr *mexp, int cpu, struct runtime_stat *st)
{
struct expr_parse_ctx *pctx;
perf metric: Release expr_parse_ctx after testing The test_generic_metric() missed to release entries in the pctx. Asan reported following leak (and more): Direct leak of 128 byte(s) in 1 object(s) allocated from: #0 0x7f4c9396980e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e) #1 0x55f7e748cc14 in hashmap_grow (/home/namhyung/project/linux/tools/perf/perf+0x90cc14) #2 0x55f7e748d497 in hashmap__insert (/home/namhyung/project/linux/tools/perf/perf+0x90d497) #3 0x55f7e7341667 in hashmap__set /home/namhyung/project/linux/tools/perf/util/hashmap.h:111 #4 0x55f7e7341667 in expr__add_ref util/expr.c:120 #5 0x55f7e7292436 in prepare_metric util/stat-shadow.c:783 #6 0x55f7e729556d in test_generic_metric util/stat-shadow.c:858 #7 0x55f7e712390b in compute_single tests/parse-metric.c:128 #8 0x55f7e712390b in __compute_metric tests/parse-metric.c:180 #9 0x55f7e712446d in compute_metric tests/parse-metric.c:196 #10 0x55f7e712446d in test_dcache_l2 tests/parse-metric.c:295 #11 0x55f7e712446d in test__parse_metric tests/parse-metric.c:355 #12 0x55f7e70be09b in run_test tests/builtin-test.c:410 #13 0x55f7e70be09b in test_and_print tests/builtin-test.c:440 #14 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661 #15 0x55f7e70c101a in cmd_test tests/builtin-test.c:807 #16 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #17 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #18 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #19 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #20 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 6d432c4c8aa56 ("perf tools: Add test_generic_metric function") Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20200915031819.386559-8-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-09-15 12:18:15 +09:00
double ratio = 0.0;
pctx = expr__ctx_new();
if (!pctx)
return NAN;
if (prepare_metric(mexp->metric_events, mexp->metric_refs, pctx, cpu, st) < 0)
perf metric: Release expr_parse_ctx after testing The test_generic_metric() missed to release entries in the pctx. Asan reported following leak (and more): Direct leak of 128 byte(s) in 1 object(s) allocated from: #0 0x7f4c9396980e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e) #1 0x55f7e748cc14 in hashmap_grow (/home/namhyung/project/linux/tools/perf/perf+0x90cc14) #2 0x55f7e748d497 in hashmap__insert (/home/namhyung/project/linux/tools/perf/perf+0x90d497) #3 0x55f7e7341667 in hashmap__set /home/namhyung/project/linux/tools/perf/util/hashmap.h:111 #4 0x55f7e7341667 in expr__add_ref util/expr.c:120 #5 0x55f7e7292436 in prepare_metric util/stat-shadow.c:783 #6 0x55f7e729556d in test_generic_metric util/stat-shadow.c:858 #7 0x55f7e712390b in compute_single tests/parse-metric.c:128 #8 0x55f7e712390b in __compute_metric tests/parse-metric.c:180 #9 0x55f7e712446d in compute_metric tests/parse-metric.c:196 #10 0x55f7e712446d in test_dcache_l2 tests/parse-metric.c:295 #11 0x55f7e712446d in test__parse_metric tests/parse-metric.c:355 #12 0x55f7e70be09b in run_test tests/builtin-test.c:410 #13 0x55f7e70be09b in test_and_print tests/builtin-test.c:440 #14 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661 #15 0x55f7e70c101a in cmd_test tests/builtin-test.c:807 #16 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #17 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #18 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #19 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #20 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 6d432c4c8aa56 ("perf tools: Add test_generic_metric function") Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20200915031819.386559-8-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-09-15 12:18:15 +09:00
goto out;
perf metric: Move runtime value to the expr context The runtime value is needed when recursively parsing metrics, currently a value of 1 is passed which is incorrect. Rather than add more arguments to the bison parser, add runtime to the context. Fix call sites not to pass a value. The runtime value is defaulted to 0, which is arbitrary. In some places this replaces a value of 1, which was also arbitrary. This shouldn't affect anything other than PPC. The use of 0 or 1 shouldn't matter as a proper runtime value would be needed in a case that it did matter. Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Antonov <alexander.antonov@linux.intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Kilroy <andrew.kilroy@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Changbin Du <changbin.du@intel.com> Cc: Denys Zagorui <dzagorui@cisco.com> Cc: Fabian Hemmer <copy@copy.sh> Cc: Felix Fietkau <nbd@nbd.name> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joakim Zhang <qiangqing.zhang@nxp.com> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kees Kook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Nicholas Fraser <nfraser@codeweavers.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Paul Clarke <pc@us.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Riccardo Mancini <rickyman7@gmail.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: ShihCheng Tu <mrtoastcheng@gmail.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Sumanth Korikkar <sumanthk@linux.ibm.com> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Wan Jiabing <wanjiabing@vivo.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20211015172132.1162559-6-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-10-15 10:21:16 -07:00
if (expr__parse(&ratio, pctx, mexp->metric_expr))
perf metric: Release expr_parse_ctx after testing The test_generic_metric() missed to release entries in the pctx. Asan reported following leak (and more): Direct leak of 128 byte(s) in 1 object(s) allocated from: #0 0x7f4c9396980e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e) #1 0x55f7e748cc14 in hashmap_grow (/home/namhyung/project/linux/tools/perf/perf+0x90cc14) #2 0x55f7e748d497 in hashmap__insert (/home/namhyung/project/linux/tools/perf/perf+0x90d497) #3 0x55f7e7341667 in hashmap__set /home/namhyung/project/linux/tools/perf/util/hashmap.h:111 #4 0x55f7e7341667 in expr__add_ref util/expr.c:120 #5 0x55f7e7292436 in prepare_metric util/stat-shadow.c:783 #6 0x55f7e729556d in test_generic_metric util/stat-shadow.c:858 #7 0x55f7e712390b in compute_single tests/parse-metric.c:128 #8 0x55f7e712390b in __compute_metric tests/parse-metric.c:180 #9 0x55f7e712446d in compute_metric tests/parse-metric.c:196 #10 0x55f7e712446d in test_dcache_l2 tests/parse-metric.c:295 #11 0x55f7e712446d in test__parse_metric tests/parse-metric.c:355 #12 0x55f7e70be09b in run_test tests/builtin-test.c:410 #13 0x55f7e70be09b in test_and_print tests/builtin-test.c:440 #14 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661 #15 0x55f7e70c101a in cmd_test tests/builtin-test.c:807 #16 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #17 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #18 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #19 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #20 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 6d432c4c8aa56 ("perf tools: Add test_generic_metric function") Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20200915031819.386559-8-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-09-15 12:18:15 +09:00
ratio = 0.0;
perf metric: Release expr_parse_ctx after testing The test_generic_metric() missed to release entries in the pctx. Asan reported following leak (and more): Direct leak of 128 byte(s) in 1 object(s) allocated from: #0 0x7f4c9396980e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e) #1 0x55f7e748cc14 in hashmap_grow (/home/namhyung/project/linux/tools/perf/perf+0x90cc14) #2 0x55f7e748d497 in hashmap__insert (/home/namhyung/project/linux/tools/perf/perf+0x90d497) #3 0x55f7e7341667 in hashmap__set /home/namhyung/project/linux/tools/perf/util/hashmap.h:111 #4 0x55f7e7341667 in expr__add_ref util/expr.c:120 #5 0x55f7e7292436 in prepare_metric util/stat-shadow.c:783 #6 0x55f7e729556d in test_generic_metric util/stat-shadow.c:858 #7 0x55f7e712390b in compute_single tests/parse-metric.c:128 #8 0x55f7e712390b in __compute_metric tests/parse-metric.c:180 #9 0x55f7e712446d in compute_metric tests/parse-metric.c:196 #10 0x55f7e712446d in test_dcache_l2 tests/parse-metric.c:295 #11 0x55f7e712446d in test__parse_metric tests/parse-metric.c:355 #12 0x55f7e70be09b in run_test tests/builtin-test.c:410 #13 0x55f7e70be09b in test_and_print tests/builtin-test.c:440 #14 0x55f7e70c101a in __cmd_test tests/builtin-test.c:661 #15 0x55f7e70c101a in cmd_test tests/builtin-test.c:807 #16 0x55f7e7126214 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312 #17 0x55f7e6fc41a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364 #18 0x55f7e6fc41a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408 #19 0x55f7e6fc41a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538 #20 0x7f4c93492cc9 in __libc_start_main ../csu/libc-start.c:308 Fixes: 6d432c4c8aa56 ("perf tools: Add test_generic_metric function") Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20200915031819.386559-8-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-09-15 12:18:15 +09:00
out:
expr__ctx_free(pctx);
return ratio;
}
void perf_stat__print_shadow_stats(struct perf_stat_config *config,
struct evsel *evsel,
double avg, int cpu,
perf stat: Support JSON metrics in perf stat Add generic support for standalone metrics specified in JSON files to perf stat. A metric is a formula that uses multiple events to compute a higher level result (e.g. IPC). Previously metrics were always tied to an event and automatically enabled with that event. But now change it that we can have standalone metrics. They are in the same JSON data structure as events, but don't have an event name. We also allow to organize the metrics in metric groups, which allows a short cut to select several related metrics at once. Add a new -M / --metrics option to perf stat that adds the metrics or metric groups specified. Add the core code to manage and parse the metric groups. They are collected from the JSON data structures into a separate rblist. When computing shadow values look for metrics in that list. Then they are computed using the existing saved values infrastructure in stat-shadow.c The actual JSON metrics are in a separate pull request. % perf stat -M Summary --metric-only -a sleep 1 Performance counter stats for 'system wide': Instructions CLKS CPU_Utilization GFLOPs SMT_2T_Utilization Kernel_Utilization 317614222.0 1392930775.0 0.0 0.0 0.2 0.1 1.001497549 seconds time elapsed % perf stat -M GFLOPs flops Performance counter stats for 'flops': 3,999,541,471 fp_comp_ops_exe.sse_scalar_single # 1.2 GFLOPs (66.65%) 14 fp_comp_ops_exe.sse_scalar_double (66.65%) 0 fp_comp_ops_exe.sse_packed_double (66.67%) 0 fp_comp_ops_exe.sse_packed_single (66.70%) 0 simd_fp_256.packed_double (66.70%) 0 simd_fp_256.packed_single (66.67%) 0 duration_time 3.238372845 seconds time elapsed v2: Add missing header file v3: Move find_map to pmu.c Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170831194036.30146-7-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-08-31 12:40:31 -07:00
struct perf_stat_output_ctx *out,
struct rblist *metric_events,
struct runtime_stat *st)
{
void *ctxp = out->ctx;
print_metric_t print_metric = out->print_metric;
double total, ratio = 0.0, total2;
const char *color = NULL;
struct runtime_stat_data rsd = {
.ctx = evsel_context(evsel),
perf stat: Take cgroups into account for shadow stats As of now it doesn't consider cgroups when collecting shadow stats and metrics so counter values from different cgroups will be saved in a same slot. This resulted in incorrect numbers when those cgroups have different workloads. For example, let's look at the scenario below: cgroups A and C runs same workload which burns a cpu while cgroup B runs a light workload. $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 3,958,116,522 cycles A 6,722,650,929 instructions A # 2.53 insn per cycle 1,132,741 cycles B 571,743 instructions B # 0.00 insn per cycle 4,007,799,935 cycles C 6,793,181,523 instructions C # 2.56 insn per cycle 1.001050869 seconds time elapsed When I run 'perf stat' with single workload, it usually shows IPC around 1.7. We can verify it (6,722,650,929.0 / 3,958,116,522 = 1.698) for cgroup A. But in this case, since cgroups are ignored, cycles are averaged so it used the lower value for IPC calculation and resulted in around 2.5. avg cycle: (3958116522 + 1132741 + 4007799935) / 3 = 2655683066 IPC (A) : 6722650929 / 2655683066 = 2.531 IPC (B) : 571743 / 2655683066 = 0.0002 IPC (C) : 6793181523 / 2655683066 = 2.557 We can simply compare cgroup pointers in the evsel and it'll be NULL when cgroups are not specified. With this patch, I can see correct numbers like below: $ perf stat -a -e cycles,instructions --for-each-cgroup A,B,C sleep 1 Performance counter stats for 'system wide': 4,171,051,687 cycles A 7,219,793,922 instructions A # 1.73 insn per cycle 1,051,189 cycles B 583,102 instructions B # 0.55 insn per cycle 4,171,124,710 cycles C 7,192,944,580 instructions C # 1.72 insn per cycle 1.007909814 seconds time elapsed Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/20210115071139.257042-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-01-15 16:11:39 +09:00
.cgrp = evsel->cgrp,
};
perf stat: Support JSON metrics in perf stat Add generic support for standalone metrics specified in JSON files to perf stat. A metric is a formula that uses multiple events to compute a higher level result (e.g. IPC). Previously metrics were always tied to an event and automatically enabled with that event. But now change it that we can have standalone metrics. They are in the same JSON data structure as events, but don't have an event name. We also allow to organize the metrics in metric groups, which allows a short cut to select several related metrics at once. Add a new -M / --metrics option to perf stat that adds the metrics or metric groups specified. Add the core code to manage and parse the metric groups. They are collected from the JSON data structures into a separate rblist. When computing shadow values look for metrics in that list. Then they are computed using the existing saved values infrastructure in stat-shadow.c The actual JSON metrics are in a separate pull request. % perf stat -M Summary --metric-only -a sleep 1 Performance counter stats for 'system wide': Instructions CLKS CPU_Utilization GFLOPs SMT_2T_Utilization Kernel_Utilization 317614222.0 1392930775.0 0.0 0.0 0.2 0.1 1.001497549 seconds time elapsed % perf stat -M GFLOPs flops Performance counter stats for 'flops': 3,999,541,471 fp_comp_ops_exe.sse_scalar_single # 1.2 GFLOPs (66.65%) 14 fp_comp_ops_exe.sse_scalar_double (66.65%) 0 fp_comp_ops_exe.sse_packed_double (66.67%) 0 fp_comp_ops_exe.sse_packed_single (66.70%) 0 simd_fp_256.packed_double (66.70%) 0 simd_fp_256.packed_single (66.67%) 0 duration_time 3.238372845 seconds time elapsed v2: Add missing header file v3: Move find_map to pmu.c Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170831194036.30146-7-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-08-31 12:40:31 -07:00
struct metric_event *me;
int num = 1;
if (config->iostat_run) {
iostat_print_metric(config, evsel, out);
} else if (evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
total = runtime_stat_avg(st, STAT_CYCLES, cpu, &rsd);
if (total) {
ratio = avg / total;
print_metric(config, ctxp, NULL, "%7.2f ",
"insn per cycle", ratio);
} else {
print_metric(config, ctxp, NULL, NULL, "insn per cycle", 0);
}
total = runtime_stat_avg(st, STAT_STALLED_CYCLES_FRONT, cpu, &rsd);
total = max(total, runtime_stat_avg(st,
STAT_STALLED_CYCLES_BACK,
cpu, &rsd));
if (total && avg) {
out->new_line(config, ctxp);
ratio = total / avg;
print_metric(config, ctxp, NULL, "%7.2f ",
"stalled cycles per insn",
ratio);
}
} else if (evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES)) {
if (runtime_stat_n(st, STAT_BRANCHES, cpu, &rsd) != 0)
print_branch_misses(config, cpu, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all branches", 0);
} else if (
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_L1D |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_L1_DCACHE, cpu, &rsd) != 0)
print_l1_dcache_misses(config, cpu, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all L1-dcache accesses", 0);
} else if (
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_L1I |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_L1_ICACHE, cpu, &rsd) != 0)
print_l1_icache_misses(config, cpu, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all L1-icache accesses", 0);
} else if (
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_DTLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_DTLB_CACHE, cpu, &rsd) != 0)
print_dtlb_cache_misses(config, cpu, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all dTLB cache accesses", 0);
} else if (
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_ITLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_ITLB_CACHE, cpu, &rsd) != 0)
print_itlb_cache_misses(config, cpu, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all iTLB cache accesses", 0);
} else if (
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel Move the perf_event_attr struct fron 'struct evsel' to 'struct perf_evsel'. Committer notes: Fixed up these: tools/perf/arch/arm/util/auxtrace.c tools/perf/arch/arm/util/cs-etm.c tools/perf/arch/arm64/util/arm-spe.c tools/perf/arch/s390/util/auxtrace.c tools/perf/util/cs-etm.c Also cc1: warnings being treated as errors tests/sample-parsing.c: In function 'do_test': tests/sample-parsing.c:162: error: missing initializer tests/sample-parsing.c:162: error: (near initialization for 'evsel.core.cpus') struct evsel evsel = { .needs_swap = false, - .core.attr = { - .sample_type = sample_type, - .read_format = read_format, + .core = { + . attr = { + .sample_type = sample_type, + .read_format = read_format, + }, [perfbuilder@a70e4eeb5549 /]$ gcc --version |& head -1 gcc (GCC) 4.4.7 Also we don't need to include perf_event.h in tools/perf/lib/include/perf/evsel.h, forward declaring 'struct perf_event_attr' is enough. And this even fixes the build in some systems where things are used somewhere down the include path from perf_event.h without defining __always_inline. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michael Petlan <mpetlan@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20190721112506.12306-43-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-07-21 13:24:29 +02:00
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_LL |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_LL_CACHE, cpu, &rsd) != 0)
print_ll_cache_misses(config, cpu, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all LL-cache accesses", 0);
} else if (evsel__match(evsel, HARDWARE, HW_CACHE_MISSES)) {
total = runtime_stat_avg(st, STAT_CACHEREFS, cpu, &rsd);
if (total)
ratio = avg * 100 / total;
if (runtime_stat_n(st, STAT_CACHEREFS, cpu, &rsd) != 0)
print_metric(config, ctxp, NULL, "%8.3f %%",
"of all cache refs", ratio);
else
print_metric(config, ctxp, NULL, NULL, "of all cache refs", 0);
} else if (evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) {
print_stalled_cycles_frontend(config, cpu, avg, out, st, &rsd);
} else if (evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) {
print_stalled_cycles_backend(config, cpu, avg, out, st, &rsd);
} else if (evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) {
total = runtime_stat_avg(st, STAT_NSECS, cpu, &rsd);
if (total) {
ratio = avg / total;
print_metric(config, ctxp, NULL, "%8.3f", "GHz", ratio);
} else {
print_metric(config, ctxp, NULL, NULL, "Ghz", 0);
}
} else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX)) {
total = runtime_stat_avg(st, STAT_CYCLES, cpu, &rsd);
if (total)
print_metric(config, ctxp, NULL,
"%7.2f%%", "transactional cycles",
100.0 * (avg / total));
else
print_metric(config, ctxp, NULL, NULL, "transactional cycles",
0);
} else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX_CP)) {
total = runtime_stat_avg(st, STAT_CYCLES, cpu, &rsd);
total2 = runtime_stat_avg(st, STAT_CYCLES_IN_TX, cpu, &rsd);
if (total2 < avg)
total2 = avg;
if (total)
print_metric(config, ctxp, NULL, "%7.2f%%", "aborted cycles",
100.0 * ((total2-avg) / total));
else
print_metric(config, ctxp, NULL, NULL, "aborted cycles", 0);
} else if (perf_stat_evsel__is(evsel, TRANSACTION_START)) {
total = runtime_stat_avg(st, STAT_CYCLES_IN_TX, cpu, &rsd);
if (avg)
ratio = total / avg;
if (runtime_stat_n(st, STAT_CYCLES_IN_TX, cpu, &rsd) != 0)
print_metric(config, ctxp, NULL, "%8.0f",
"cycles / transaction", ratio);
else
print_metric(config, ctxp, NULL, NULL, "cycles / transaction",
0);
} else if (perf_stat_evsel__is(evsel, ELISION_START)) {
total = runtime_stat_avg(st, STAT_CYCLES_IN_TX, cpu, &rsd);
if (avg)
ratio = total / avg;
print_metric(config, ctxp, NULL, "%8.0f", "cycles / elision", ratio);
} else if (evsel__is_clock(evsel)) {
if ((ratio = avg_stats(&walltime_nsecs_stats)) != 0)
print_metric(config, ctxp, NULL, "%8.3f", "CPUs utilized",
perf stat: Get rid of extra clock display function There's no reason to have separate function to display clock events. It's only purpose was to convert the nanosecond value into microseconds. We do that now in generic code, if the unit and scale values are properly set, which this patch do for clock events. The output differs in the unit field being displayed in its columns rather than having it added as a suffix of the event name. Plus the value is rounded into 2 decimal numbers as for any other event. Before: # perf stat -e cpu-clock,task-clock -C 0 sleep 3 Performance counter stats for 'CPU(s) 0': 3001.123137 cpu-clock (msec) # 1.000 CPUs utilized 3001.133250 task-clock (msec) # 1.000 CPUs utilized 3.001159813 seconds time elapsed Now: # perf stat -e cpu-clock,task-clock -C 0 sleep 3 Performance counter stats for 'CPU(s) 0': 3,001.05 msec cpu-clock # 1.000 CPUs utilized 3,001.05 msec task-clock # 1.000 CPUs utilized 3.001077794 seconds time elapsed There's a small difference in csv output, as we now output the unit field, which was empty before. It's in the proper spot, so there's no compatibility issue. Before: # perf stat -e cpu-clock,task-clock -C 0 -x, sleep 3 3001.065177,,cpu-clock,3001064187,100.00,1.000,CPUs utilized 3001.077085,,task-clock,3001077085,100.00,1.000,CPUs utilized # perf stat -e cpu-clock,task-clock -C 0 -x, sleep 3 3000.80,msec,cpu-clock,3000799026,100.00,1.000,CPUs utilized 3000.80,msec,task-clock,3000799550,100.00,1.000,CPUs utilized Add perf_evsel__is_clock to replace nsec_counter. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20180720110036.32251-2-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-07-20 13:00:34 +02:00
avg / (ratio * evsel->scale));
else
print_metric(config, ctxp, NULL, NULL, "CPUs utilized", 0);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_FETCH_BUBBLES)) {
double fe_bound = td_fe_bound(cpu, st, &rsd);
if (fe_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "frontend bound",
fe_bound * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_RETIRED)) {
double retiring = td_retiring(cpu, st, &rsd);
if (retiring > 0.7)
color = PERF_COLOR_GREEN;
print_metric(config, ctxp, color, "%8.1f%%", "retiring",
retiring * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_RECOVERY_BUBBLES)) {
double bad_spec = td_bad_spec(cpu, st, &rsd);
if (bad_spec > 0.1)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "bad speculation",
bad_spec * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_ISSUED)) {
double be_bound = td_be_bound(cpu, st, &rsd);
const char *name = "backend bound";
static int have_recovery_bubbles = -1;
/* In case the CPU does not support topdown-recovery-bubbles */
if (have_recovery_bubbles < 0)
have_recovery_bubbles = pmu_have_event("cpu",
"topdown-recovery-bubbles");
if (!have_recovery_bubbles)
name = "backend bound/bad spec";
if (be_bound > 0.2)
color = PERF_COLOR_RED;
if (td_total_slots(cpu, st, &rsd) > 0)
print_metric(config, ctxp, color, "%8.1f%%", name,
be_bound * 100.);
else
print_metric(config, ctxp, NULL, NULL, name, 0);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_RETIRING) &&
full_td(cpu, st, &rsd)) {
double retiring = td_metric_ratio(cpu,
STAT_TOPDOWN_RETIRING, st,
&rsd);
if (retiring > 0.7)
color = PERF_COLOR_GREEN;
print_metric(config, ctxp, color, "%8.1f%%", "retiring",
retiring * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_FE_BOUND) &&
full_td(cpu, st, &rsd)) {
double fe_bound = td_metric_ratio(cpu,
STAT_TOPDOWN_FE_BOUND, st,
&rsd);
if (fe_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "frontend bound",
fe_bound * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_BE_BOUND) &&
full_td(cpu, st, &rsd)) {
double be_bound = td_metric_ratio(cpu,
STAT_TOPDOWN_BE_BOUND, st,
&rsd);
if (be_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "backend bound",
be_bound * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_BAD_SPEC) &&
full_td(cpu, st, &rsd)) {
double bad_spec = td_metric_ratio(cpu,
STAT_TOPDOWN_BAD_SPEC, st,
&rsd);
if (bad_spec > 0.1)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "bad speculation",
bad_spec * 100.);
perf stat: Support L2 Topdown events The TMA method level 2 metrics is supported from the Intel Sapphire Rapids server, which expose four L2 Topdown metrics events to user space. There are eight L2 events in total. The other four L2 Topdown metrics events are calculated from the corresponding L1 and the exposed L2 events. Now, the --topdown prints the complete top-down metrics that supported by the CPU. For the Intel Sapphire Rapids server, there are 4 L1 events and 8 L2 events displyed in one line. Add a new option, --td-level, to display the top-down statistics that equal to or lower than the input level. The L2 event is marked only when both its L1 parent event and itself crosse the threshold. Here is an example: $ perf stat --topdown --td-level=2 --no-metric-only sleep 1 Topdown accuracy may decrease when measuring long periods. Please print the result regularly, e.g. -I1000 Performance counter stats for 'sleep 1': 16,734,390 slots 2,100,001 topdown-retiring # 12.6% retiring 2,034,376 topdown-bad-spec # 12.3% bad speculation 4,003,128 topdown-fe-bound # 24.1% frontend bound 328,125 topdown-heavy-ops # 2.0% heavy operations # 10.6% light operations 1,968,751 topdown-br-mispredict # 11.9% branch mispredict # 0.4% machine clears 2,953,127 topdown-fetch-lat # 17.8% fetch latency # 6.3% fetch bandwidth 5,906,255 topdown-mem-bound # 35.6% memory bound # 15.4% core bound Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jin Yao <yao.jin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lore.kernel.org/lkml/1612296553-21962-9-git-send-email-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-02-02 12:09:12 -08:00
} else if (perf_stat_evsel__is(evsel, TOPDOWN_HEAVY_OPS) &&
full_td(cpu, st, &rsd) && (config->topdown_level > 1)) {
double retiring = td_metric_ratio(cpu,
STAT_TOPDOWN_RETIRING, st,
&rsd);
double heavy_ops = td_metric_ratio(cpu,
STAT_TOPDOWN_HEAVY_OPS, st,
&rsd);
double light_ops = retiring - heavy_ops;
if (retiring > 0.7 && heavy_ops > 0.1)
color = PERF_COLOR_GREEN;
print_metric(config, ctxp, color, "%8.1f%%", "heavy operations",
heavy_ops * 100.);
if (retiring > 0.7 && light_ops > 0.6)
color = PERF_COLOR_GREEN;
else
color = NULL;
print_metric(config, ctxp, color, "%8.1f%%", "light operations",
light_ops * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_BR_MISPREDICT) &&
full_td(cpu, st, &rsd) && (config->topdown_level > 1)) {
double bad_spec = td_metric_ratio(cpu,
STAT_TOPDOWN_BAD_SPEC, st,
&rsd);
double br_mis = td_metric_ratio(cpu,
STAT_TOPDOWN_BR_MISPREDICT, st,
&rsd);
double m_clears = bad_spec - br_mis;
if (bad_spec > 0.1 && br_mis > 0.05)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "branch mispredict",
br_mis * 100.);
if (bad_spec > 0.1 && m_clears > 0.05)
color = PERF_COLOR_RED;
else
color = NULL;
print_metric(config, ctxp, color, "%8.1f%%", "machine clears",
m_clears * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_FETCH_LAT) &&
full_td(cpu, st, &rsd) && (config->topdown_level > 1)) {
double fe_bound = td_metric_ratio(cpu,
STAT_TOPDOWN_FE_BOUND, st,
&rsd);
double fetch_lat = td_metric_ratio(cpu,
STAT_TOPDOWN_FETCH_LAT, st,
&rsd);
double fetch_bw = fe_bound - fetch_lat;
if (fe_bound > 0.2 && fetch_lat > 0.15)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "fetch latency",
fetch_lat * 100.);
if (fe_bound > 0.2 && fetch_bw > 0.1)
color = PERF_COLOR_RED;
else
color = NULL;
print_metric(config, ctxp, color, "%8.1f%%", "fetch bandwidth",
fetch_bw * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_MEM_BOUND) &&
full_td(cpu, st, &rsd) && (config->topdown_level > 1)) {
double be_bound = td_metric_ratio(cpu,
STAT_TOPDOWN_BE_BOUND, st,
&rsd);
double mem_bound = td_metric_ratio(cpu,
STAT_TOPDOWN_MEM_BOUND, st,
&rsd);
double core_bound = be_bound - mem_bound;
if (be_bound > 0.2 && mem_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "memory bound",
mem_bound * 100.);
if (be_bound > 0.2 && core_bound > 0.1)
color = PERF_COLOR_RED;
else
color = NULL;
print_metric(config, ctxp, color, "%8.1f%%", "Core bound",
core_bound * 100.);
perf stat: Output JSON MetricExpr metric Add generic infrastructure to perf stat to output ratios for "MetricExpr" entries in the event lists. Many events are more useful as ratios than in raw form, typically some count in relation to total ticks. Transfer the MetricExpr information from the alias to the evsel. We mark the events that need to be collected for MetricExpr, and also link the events using them with a pointer. The code is careful to always prefer the right event in the same group to minimize multiplexing errors. At the moment only a single relation is supported. Then add a rblist to the stat shadow code that remembers stats based on the cpu and context. Then finally update and retrieve and print these values similarly to the existing hardcoded perf metrics. We use the simple expression parser added earlier to evaluate the expression. Normally we just output the result without further commentary, but for --metric-only this would lead to empty columns. So for this case use the original event as description. There is no attempt to automatically add the MetricExpr event, if it is missing, however we suggest it to the user, because the user tool doesn't have enough information to reliably construct a group that is guaranteed to schedule. So we leave that to the user. % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' 1.000147889 800,085,181 unc_p_clockticks 1.000147889 93,126,241 unc_p_freq_max_os_cycles # 11.6 2.000448381 800,218,217 unc_p_clockticks 2.000448381 142,516,095 unc_p_freq_max_os_cycles # 17.8 3.000639852 800,243,057 unc_p_clockticks 3.000639852 162,292,689 unc_p_freq_max_os_cycles # 20.3 % perf stat -a -I 1000 -e '{unc_p_clockticks,unc_p_freq_max_os_cycles}' --metric-only # time freq_max_os_cycles % 1.000127077 0.9 2.000301436 0.7 3.000456379 0.0 v2: Change from DivideBy to MetricExpr v3: Use expr__ prefix. Support more than one other event. v4: Update description v5: Only print warning message once for multiple PMUs. Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170320201711.14142-11-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-03-20 13:17:08 -07:00
} else if (evsel->metric_expr) {
generic_metric(config, evsel->metric_expr, evsel->metric_events, NULL,
evsel->name, evsel->metric_name, NULL, 1, cpu, out, st);
} else if (runtime_stat_n(st, STAT_NSECS, cpu, &rsd) != 0) {
perf stat: Improve readability of shadow stats This adds function convert_unit_double() and selects appropriate unit for shadow stats between K/M/G. $ sudo perf stat -a -- sleep 1 Before: Unit 'M' is selected even the number is very small. Performance counter stats for 'system wide': 4,003.06 msec cpu-clock # 3.998 CPUs utilized 16,179 context-switches # 0.004 M/sec 161 cpu-migrations # 0.040 K/sec 4,699 page-faults # 0.001 M/sec 6,135,801,925 cycles # 1.533 GHz (83.21%) 5,783,308,491 stalled-cycles-frontend # 94.26% frontend cycles idle (83.21%) 4,543,694,050 stalled-cycles-backend # 74.05% backend cycles idle (66.49%) 4,720,130,587 instructions # 0.77 insn per cycle # 1.23 stalled cycles per insn (83.28%) 753,848,078 branches # 188.318 M/sec (83.61%) 37,457,747 branch-misses # 4.97% of all branches (83.48%) 1.001283725 seconds time elapsed After: $ sudo perf stat -a -- sleep 2 Performance counter stats for 'system wide': 8,005.52 msec cpu-clock # 3.999 CPUs utilized 10,715 context-switches # 1.338 K/sec 785 cpu-migrations # 98.057 /sec 102 page-faults # 12.741 /sec 1,948,202,279 cycles # 0.243 GHz 2,816,470,932 stalled-cycles-frontend # 144.57% frontend cycles idle 2,661,172,207 stalled-cycles-backend # 136.60% backend cycles idle 464,172,105 instructions # 0.24 insn per cycle # 6.07 stalled cycles per insn 91,567,662 branches # 11.438 M/sec 7,756,054 branch-misses # 8.47% of all branches 2.002040043 seconds time elapsed v2: o do not change 'sec' to 'cpu-sec'. o use convert_unit_double to implement convert_unit. Signed-off-by: Changbin Du <changbin.du@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210315143047.3867-1-changbin.du@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-03-15 22:30:47 +08:00
char unit = ' ';
char unit_buf[10] = "/sec";
total = runtime_stat_avg(st, STAT_NSECS, cpu, &rsd);
if (total)
perf stat: Improve readability of shadow stats This adds function convert_unit_double() and selects appropriate unit for shadow stats between K/M/G. $ sudo perf stat -a -- sleep 1 Before: Unit 'M' is selected even the number is very small. Performance counter stats for 'system wide': 4,003.06 msec cpu-clock # 3.998 CPUs utilized 16,179 context-switches # 0.004 M/sec 161 cpu-migrations # 0.040 K/sec 4,699 page-faults # 0.001 M/sec 6,135,801,925 cycles # 1.533 GHz (83.21%) 5,783,308,491 stalled-cycles-frontend # 94.26% frontend cycles idle (83.21%) 4,543,694,050 stalled-cycles-backend # 74.05% backend cycles idle (66.49%) 4,720,130,587 instructions # 0.77 insn per cycle # 1.23 stalled cycles per insn (83.28%) 753,848,078 branches # 188.318 M/sec (83.61%) 37,457,747 branch-misses # 4.97% of all branches (83.48%) 1.001283725 seconds time elapsed After: $ sudo perf stat -a -- sleep 2 Performance counter stats for 'system wide': 8,005.52 msec cpu-clock # 3.999 CPUs utilized 10,715 context-switches # 1.338 K/sec 785 cpu-migrations # 98.057 /sec 102 page-faults # 12.741 /sec 1,948,202,279 cycles # 0.243 GHz 2,816,470,932 stalled-cycles-frontend # 144.57% frontend cycles idle 2,661,172,207 stalled-cycles-backend # 136.60% backend cycles idle 464,172,105 instructions # 0.24 insn per cycle # 6.07 stalled cycles per insn 91,567,662 branches # 11.438 M/sec 7,756,054 branch-misses # 8.47% of all branches 2.002040043 seconds time elapsed v2: o do not change 'sec' to 'cpu-sec'. o use convert_unit_double to implement convert_unit. Signed-off-by: Changbin Du <changbin.du@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210315143047.3867-1-changbin.du@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-03-15 22:30:47 +08:00
ratio = convert_unit_double(1000000000.0 * avg / total, &unit);
if (unit != ' ')
snprintf(unit_buf, sizeof(unit_buf), "%c/sec", unit);
print_metric(config, ctxp, NULL, "%8.3f", unit_buf, ratio);
} else if (perf_stat_evsel__is(evsel, SMI_NUM)) {
print_smi_cost(config, cpu, out, st, &rsd);
} else {
perf stat: Support JSON metrics in perf stat Add generic support for standalone metrics specified in JSON files to perf stat. A metric is a formula that uses multiple events to compute a higher level result (e.g. IPC). Previously metrics were always tied to an event and automatically enabled with that event. But now change it that we can have standalone metrics. They are in the same JSON data structure as events, but don't have an event name. We also allow to organize the metrics in metric groups, which allows a short cut to select several related metrics at once. Add a new -M / --metrics option to perf stat that adds the metrics or metric groups specified. Add the core code to manage and parse the metric groups. They are collected from the JSON data structures into a separate rblist. When computing shadow values look for metrics in that list. Then they are computed using the existing saved values infrastructure in stat-shadow.c The actual JSON metrics are in a separate pull request. % perf stat -M Summary --metric-only -a sleep 1 Performance counter stats for 'system wide': Instructions CLKS CPU_Utilization GFLOPs SMT_2T_Utilization Kernel_Utilization 317614222.0 1392930775.0 0.0 0.0 0.2 0.1 1.001497549 seconds time elapsed % perf stat -M GFLOPs flops Performance counter stats for 'flops': 3,999,541,471 fp_comp_ops_exe.sse_scalar_single # 1.2 GFLOPs (66.65%) 14 fp_comp_ops_exe.sse_scalar_double (66.65%) 0 fp_comp_ops_exe.sse_packed_double (66.67%) 0 fp_comp_ops_exe.sse_packed_single (66.70%) 0 simd_fp_256.packed_double (66.70%) 0 simd_fp_256.packed_single (66.67%) 0 duration_time 3.238372845 seconds time elapsed v2: Add missing header file v3: Move find_map to pmu.c Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170831194036.30146-7-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-08-31 12:40:31 -07:00
num = 0;
}
perf stat: Support JSON metrics in perf stat Add generic support for standalone metrics specified in JSON files to perf stat. A metric is a formula that uses multiple events to compute a higher level result (e.g. IPC). Previously metrics were always tied to an event and automatically enabled with that event. But now change it that we can have standalone metrics. They are in the same JSON data structure as events, but don't have an event name. We also allow to organize the metrics in metric groups, which allows a short cut to select several related metrics at once. Add a new -M / --metrics option to perf stat that adds the metrics or metric groups specified. Add the core code to manage and parse the metric groups. They are collected from the JSON data structures into a separate rblist. When computing shadow values look for metrics in that list. Then they are computed using the existing saved values infrastructure in stat-shadow.c The actual JSON metrics are in a separate pull request. % perf stat -M Summary --metric-only -a sleep 1 Performance counter stats for 'system wide': Instructions CLKS CPU_Utilization GFLOPs SMT_2T_Utilization Kernel_Utilization 317614222.0 1392930775.0 0.0 0.0 0.2 0.1 1.001497549 seconds time elapsed % perf stat -M GFLOPs flops Performance counter stats for 'flops': 3,999,541,471 fp_comp_ops_exe.sse_scalar_single # 1.2 GFLOPs (66.65%) 14 fp_comp_ops_exe.sse_scalar_double (66.65%) 0 fp_comp_ops_exe.sse_packed_double (66.67%) 0 fp_comp_ops_exe.sse_packed_single (66.70%) 0 simd_fp_256.packed_double (66.70%) 0 simd_fp_256.packed_single (66.67%) 0 duration_time 3.238372845 seconds time elapsed v2: Add missing header file v3: Move find_map to pmu.c Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170831194036.30146-7-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-08-31 12:40:31 -07:00
if ((me = metricgroup__lookup(metric_events, evsel, false)) != NULL) {
struct metric_expr *mexp;
list_for_each_entry (mexp, &me->head, nd) {
if (num++ > 0)
out->new_line(config, ctxp);
generic_metric(config, mexp->metric_expr, mexp->metric_events,
mexp->metric_refs, evsel->name, mexp->metric_name,
mexp->metric_unit, mexp->runtime, cpu, out, st);
perf stat: Support JSON metrics in perf stat Add generic support for standalone metrics specified in JSON files to perf stat. A metric is a formula that uses multiple events to compute a higher level result (e.g. IPC). Previously metrics were always tied to an event and automatically enabled with that event. But now change it that we can have standalone metrics. They are in the same JSON data structure as events, but don't have an event name. We also allow to organize the metrics in metric groups, which allows a short cut to select several related metrics at once. Add a new -M / --metrics option to perf stat that adds the metrics or metric groups specified. Add the core code to manage and parse the metric groups. They are collected from the JSON data structures into a separate rblist. When computing shadow values look for metrics in that list. Then they are computed using the existing saved values infrastructure in stat-shadow.c The actual JSON metrics are in a separate pull request. % perf stat -M Summary --metric-only -a sleep 1 Performance counter stats for 'system wide': Instructions CLKS CPU_Utilization GFLOPs SMT_2T_Utilization Kernel_Utilization 317614222.0 1392930775.0 0.0 0.0 0.2 0.1 1.001497549 seconds time elapsed % perf stat -M GFLOPs flops Performance counter stats for 'flops': 3,999,541,471 fp_comp_ops_exe.sse_scalar_single # 1.2 GFLOPs (66.65%) 14 fp_comp_ops_exe.sse_scalar_double (66.65%) 0 fp_comp_ops_exe.sse_packed_double (66.67%) 0 fp_comp_ops_exe.sse_packed_single (66.70%) 0 simd_fp_256.packed_double (66.70%) 0 simd_fp_256.packed_single (66.67%) 0 duration_time 3.238372845 seconds time elapsed v2: Add missing header file v3: Move find_map to pmu.c Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/20170831194036.30146-7-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-08-31 12:40:31 -07:00
}
}
if (num == 0)
print_metric(config, ctxp, NULL, NULL, NULL, 0);
}