linux/arch/powerpc/kvm/book3s_hv_uvmem.c

1215 lines
33 KiB
C
Raw Normal View History

KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* Secure pages management: Migration of pages between normal and secure
* memory of KVM guests.
*
* Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
*/
/*
* A pseries guest can be run as secure guest on Ultravisor-enabled
* POWER platforms. On such platforms, this driver will be used to manage
* the movement of guest pages between the normal memory managed by
* hypervisor (HV) and secure memory managed by Ultravisor (UV).
*
* The page-in or page-out requests from UV will come to HV as hcalls and
* HV will call back into UV via ultracalls to satisfy these page requests.
*
* Private ZONE_DEVICE memory equal to the amount of secure memory
* available in the platform for running secure guests is hotplugged.
* Whenever a page belonging to the guest becomes secure, a page from this
* private device memory is used to represent and track that secure page
* on the HV side. Some pages (like virtio buffers, VPA pages etc) are
* shared between UV and HV. However such pages aren't represented by
* device private memory and mappings to shared memory exist in both
* UV and HV page tables.
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
*/
/*
* Notes on locking
*
* kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
* page-in and page-out requests for the same GPA. Concurrent accesses
* can either come via UV (guest vCPUs requesting for same page)
* or when HV and guest simultaneously access the same page.
* This mutex serializes the migration of page from HV(normal) to
* UV(secure) and vice versa. So the serialization points are around
* migrate_vma routines and page-in/out routines.
*
* Per-guest mutex comes with a cost though. Mainly it serializes the
* fault path as page-out can occur when HV faults on accessing secure
* guest pages. Currently UV issues page-in requests for all the guest
* PFNs one at a time during early boot (UV_ESM uvcall), so this is
* not a cause for concern. Also currently the number of page-outs caused
* by HV touching secure pages is very very low. If an when UV supports
* overcommitting, then we might see concurrent guest driven page-outs.
*
* Locking order
*
* 1. kvm->srcu - Protects KVM memslots
* 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
* 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
* as sync-points for page-in/out
*/
/*
* Notes on page size
*
* Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
* and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
* secure GPAs at 64K page size and maintains one device PFN for each
* 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
* for 64K page at a time.
*
* HV faulting on secure pages: When HV touches any secure page, it
* faults and issues a UV_PAGE_OUT request with 64K page size. Currently
* UV splits and remaps the 2MB page if necessary and copies out the
* required 64K page contents.
*
* Shared pages: Whenever guest shares a secure page, UV will split and
* remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
*
* HV invalidating a page: When a regular page belonging to secure
* guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
* page size. Using 64K page size is correct here because any non-secure
* page will essentially be of 64K page size. Splitting by UV during sharing
* and page-out ensures this.
*
* Page fault handling: When HV handles page fault of a page belonging
* to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
* Using 64K size is correct here too as UV would have split the 2MB page
* into 64k mappings and would have done page-outs earlier.
*
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
* In summary, the current secure pages handling code in HV assumes
* 64K page size and in fact fails any page-in/page-out requests of
* non-64K size upfront. If and when UV starts supporting multiple
* page-sizes, we need to break this assumption.
*/
#include <linux/pagemap.h>
#include <linux/migrate.h>
#include <linux/kvm_host.h>
#include <linux/ksm.h>
#include <linux/of.h>
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
#include <asm/ultravisor.h>
#include <asm/mman.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s_uvmem.h>
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
static struct dev_pagemap kvmppc_uvmem_pgmap;
static unsigned long *kvmppc_uvmem_bitmap;
static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
/*
* States of a GFN
* ---------------
* The GFN can be in one of the following states.
*
* (a) Secure - The GFN is secure. The GFN is associated with
* a Secure VM, the contents of the GFN is not accessible
* to the Hypervisor. This GFN can be backed by a secure-PFN,
* or can be backed by a normal-PFN with contents encrypted.
* The former is true when the GFN is paged-in into the
* ultravisor. The latter is true when the GFN is paged-out
* of the ultravisor.
*
* (b) Shared - The GFN is shared. The GFN is associated with a
* a secure VM. The contents of the GFN is accessible to
* Hypervisor. This GFN is backed by a normal-PFN and its
* content is un-encrypted.
*
* (c) Normal - The GFN is a normal. The GFN is associated with
* a normal VM. The contents of the GFN is accesible to
* the Hypervisor. Its content is never encrypted.
*
* States of a VM.
* ---------------
*
* Normal VM: A VM whose contents are always accessible to
* the hypervisor. All its GFNs are normal-GFNs.
*
* Secure VM: A VM whose contents are not accessible to the
* hypervisor without the VM's consent. Its GFNs are
* either Shared-GFN or Secure-GFNs.
*
* Transient VM: A Normal VM that is transitioning to secure VM.
* The transition starts on successful return of
* H_SVM_INIT_START, and ends on successful return
* of H_SVM_INIT_DONE. This transient VM, can have GFNs
* in any of the three states; i.e Secure-GFN, Shared-GFN,
* and Normal-GFN. The VM never executes in this state
* in supervisor-mode.
*
* Memory slot State.
* -----------------------------
* The state of a memory slot mirrors the state of the
* VM the memory slot is associated with.
*
* VM State transition.
* --------------------
*
* A VM always starts in Normal Mode.
*
* H_SVM_INIT_START moves the VM into transient state. During this
* time the Ultravisor may request some of its GFNs to be shared or
* secured. So its GFNs can be in one of the three GFN states.
*
* H_SVM_INIT_DONE moves the VM entirely from transient state to
* secure-state. At this point any left-over normal-GFNs are
* transitioned to Secure-GFN.
*
* H_SVM_INIT_ABORT moves the transient VM back to normal VM.
* All its GFNs are moved to Normal-GFNs.
*
* UV_TERMINATE transitions the secure-VM back to normal-VM. All
* the secure-GFN and shared-GFNs are tranistioned to normal-GFN
* Note: The contents of the normal-GFN is undefined at this point.
*
* GFN state implementation:
* -------------------------
*
* Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
* when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
* set, and contains the value of the secure-PFN.
* It is associated with a normal-PFN; also called mem_pfn, when
* the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
* The value of the normal-PFN is not tracked.
*
* Shared GFN is associated with a normal-PFN. Its pfn[] has
* KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
* is not tracked.
*
* Normal GFN is associated with normal-PFN. Its pfn[] has
* no flag set. The value of the normal-PFN is not tracked.
*
* Life cycle of a GFN
* --------------------
*
* --------------------------------------------------------------
* | | Share | Unshare | SVM |H_SVM_INIT_DONE|
* | |operation |operation | abort/ | |
* | | | | terminate | |
* -------------------------------------------------------------
* | | | | | |
* | Secure | Shared | Secure |Normal |Secure |
* | | | | | |
* | Shared | Shared | Secure |Normal |Shared |
* | | | | | |
* | Normal | Shared | Secure |Normal |Secure |
* --------------------------------------------------------------
*
* Life cycle of a VM
* --------------------
*
* --------------------------------------------------------------------
* | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ |
* | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE |
* | | | | | | |
* --------- ----------------------------------------------------------
* | | | | | | |
* | Normal | Normal | Transient|Error |Error |Normal |
* | | | | | | |
* | Secure | Error | Error |Error |Error |Normal |
* | | | | | | |
* |Transient| N/A | Error |Secure |Normal |Normal |
* --------------------------------------------------------------------
*/
#define KVMPPC_GFN_UVMEM_PFN (1UL << 63)
#define KVMPPC_GFN_MEM_PFN (1UL << 62)
#define KVMPPC_GFN_SHARED (1UL << 61)
#define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
#define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
#define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK)
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
struct kvmppc_uvmem_slot {
struct list_head list;
unsigned long nr_pfns;
unsigned long base_pfn;
unsigned long *pfns;
};
struct kvmppc_uvmem_page_pvt {
struct kvm *kvm;
unsigned long gpa;
bool skip_page_out;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
bool remove_gfn;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
};
bool kvmppc_uvmem_available(void)
{
/*
* If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
* and our data structures have been initialized successfully.
*/
return !!kvmppc_uvmem_bitmap;
}
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
{
struct kvmppc_uvmem_slot *p;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return -ENOMEM;
p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
if (!p->pfns) {
kfree(p);
return -ENOMEM;
}
p->nr_pfns = slot->npages;
p->base_pfn = slot->base_gfn;
mutex_lock(&kvm->arch.uvmem_lock);
list_add(&p->list, &kvm->arch.uvmem_pfns);
mutex_unlock(&kvm->arch.uvmem_lock);
return 0;
}
/*
* All device PFNs are already released by the time we come here.
*/
void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
{
struct kvmppc_uvmem_slot *p, *next;
mutex_lock(&kvm->arch.uvmem_lock);
list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
if (p->base_pfn == slot->base_gfn) {
vfree(p->pfns);
list_del(&p->list);
kfree(p);
break;
}
}
mutex_unlock(&kvm->arch.uvmem_lock);
}
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
unsigned long flag, unsigned long uvmem_pfn)
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
{
struct kvmppc_uvmem_slot *p;
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
unsigned long index = gfn - p->base_pfn;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
if (flag == KVMPPC_GFN_UVMEM_PFN)
p->pfns[index] = uvmem_pfn | flag;
else
p->pfns[index] = flag;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
return;
}
}
}
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
/* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
unsigned long uvmem_pfn, struct kvm *kvm)
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
{
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
}
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
/* mark the GFN as secure-GFN associated with a memory-PFN. */
static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
{
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
}
/* mark the GFN as a shared GFN. */
static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
{
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
}
/* mark the GFN as a non-existent GFN. */
static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
{
kvmppc_mark_gfn(gfn, kvm, 0, 0);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
}
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
/* return true, if the GFN is a secure-GFN backed by a secure-PFN */
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
unsigned long *uvmem_pfn)
{
struct kvmppc_uvmem_slot *p;
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
unsigned long index = gfn - p->base_pfn;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
if (uvmem_pfn)
*uvmem_pfn = p->pfns[index] &
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
KVMPPC_GFN_PFN_MASK;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
return true;
} else
return false;
}
}
return false;
}
/*
* starting from *gfn search for the next available GFN that is not yet
* transitioned to a secure GFN. return the value of that GFN in *gfn. If a
* GFN is found, return true, else return false
*
* Must be called with kvm->arch.uvmem_lock held.
*/
static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
struct kvm *kvm, unsigned long *gfn)
{
struct kvmppc_uvmem_slot *p;
bool ret = false;
unsigned long i;
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list)
if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns)
break;
if (!p)
return ret;
/*
* The code below assumes, one to one correspondence between
* kvmppc_uvmem_slot and memslot.
*/
for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
unsigned long index = i - p->base_pfn;
if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
*gfn = i;
ret = true;
break;
}
}
return ret;
}
static int kvmppc_memslot_page_merge(struct kvm *kvm,
const struct kvm_memory_slot *memslot, bool merge)
{
unsigned long gfn = memslot->base_gfn;
unsigned long end, start = gfn_to_hva(kvm, gfn);
int ret = 0;
struct vm_area_struct *vma;
int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
if (kvm_is_error_hva(start))
return H_STATE;
end = start + (memslot->npages << PAGE_SHIFT);
mmap_write_lock(kvm->mm);
do {
vma = find_vma_intersection(kvm->mm, start, end);
if (!vma) {
ret = H_STATE;
break;
}
ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
merge_flag, &vma->vm_flags);
if (ret) {
ret = H_STATE;
break;
}
start = vma->vm_end;
} while (end > vma->vm_end);
mmap_write_unlock(kvm->mm);
return ret;
}
static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
kvmppc_uvmem_slot_free(kvm, memslot);
kvmppc_memslot_page_merge(kvm, memslot, true);
}
static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
int ret = H_PARAMETER;
if (kvmppc_memslot_page_merge(kvm, memslot, false))
return ret;
if (kvmppc_uvmem_slot_init(kvm, memslot))
goto out1;
ret = uv_register_mem_slot(kvm->arch.lpid,
memslot->base_gfn << PAGE_SHIFT,
memslot->npages * PAGE_SIZE,
0, memslot->id);
if (ret < 0) {
ret = H_PARAMETER;
goto out;
}
return 0;
out:
kvmppc_uvmem_slot_free(kvm, memslot);
out1:
kvmppc_memslot_page_merge(kvm, memslot, true);
return ret;
}
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot, *m;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
int ret = H_SUCCESS;
int srcu_idx;
kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
if (!kvmppc_uvmem_bitmap)
return H_UNSUPPORTED;
/* Only radix guests can be secure guests */
if (!kvm_is_radix(kvm))
return H_UNSUPPORTED;
/* NAK the transition to secure if not enabled */
if (!kvm->arch.svm_enabled)
return H_AUTHORITY;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
srcu_idx = srcu_read_lock(&kvm->srcu);
/* register the memslot */
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots) {
ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
if (ret)
break;
}
if (ret) {
slots = kvm_memslots(kvm);
kvm_for_each_memslot(m, slots) {
if (m == memslot)
break;
__kvmppc_uvmem_memslot_delete(kvm, memslot);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
}
}
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
/*
* Provision a new page on HV side and copy over the contents
* from secure memory using UV_PAGE_OUT uvcall.
* Caller must held kvm->arch.uvmem_lock.
*/
static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
unsigned long start,
unsigned long end, unsigned long page_shift,
struct kvm *kvm, unsigned long gpa)
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
{
unsigned long src_pfn, dst_pfn = 0;
struct migrate_vma mig;
struct page *dpage, *spage;
struct kvmppc_uvmem_page_pvt *pvt;
unsigned long pfn;
int ret = U_SUCCESS;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
memset(&mig, 0, sizeof(mig));
mig.vma = vma;
mig.start = start;
mig.end = end;
mig.src = &src_pfn;
mig.dst = &dst_pfn;
mig.pgmap_owner = &kvmppc_uvmem_pgmap;
mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
/* The requested page is already paged-out, nothing to do */
if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
return ret;
ret = migrate_vma_setup(&mig);
if (ret)
return -1;
spage = migrate_pfn_to_page(*mig.src);
if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
goto out_finalize;
if (!is_zone_device_page(spage))
goto out_finalize;
dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
if (!dpage) {
ret = -1;
goto out_finalize;
}
lock_page(dpage);
pvt = spage->zone_device_data;
pfn = page_to_pfn(dpage);
/*
* This function is used in two cases:
* - When HV touches a secure page, for which we do UV_PAGE_OUT
* - When a secure page is converted to shared page, we *get*
* the page to essentially unmap the device page. In this
* case we skip page-out.
*/
if (!pvt->skip_page_out)
ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
gpa, 0, page_shift);
if (ret == U_SUCCESS)
*mig.dst = migrate_pfn(pfn);
else {
unlock_page(dpage);
__free_page(dpage);
goto out_finalize;
}
migrate_vma_pages(&mig);
out_finalize:
migrate_vma_finalize(&mig);
return ret;
}
static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
unsigned long page_shift,
struct kvm *kvm, unsigned long gpa)
{
int ret;
mutex_lock(&kvm->arch.uvmem_lock);
ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa);
mutex_unlock(&kvm->arch.uvmem_lock);
return ret;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
}
/*
* Drop device pages that we maintain for the secure guest
*
* We first mark the pages to be skipped from UV_PAGE_OUT when there
* is HV side fault on these pages. Next we *get* these pages, forcing
* fault on them, do fault time migration to replace the device PTEs in
* QEMU page table with normal PTEs from newly allocated pages.
*/
KVM: PPC: Book3S HV: Rework secure mem slot dropping When a secure memslot is dropped, all the pages backed in the secure device (aka really backed by secure memory by the Ultravisor) should be paged out to a normal page. Previously, this was achieved by triggering the page fault mechanism which is calling kvmppc_svm_page_out() on each pages. This can't work when hot unplugging a memory slot because the memory slot is flagged as invalid and gfn_to_pfn() is then not trying to access the page, so the page fault mechanism is not triggered. Since the final goal is to make a call to kvmppc_svm_page_out() it seems simpler to call directly instead of triggering such a mechanism. This way kvmppc_uvmem_drop_pages() can be called even when hot unplugging a memslot. Since kvmppc_uvmem_drop_pages() is already holding kvm->arch.uvmem_lock, the call to __kvmppc_svm_page_out() is made. As __kvmppc_svm_page_out needs the vma pointer to migrate the pages, the VMA is fetched in a lazy way, to not trigger find_vma() all the time. In addition, the mmap_sem is held in read mode during that time, not in write mode since the virual memory layout is not impacted, and kvm->arch.uvmem_lock prevents concurrent operation on the secure device. Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> [modified check on the VMA in kvmppc_uvmem_drop_pages] Signed-off-by: Ram Pai <linuxram@us.ibm.com> [modified the changelog description] Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 22:24:29 +03:00
void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
struct kvm *kvm, bool skip_page_out)
{
int i;
struct kvmppc_uvmem_page_pvt *pvt;
KVM: PPC: Book3S HV: Rework secure mem slot dropping When a secure memslot is dropped, all the pages backed in the secure device (aka really backed by secure memory by the Ultravisor) should be paged out to a normal page. Previously, this was achieved by triggering the page fault mechanism which is calling kvmppc_svm_page_out() on each pages. This can't work when hot unplugging a memory slot because the memory slot is flagged as invalid and gfn_to_pfn() is then not trying to access the page, so the page fault mechanism is not triggered. Since the final goal is to make a call to kvmppc_svm_page_out() it seems simpler to call directly instead of triggering such a mechanism. This way kvmppc_uvmem_drop_pages() can be called even when hot unplugging a memslot. Since kvmppc_uvmem_drop_pages() is already holding kvm->arch.uvmem_lock, the call to __kvmppc_svm_page_out() is made. As __kvmppc_svm_page_out needs the vma pointer to migrate the pages, the VMA is fetched in a lazy way, to not trigger find_vma() all the time. In addition, the mmap_sem is held in read mode during that time, not in write mode since the virual memory layout is not impacted, and kvm->arch.uvmem_lock prevents concurrent operation on the secure device. Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> [modified check on the VMA in kvmppc_uvmem_drop_pages] Signed-off-by: Ram Pai <linuxram@us.ibm.com> [modified the changelog description] Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 22:24:29 +03:00
struct page *uvmem_page;
struct vm_area_struct *vma = NULL;
unsigned long uvmem_pfn, gfn;
unsigned long addr;
KVM: PPC: Book3S HV: Rework secure mem slot dropping When a secure memslot is dropped, all the pages backed in the secure device (aka really backed by secure memory by the Ultravisor) should be paged out to a normal page. Previously, this was achieved by triggering the page fault mechanism which is calling kvmppc_svm_page_out() on each pages. This can't work when hot unplugging a memory slot because the memory slot is flagged as invalid and gfn_to_pfn() is then not trying to access the page, so the page fault mechanism is not triggered. Since the final goal is to make a call to kvmppc_svm_page_out() it seems simpler to call directly instead of triggering such a mechanism. This way kvmppc_uvmem_drop_pages() can be called even when hot unplugging a memslot. Since kvmppc_uvmem_drop_pages() is already holding kvm->arch.uvmem_lock, the call to __kvmppc_svm_page_out() is made. As __kvmppc_svm_page_out needs the vma pointer to migrate the pages, the VMA is fetched in a lazy way, to not trigger find_vma() all the time. In addition, the mmap_sem is held in read mode during that time, not in write mode since the virual memory layout is not impacted, and kvm->arch.uvmem_lock prevents concurrent operation on the secure device. Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> [modified check on the VMA in kvmppc_uvmem_drop_pages] Signed-off-by: Ram Pai <linuxram@us.ibm.com> [modified the changelog description] Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 22:24:29 +03:00
mmap_read_lock(kvm->mm);
addr = slot->userspace_addr;
KVM: PPC: Book3S HV: Rework secure mem slot dropping When a secure memslot is dropped, all the pages backed in the secure device (aka really backed by secure memory by the Ultravisor) should be paged out to a normal page. Previously, this was achieved by triggering the page fault mechanism which is calling kvmppc_svm_page_out() on each pages. This can't work when hot unplugging a memory slot because the memory slot is flagged as invalid and gfn_to_pfn() is then not trying to access the page, so the page fault mechanism is not triggered. Since the final goal is to make a call to kvmppc_svm_page_out() it seems simpler to call directly instead of triggering such a mechanism. This way kvmppc_uvmem_drop_pages() can be called even when hot unplugging a memslot. Since kvmppc_uvmem_drop_pages() is already holding kvm->arch.uvmem_lock, the call to __kvmppc_svm_page_out() is made. As __kvmppc_svm_page_out needs the vma pointer to migrate the pages, the VMA is fetched in a lazy way, to not trigger find_vma() all the time. In addition, the mmap_sem is held in read mode during that time, not in write mode since the virual memory layout is not impacted, and kvm->arch.uvmem_lock prevents concurrent operation on the secure device. Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> [modified check on the VMA in kvmppc_uvmem_drop_pages] Signed-off-by: Ram Pai <linuxram@us.ibm.com> [modified the changelog description] Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 22:24:29 +03:00
gfn = slot->base_gfn;
for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
/* Fetch the VMA if addr is not in the latest fetched one */
if (!vma || addr >= vma->vm_end) {
vma = vma_lookup(kvm->mm, addr);
KVM: PPC: Book3S HV: Rework secure mem slot dropping When a secure memslot is dropped, all the pages backed in the secure device (aka really backed by secure memory by the Ultravisor) should be paged out to a normal page. Previously, this was achieved by triggering the page fault mechanism which is calling kvmppc_svm_page_out() on each pages. This can't work when hot unplugging a memory slot because the memory slot is flagged as invalid and gfn_to_pfn() is then not trying to access the page, so the page fault mechanism is not triggered. Since the final goal is to make a call to kvmppc_svm_page_out() it seems simpler to call directly instead of triggering such a mechanism. This way kvmppc_uvmem_drop_pages() can be called even when hot unplugging a memslot. Since kvmppc_uvmem_drop_pages() is already holding kvm->arch.uvmem_lock, the call to __kvmppc_svm_page_out() is made. As __kvmppc_svm_page_out needs the vma pointer to migrate the pages, the VMA is fetched in a lazy way, to not trigger find_vma() all the time. In addition, the mmap_sem is held in read mode during that time, not in write mode since the virual memory layout is not impacted, and kvm->arch.uvmem_lock prevents concurrent operation on the secure device. Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> [modified check on the VMA in kvmppc_uvmem_drop_pages] Signed-off-by: Ram Pai <linuxram@us.ibm.com> [modified the changelog description] Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 22:24:29 +03:00
if (!vma) {
pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
break;
}
}
mutex_lock(&kvm->arch.uvmem_lock);
KVM: PPC: Book3S HV: Rework secure mem slot dropping When a secure memslot is dropped, all the pages backed in the secure device (aka really backed by secure memory by the Ultravisor) should be paged out to a normal page. Previously, this was achieved by triggering the page fault mechanism which is calling kvmppc_svm_page_out() on each pages. This can't work when hot unplugging a memory slot because the memory slot is flagged as invalid and gfn_to_pfn() is then not trying to access the page, so the page fault mechanism is not triggered. Since the final goal is to make a call to kvmppc_svm_page_out() it seems simpler to call directly instead of triggering such a mechanism. This way kvmppc_uvmem_drop_pages() can be called even when hot unplugging a memslot. Since kvmppc_uvmem_drop_pages() is already holding kvm->arch.uvmem_lock, the call to __kvmppc_svm_page_out() is made. As __kvmppc_svm_page_out needs the vma pointer to migrate the pages, the VMA is fetched in a lazy way, to not trigger find_vma() all the time. In addition, the mmap_sem is held in read mode during that time, not in write mode since the virual memory layout is not impacted, and kvm->arch.uvmem_lock prevents concurrent operation on the secure device. Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> [modified check on the VMA in kvmppc_uvmem_drop_pages] Signed-off-by: Ram Pai <linuxram@us.ibm.com> [modified the changelog description] Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 22:24:29 +03:00
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
uvmem_page = pfn_to_page(uvmem_pfn);
pvt = uvmem_page->zone_device_data;
pvt->skip_page_out = skip_page_out;
pvt->remove_gfn = true;
if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
PAGE_SHIFT, kvm, pvt->gpa))
pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
pvt->gpa, addr);
} else {
/* Remove the shared flag if any */
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
kvmppc_gfn_remove(gfn, kvm);
}
mutex_unlock(&kvm->arch.uvmem_lock);
}
KVM: PPC: Book3S HV: Rework secure mem slot dropping When a secure memslot is dropped, all the pages backed in the secure device (aka really backed by secure memory by the Ultravisor) should be paged out to a normal page. Previously, this was achieved by triggering the page fault mechanism which is calling kvmppc_svm_page_out() on each pages. This can't work when hot unplugging a memory slot because the memory slot is flagged as invalid and gfn_to_pfn() is then not trying to access the page, so the page fault mechanism is not triggered. Since the final goal is to make a call to kvmppc_svm_page_out() it seems simpler to call directly instead of triggering such a mechanism. This way kvmppc_uvmem_drop_pages() can be called even when hot unplugging a memslot. Since kvmppc_uvmem_drop_pages() is already holding kvm->arch.uvmem_lock, the call to __kvmppc_svm_page_out() is made. As __kvmppc_svm_page_out needs the vma pointer to migrate the pages, the VMA is fetched in a lazy way, to not trigger find_vma() all the time. In addition, the mmap_sem is held in read mode during that time, not in write mode since the virual memory layout is not impacted, and kvm->arch.uvmem_lock prevents concurrent operation on the secure device. Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> [modified check on the VMA in kvmppc_uvmem_drop_pages] Signed-off-by: Ram Pai <linuxram@us.ibm.com> [modified the changelog description] Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 22:24:29 +03:00
mmap_read_unlock(kvm->mm);
}
unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
{
int srcu_idx;
struct kvm_memory_slot *memslot;
/*
* Expect to be called only after INIT_START and before INIT_DONE.
* If INIT_DONE was completed, use normal VM termination sequence.
*/
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
return H_UNSUPPORTED;
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
return H_STATE;
srcu_idx = srcu_read_lock(&kvm->srcu);
kvm_for_each_memslot(memslot, kvm_memslots(kvm))
kvmppc_uvmem_drop_pages(memslot, kvm, false);
srcu_read_unlock(&kvm->srcu, srcu_idx);
kvm->arch.secure_guest = 0;
uv_svm_terminate(kvm->arch.lpid);
return H_PARAMETER;
}
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
/*
* Get a free device PFN from the pool
*
* Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
* PFN will be used to keep track of the secure page on HV side.
*
* Called with kvm->arch.uvmem_lock held
*/
static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
{
struct page *dpage = NULL;
unsigned long bit, uvmem_pfn;
struct kvmppc_uvmem_page_pvt *pvt;
unsigned long pfn_last, pfn_first;
mm/memremap_pages: convert to 'struct range' The 'struct resource' in 'struct dev_pagemap' is only used for holding resource span information. The other fields, 'name', 'flags', 'desc', 'parent', 'sibling', and 'child' are all unused wasted space. This is in preparation for introducing a multi-range extension of devm_memremap_pages(). The bulk of this change is unwinding all the places internal to libnvdimm that used 'struct resource' unnecessarily, and replacing instances of 'struct dev_pagemap'.res with 'struct dev_pagemap'.range. P2PDMA had a minor usage of the resource flags field, but only to report failures with "%pR". That is replaced with an open coded print of the range. [dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()] Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen] Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: kernel test robot <lkp@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 02:50:29 +03:00
pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
pfn_last = pfn_first +
mm/memremap_pages: convert to 'struct range' The 'struct resource' in 'struct dev_pagemap' is only used for holding resource span information. The other fields, 'name', 'flags', 'desc', 'parent', 'sibling', and 'child' are all unused wasted space. This is in preparation for introducing a multi-range extension of devm_memremap_pages(). The bulk of this change is unwinding all the places internal to libnvdimm that used 'struct resource' unnecessarily, and replacing instances of 'struct dev_pagemap'.res with 'struct dev_pagemap'.range. P2PDMA had a minor usage of the resource flags field, but only to report failures with "%pR". That is replaced with an open coded print of the range. [dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()] Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen] Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: kernel test robot <lkp@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 02:50:29 +03:00
(range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
spin_lock(&kvmppc_uvmem_bitmap_lock);
bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
pfn_last - pfn_first);
if (bit >= (pfn_last - pfn_first))
goto out;
bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
spin_unlock(&kvmppc_uvmem_bitmap_lock);
pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
if (!pvt)
goto out_clear;
uvmem_pfn = bit + pfn_first;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
pvt->gpa = gpa;
pvt->kvm = kvm;
dpage = pfn_to_page(uvmem_pfn);
dpage->zone_device_data = pvt;
get_page(dpage);
lock_page(dpage);
return dpage;
out_clear:
spin_lock(&kvmppc_uvmem_bitmap_lock);
bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
out:
spin_unlock(&kvmppc_uvmem_bitmap_lock);
return NULL;
}
/*
* Alloc a PFN from private device memory pool. If @pagein is true,
* copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
*/
static int kvmppc_svm_page_in(struct vm_area_struct *vma,
unsigned long start,
unsigned long end, unsigned long gpa, struct kvm *kvm,
unsigned long page_shift,
bool pagein)
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
{
unsigned long src_pfn, dst_pfn = 0;
struct migrate_vma mig;
struct page *spage;
unsigned long pfn;
struct page *dpage;
int ret = 0;
memset(&mig, 0, sizeof(mig));
mig.vma = vma;
mig.start = start;
mig.end = end;
mig.src = &src_pfn;
mig.dst = &dst_pfn;
mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
ret = migrate_vma_setup(&mig);
if (ret)
return ret;
if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
ret = -1;
goto out_finalize;
}
dpage = kvmppc_uvmem_get_page(gpa, kvm);
if (!dpage) {
ret = -1;
goto out_finalize;
}
if (pagein) {
pfn = *mig.src >> MIGRATE_PFN_SHIFT;
spage = migrate_pfn_to_page(*mig.src);
if (spage) {
ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
gpa, 0, page_shift);
if (ret)
goto out_finalize;
}
}
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
*mig.dst = migrate_pfn(page_to_pfn(dpage));
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
migrate_vma_pages(&mig);
out_finalize:
migrate_vma_finalize(&mig);
return ret;
}
static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
unsigned long gfn = memslot->base_gfn;
struct vm_area_struct *vma;
unsigned long start, end;
int ret = 0;
mmap_read_lock(kvm->mm);
mutex_lock(&kvm->arch.uvmem_lock);
while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
ret = H_STATE;
start = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(start))
break;
end = start + (1UL << PAGE_SHIFT);
vma = find_vma_intersection(kvm->mm, start, end);
if (!vma || vma->vm_start > start || vma->vm_end < end)
break;
ret = kvmppc_svm_page_in(vma, start, end,
(gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
if (ret) {
ret = H_STATE;
break;
}
/* relinquish the cpu if needed */
cond_resched();
}
mutex_unlock(&kvm->arch.uvmem_lock);
mmap_read_unlock(kvm->mm);
return ret;
}
unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int srcu_idx;
long ret = H_SUCCESS;
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
return H_UNSUPPORTED;
/* migrate any unmoved normal pfn to device pfns*/
srcu_idx = srcu_read_lock(&kvm->srcu);
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots) {
ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
if (ret) {
/*
* The pages will remain transitioned.
* Its the callers responsibility to
* terminate the VM, which will undo
* all state of the VM. Till then
* this VM is in a erroneous state.
* Its KVMPPC_SECURE_INIT_DONE will
* remain unset.
*/
ret = H_STATE;
goto out;
}
}
kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
pr_info("LPID %d went secure\n", kvm->arch.lpid);
out:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
/*
* Shares the page with HV, thus making it a normal page.
*
* - If the page is already secure, then provision a new page and share
* - If the page is a normal page, share the existing page
*
* In the former case, uses dev_pagemap_ops.migrate_to_ram handler
* to unmap the device page from QEMU's page tables.
*/
static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
unsigned long page_shift)
{
int ret = H_PARAMETER;
struct page *uvmem_page;
struct kvmppc_uvmem_page_pvt *pvt;
unsigned long pfn;
unsigned long gfn = gpa >> page_shift;
int srcu_idx;
unsigned long uvmem_pfn;
srcu_idx = srcu_read_lock(&kvm->srcu);
mutex_lock(&kvm->arch.uvmem_lock);
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
uvmem_page = pfn_to_page(uvmem_pfn);
pvt = uvmem_page->zone_device_data;
pvt->skip_page_out = true;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
/*
* do not drop the GFN. It is a valid GFN
* that is transitioned to a shared GFN.
*/
pvt->remove_gfn = false;
}
retry:
mutex_unlock(&kvm->arch.uvmem_lock);
pfn = gfn_to_pfn(kvm, gfn);
if (is_error_noslot_pfn(pfn))
goto out;
mutex_lock(&kvm->arch.uvmem_lock);
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
uvmem_page = pfn_to_page(uvmem_pfn);
pvt = uvmem_page->zone_device_data;
pvt->skip_page_out = true;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
pvt->remove_gfn = false; /* it continues to be a valid GFN */
kvm_release_pfn_clean(pfn);
goto retry;
}
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
page_shift)) {
kvmppc_gfn_shared(gfn, kvm);
ret = H_SUCCESS;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
}
kvm_release_pfn_clean(pfn);
mutex_unlock(&kvm->arch.uvmem_lock);
out:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
/*
* H_SVM_PAGE_IN: Move page from normal memory to secure memory.
*
* H_PAGE_IN_SHARED flag makes the page shared which means that the same
* memory in is visible from both UV and HV.
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
*/
unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
unsigned long flags,
unsigned long page_shift)
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
{
unsigned long start, end;
struct vm_area_struct *vma;
int srcu_idx;
unsigned long gfn = gpa >> page_shift;
int ret;
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
return H_UNSUPPORTED;
if (page_shift != PAGE_SHIFT)
return H_P3;
if (flags & ~H_PAGE_IN_SHARED)
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
return H_P2;
if (flags & H_PAGE_IN_SHARED)
return kvmppc_share_page(kvm, gpa, page_shift);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
ret = H_PARAMETER;
srcu_idx = srcu_read_lock(&kvm->srcu);
mmap_read_lock(kvm->mm);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
start = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(start))
goto out;
mutex_lock(&kvm->arch.uvmem_lock);
/* Fail the page-in request of an already paged-in page */
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
goto out_unlock;
end = start + (1UL << page_shift);
vma = find_vma_intersection(kvm->mm, start, end);
if (!vma || vma->vm_start > start || vma->vm_end < end)
goto out_unlock;
if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
true))
goto out_unlock;
ret = H_SUCCESS;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
out_unlock:
mutex_unlock(&kvm->arch.uvmem_lock);
out:
mmap_read_unlock(kvm->mm);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
/*
* Fault handler callback that gets called when HV touches any page that
* has been moved to secure memory, we ask UV to give back the page by
* issuing UV_PAGE_OUT uvcall.
*
* This eventually results in dropping of device PFN and the newly
* provisioned page/PFN gets populated in QEMU page tables.
*/
static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
{
struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
if (kvmppc_svm_page_out(vmf->vma, vmf->address,
vmf->address + PAGE_SIZE, PAGE_SHIFT,
pvt->kvm, pvt->gpa))
return VM_FAULT_SIGBUS;
else
return 0;
}
/*
* Release the device PFN back to the pool
*
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
* Gets called when secure GFN tranistions from a secure-PFN
* to a normal PFN during H_SVM_PAGE_OUT.
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
* Gets called with kvm->arch.uvmem_lock held.
*/
static void kvmppc_uvmem_page_free(struct page *page)
{
unsigned long pfn = page_to_pfn(page) -
mm/memremap_pages: convert to 'struct range' The 'struct resource' in 'struct dev_pagemap' is only used for holding resource span information. The other fields, 'name', 'flags', 'desc', 'parent', 'sibling', and 'child' are all unused wasted space. This is in preparation for introducing a multi-range extension of devm_memremap_pages(). The bulk of this change is unwinding all the places internal to libnvdimm that used 'struct resource' unnecessarily, and replacing instances of 'struct dev_pagemap'.res with 'struct dev_pagemap'.range. P2PDMA had a minor usage of the resource flags field, but only to report failures with "%pR". That is replaced with an open coded print of the range. [dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()] Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen] Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: kernel test robot <lkp@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 02:50:29 +03:00
(kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
struct kvmppc_uvmem_page_pvt *pvt;
spin_lock(&kvmppc_uvmem_bitmap_lock);
bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
spin_unlock(&kvmppc_uvmem_bitmap_lock);
pvt = page->zone_device_data;
page->zone_device_data = NULL;
KVM: PPC: Book3S HV: Track the state GFNs associated with secure VMs During the life of SVM, its GFNs transition through normal, secure and shared states. Since the kernel does not track GFNs that are shared, it is not possible to disambiguate a shared GFN from a GFN whose PFN has not yet been migrated to a secure-PFN. Also it is not possible to disambiguate a secure-GFN from a GFN whose GFN has been pagedout from the ultravisor. The ability to identify the state of a GFN is needed to skip migration of its PFN to secure-PFN during ESM transition. The code is re-organized to track the states of a GFN as explained below. ************************************************************************ 1. States of a GFN --------------- The GFN can be in one of the following states. (a) Secure - The GFN is secure. The GFN is associated with a Secure VM, the contents of the GFN is not accessible to the Hypervisor. This GFN can be backed by a secure-PFN, or can be backed by a normal-PFN with contents encrypted. The former is true when the GFN is paged-in into the ultravisor. The latter is true when the GFN is paged-out of the ultravisor. (b) Shared - The GFN is shared. The GFN is associated with a a secure VM. The contents of the GFN is accessible to Hypervisor. This GFN is backed by a normal-PFN and its content is un-encrypted. (c) Normal - The GFN is a normal. The GFN is associated with a normal VM. The contents of the GFN is accesible to the Hypervisor. Its content is never encrypted. 2. States of a VM. --------------- (a) Normal VM: A VM whose contents are always accessible to the hypervisor. All its GFNs are normal-GFNs. (b) Secure VM: A VM whose contents are not accessible to the hypervisor without the VM's consent. Its GFNs are either Shared-GFN or Secure-GFNs. (c) Transient VM: A Normal VM that is transitioning to secure VM. The transition starts on successful return of H_SVM_INIT_START, and ends on successful return of H_SVM_INIT_DONE. This transient VM, can have GFNs in any of the three states; i.e Secure-GFN, Shared-GFN, and Normal-GFN. The VM never executes in this state in supervisor-mode. 3. Memory slot State. ------------------ The state of a memory slot mirrors the state of the VM the memory slot is associated with. 4. VM State transition. -------------------- A VM always starts in Normal Mode. H_SVM_INIT_START moves the VM into transient state. During this time the Ultravisor may request some of its GFNs to be shared or secured. So its GFNs can be in one of the three GFN states. H_SVM_INIT_DONE moves the VM entirely from transient state to secure-state. At this point any left-over normal-GFNs are transitioned to Secure-GFN. H_SVM_INIT_ABORT moves the transient VM back to normal VM. All its GFNs are moved to Normal-GFNs. UV_TERMINATE transitions the secure-VM back to normal-VM. All the secure-GFN and shared-GFNs are tranistioned to normal-GFN Note: The contents of the normal-GFN is undefined at this point. 5. GFN state implementation: ------------------------- Secure GFN is associated with a secure-PFN; also called uvmem_pfn, when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag set, and contains the value of the secure-PFN. It is associated with a normal-PFN; also called mem_pfn, when the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set. The value of the normal-PFN is not tracked. Shared GFN is associated with a normal-PFN. Its pfn[] has KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN is not tracked. Normal GFN is associated with normal-PFN. Its pfn[] has no flag set. The value of the normal-PFN is not tracked. 6. Life cycle of a GFN -------------------- -------------------------------------------------------------- | | Share | Unshare | SVM |H_SVM_INIT_DONE| | |operation |operation | abort/ | | | | | | terminate | | ------------------------------------------------------------- | | | | | | | Secure | Shared | Secure |Normal |Secure | | | | | | | | Shared | Shared | Secure |Normal |Shared | | | | | | | | Normal | Shared | Secure |Normal |Secure | -------------------------------------------------------------- 7. Life cycle of a VM -------------------- -------------------------------------------------------------------- | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ | | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE | | | | | | | | --------- ---------------------------------------------------------- | | | | | | | | Normal | Normal | Transient|Error |Error |Normal | | | | | | | | | Secure | Error | Error |Error |Error |Normal | | | | | | | | |Transient| N/A | Error |Secure |Normal |Normal | -------------------------------------------------------------------- ************************************************************************ Reviewed-by: Bharata B Rao <bharata@linux.ibm.com> Reviewed-by: Thiago Jung Bauermann <bauerman@linux.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-07-27 21:07:16 +03:00
if (pvt->remove_gfn)
kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
else
kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
kfree(pvt);
}
static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
.page_free = kvmppc_uvmem_page_free,
.migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
};
/*
* H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
*/
unsigned long
kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
unsigned long flags, unsigned long page_shift)
{
unsigned long gfn = gpa >> page_shift;
unsigned long start, end;
struct vm_area_struct *vma;
int srcu_idx;
int ret;
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
return H_UNSUPPORTED;
if (page_shift != PAGE_SHIFT)
return H_P3;
if (flags)
return H_P2;
ret = H_PARAMETER;
srcu_idx = srcu_read_lock(&kvm->srcu);
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 07:33:25 +03:00
mmap_read_lock(kvm->mm);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
start = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(start))
goto out;
end = start + (1UL << page_shift);
vma = find_vma_intersection(kvm->mm, start, end);
if (!vma || vma->vm_start > start || vma->vm_end < end)
goto out;
if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
ret = H_SUCCESS;
out:
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 07:33:25 +03:00
mmap_read_unlock(kvm->mm);
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
srcu_read_unlock(&kvm->srcu, srcu_idx);
return ret;
}
int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
{
unsigned long pfn;
int ret = U_SUCCESS;
pfn = gfn_to_pfn(kvm, gfn);
if (is_error_noslot_pfn(pfn))
return -EFAULT;
mutex_lock(&kvm->arch.uvmem_lock);
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
goto out;
ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
0, PAGE_SHIFT);
out:
kvm_release_pfn_clean(pfn);
mutex_unlock(&kvm->arch.uvmem_lock);
return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
}
int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
{
int ret = __kvmppc_uvmem_memslot_create(kvm, new);
if (!ret)
ret = kvmppc_uv_migrate_mem_slot(kvm, new);
return ret;
}
void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
{
__kvmppc_uvmem_memslot_delete(kvm, old);
}
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
static u64 kvmppc_get_secmem_size(void)
{
struct device_node *np;
int i, len;
const __be32 *prop;
u64 size = 0;
/*
* First try the new ibm,secure-memory nodes which supersede the
* secure-memory-ranges property.
* If we found some, no need to read the deprecated ones.
*/
for_each_compatible_node(np, NULL, "ibm,secure-memory") {
prop = of_get_property(np, "reg", &len);
if (!prop)
continue;
size += of_read_number(prop + 2, 2);
}
if (size)
return size;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
if (!np)
goto out;
prop = of_get_property(np, "secure-memory-ranges", &len);
if (!prop)
goto out_put;
for (i = 0; i < len / (sizeof(*prop) * 4); i++)
size += of_read_number(prop + (i * 4) + 2, 2);
out_put:
of_node_put(np);
out:
return size;
}
int kvmppc_uvmem_init(void)
{
int ret = 0;
unsigned long size;
struct resource *res;
void *addr;
unsigned long pfn_last, pfn_first;
size = kvmppc_get_secmem_size();
if (!size) {
/*
* Don't fail the initialization of kvm-hv module if
* the platform doesn't export ibm,uv-firmware node.
* Let normal guests run on such PEF-disabled platform.
*/
pr_info("KVMPPC-UVMEM: No support for secure guests\n");
goto out;
}
res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
if (IS_ERR(res)) {
ret = PTR_ERR(res);
goto out;
}
kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
mm/memremap_pages: convert to 'struct range' The 'struct resource' in 'struct dev_pagemap' is only used for holding resource span information. The other fields, 'name', 'flags', 'desc', 'parent', 'sibling', and 'child' are all unused wasted space. This is in preparation for introducing a multi-range extension of devm_memremap_pages(). The bulk of this change is unwinding all the places internal to libnvdimm that used 'struct resource' unnecessarily, and replacing instances of 'struct dev_pagemap'.res with 'struct dev_pagemap'.range. P2PDMA had a minor usage of the resource flags field, but only to report failures with "%pR". That is replaced with an open coded print of the range. [dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()] Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen] Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: kernel test robot <lkp@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 02:50:29 +03:00
kvmppc_uvmem_pgmap.range.start = res->start;
kvmppc_uvmem_pgmap.range.end = res->end;
mm/memremap_pages: support multiple ranges per invocation In support of device-dax growing the ability to front physically dis-contiguous ranges of memory, update devm_memremap_pages() to track multiple ranges with a single reference counter and devm instance. Convert all [devm_]memremap_pages() users to specify the number of ranges they are mapping in their 'struct dev_pagemap' instance. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Jérôme Glisse" <jglisse@redhat.co Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: kernel test robot <lkp@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Link: https://lkml.kernel.org/r/159643103789.4062302.18426128170217903785.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lkml.kernel.org/r/160106116293.30709.13350662794915396198.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 02:50:34 +03:00
kvmppc_uvmem_pgmap.nr_range = 1;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
/* just one global instance: */
kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
if (IS_ERR(addr)) {
ret = PTR_ERR(addr);
goto out_free_region;
}
pfn_first = res->start >> PAGE_SHIFT;
pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
sizeof(unsigned long), GFP_KERNEL);
if (!kvmppc_uvmem_bitmap) {
ret = -ENOMEM;
goto out_unmap;
}
pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
return ret;
out_unmap:
memunmap_pages(&kvmppc_uvmem_pgmap);
out_free_region:
release_mem_region(res->start, size);
out:
return ret;
}
void kvmppc_uvmem_free(void)
{
KVM: PPC: Book3S HV: Skip kvmppc_uvmem_free if Ultravisor is not supported kvmppc_uvmem_init checks for Ultravisor support and returns early if it is not present. Calling kvmppc_uvmem_free at module exit will cause an Oops: $ modprobe -r kvm-hv Oops: Kernel access of bad area, sig: 11 [#1] <snip> NIP: c000000000789e90 LR: c000000000789e8c CTR: c000000000401030 REGS: c000003fa7bab9a0 TRAP: 0300 Not tainted (5.6.0-rc6-00033-g6c90b86a745a-dirty) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 24002282 XER: 00000000 CFAR: c000000000dae880 DAR: 0000000000000008 DSISR: 40000000 IRQMASK: 1 GPR00: c000000000789e8c c000003fa7babc30 c0000000016fe500 0000000000000000 GPR04: 0000000000000000 0000000000000006 0000000000000000 c000003faf205c00 GPR08: 0000000000000000 0000000000000001 000000008000002d c00800000ddde140 GPR12: c000000000401030 c000003ffffd9080 0000000000000001 0000000000000000 GPR16: 0000000000000000 0000000000000000 000000013aad0074 000000013aaac978 GPR20: 000000013aad0070 0000000000000000 00007fffd1b37158 0000000000000000 GPR24: 000000014fef0d58 0000000000000000 000000014fef0cf0 0000000000000001 GPR28: 0000000000000000 0000000000000000 c0000000018b2a60 0000000000000000 NIP [c000000000789e90] percpu_ref_kill_and_confirm+0x40/0x170 LR [c000000000789e8c] percpu_ref_kill_and_confirm+0x3c/0x170 Call Trace: [c000003fa7babc30] [c000003faf2064d4] 0xc000003faf2064d4 (unreliable) [c000003fa7babcb0] [c000000000400e8c] dev_pagemap_kill+0x6c/0x80 [c000003fa7babcd0] [c000000000401064] memunmap_pages+0x34/0x2f0 [c000003fa7babd50] [c00800000dddd548] kvmppc_uvmem_free+0x30/0x80 [kvm_hv] [c000003fa7babd80] [c00800000ddcef18] kvmppc_book3s_exit_hv+0x20/0x78 [kvm_hv] [c000003fa7babda0] [c0000000002084d0] sys_delete_module+0x1d0/0x2c0 [c000003fa7babe20] [c00000000000b9d0] system_call+0x5c/0x68 Instruction dump: 3fc2001b fb81ffe0 fba1ffe8 fbe1fff8 7c7f1b78 7c9c2378 3bde4560 7fc3f378 f8010010 f821ff81 486249a1 60000000 <e93f0008> 7c7d1b78 712a0002 40820084 ---[ end trace 5774ef4dc2c98279 ]--- So this patch checks if kvmppc_uvmem_init actually allocated anything before running kvmppc_uvmem_free. Fixes: ca9f4942670c ("KVM: PPC: Book3S HV: Support for running secure guests") Cc: stable@vger.kernel.org # v5.5+ Reported-by: Greg Kurz <groug@kaod.org> Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com> Tested-by: Greg Kurz <groug@kaod.org> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-03-20 01:55:10 +03:00
if (!kvmppc_uvmem_bitmap)
return;
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
memunmap_pages(&kvmppc_uvmem_pgmap);
mm/memremap_pages: convert to 'struct range' The 'struct resource' in 'struct dev_pagemap' is only used for holding resource span information. The other fields, 'name', 'flags', 'desc', 'parent', 'sibling', and 'child' are all unused wasted space. This is in preparation for introducing a multi-range extension of devm_memremap_pages(). The bulk of this change is unwinding all the places internal to libnvdimm that used 'struct resource' unnecessarily, and replacing instances of 'struct dev_pagemap'.res with 'struct dev_pagemap'.range. P2PDMA had a minor usage of the resource flags field, but only to report failures with "%pR". That is replaced with an open coded print of the range. [dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()] Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen] Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: kernel test robot <lkp@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 02:50:29 +03:00
release_mem_region(kvmppc_uvmem_pgmap.range.start,
range_len(&kvmppc_uvmem_pgmap.range));
KVM: PPC: Book3S HV: Support for running secure guests A pseries guest can be run as secure guest on Ultravisor-enabled POWER platforms. On such platforms, this driver will be used to manage the movement of guest pages between the normal memory managed by hypervisor (HV) and secure memory managed by Ultravisor (UV). HV is informed about the guest's transition to secure mode via hcalls: H_SVM_INIT_START: Initiate securing a VM H_SVM_INIT_DONE: Conclude securing a VM As part of H_SVM_INIT_START, register all existing memslots with the UV. H_SVM_INIT_DONE call by UV informs HV that transition of the guest to secure mode is complete. These two states (transition to secure mode STARTED and transition to secure mode COMPLETED) are recorded in kvm->arch.secure_guest. Setting these states will cause the assembly code that enters the guest to call the UV_RETURN ucall instead of trying to enter the guest directly. Migration of pages betwen normal and secure memory of secure guest is implemented in H_SVM_PAGE_IN and H_SVM_PAGE_OUT hcalls. H_SVM_PAGE_IN: Move the content of a normal page to secure page H_SVM_PAGE_OUT: Move the content of a secure page to normal page Private ZONE_DEVICE memory equal to the amount of secure memory available in the platform for running secure guests is created. Whenever a page belonging to the guest becomes secure, a page from this private device memory is used to represent and track that secure page on the HV side. The movement of pages between normal and secure memory is done via migrate_vma_pages() using UV_PAGE_IN and UV_PAGE_OUT ucalls. In order to prevent the device private pages (that correspond to pages of secure guest) from participating in KSM merging, H_SVM_PAGE_IN calls ksm_madvise() under read version of mmap_sem. However ksm_madvise() needs to be under write lock. Hence we call kvmppc_svm_page_in with mmap_sem held for writing, and it then downgrades to a read lock after calling ksm_madvise. [paulus@ozlabs.org - roll in patch "KVM: PPC: Book3S HV: Take write mmap_sem when calling ksm_madvise"] Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-11-25 06:06:26 +03:00
kfree(kvmppc_uvmem_bitmap);
}