2006-12-28 20:22:32 +03:00
# include <linux/types.h>
# include <linux/interrupt.h>
# include <linux/time.h>
2007-11-01 13:36:42 +03:00
# include <linux/clockchips.h>
2006-12-28 20:22:32 +03:00
2007-10-12 02:46:10 +04:00
# include <asm/i8253.h>
2006-12-28 20:22:32 +03:00
# include <asm/sni.h>
# include <asm/time.h>
2007-10-12 02:46:08 +04:00
# include <asm-generic/rtc.h>
2006-12-28 20:22:32 +03:00
# define SNI_CLOCK_TICK_RATE 3686400
# define SNI_COUNTER2_DIV 64
# define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
2007-10-26 17:36:10 +04:00
static void a20r_set_mode ( enum clock_event_mode mode ,
struct clock_event_device * evt )
2006-12-28 20:22:32 +03:00
{
2007-10-26 17:36:10 +04:00
switch ( mode ) {
case CLOCK_EVT_MODE_PERIODIC :
* ( volatile u8 * ) ( A20R_PT_CLOCK_BASE + 12 ) = 0x34 ;
wmb ( ) ;
* ( volatile u8 * ) ( A20R_PT_CLOCK_BASE + 0 ) = SNI_COUNTER0_DIV ;
wmb ( ) ;
* ( volatile u8 * ) ( A20R_PT_CLOCK_BASE + 0 ) = SNI_COUNTER0_DIV > > 8 ;
wmb ( ) ;
* ( volatile u8 * ) ( A20R_PT_CLOCK_BASE + 12 ) = 0xb4 ;
wmb ( ) ;
* ( volatile u8 * ) ( A20R_PT_CLOCK_BASE + 8 ) = SNI_COUNTER2_DIV ;
wmb ( ) ;
* ( volatile u8 * ) ( A20R_PT_CLOCK_BASE + 8 ) = SNI_COUNTER2_DIV > > 8 ;
wmb ( ) ;
break ;
case CLOCK_EVT_MODE_ONESHOT :
case CLOCK_EVT_MODE_UNUSED :
case CLOCK_EVT_MODE_SHUTDOWN :
break ;
case CLOCK_EVT_MODE_RESUME :
break ;
}
2006-12-28 20:22:32 +03:00
}
2007-10-26 17:36:10 +04:00
static struct clock_event_device a20r_clockevent_device = {
. name = " a20r-timer " ,
. features = CLOCK_EVT_FEAT_PERIODIC ,
/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
. rating = 300 ,
. irq = SNI_A20R_IRQ_TIMER ,
. set_mode = a20r_set_mode ,
} ;
static irqreturn_t a20r_interrupt ( int irq , void * dev_id )
{
struct clock_event_device * cd = dev_id ;
* ( volatile u8 * ) A20R_PT_TIM0_ACK = 0 ;
wmb ( ) ;
cd - > event_handler ( cd ) ;
return IRQ_HANDLED ;
}
static struct irqaction a20r_irqaction = {
. handler = a20r_interrupt ,
. flags = IRQF_DISABLED | IRQF_PERCPU ,
. name = " a20r-timer " ,
} ;
2006-12-28 20:22:32 +03:00
/*
* a20r platform uses 2 counters to divide the input frequency .
* Counter 2 output is connected to Counter 0 & 1 input .
*/
2007-10-26 17:36:10 +04:00
static void __init sni_a20r_timer_setup ( void )
2006-12-28 20:22:32 +03:00
{
2007-10-26 17:36:10 +04:00
struct clock_event_device * cd = & a20r_clockevent_device ;
struct irqaction * action = & a20r_irqaction ;
unsigned int cpu = smp_processor_id ( ) ;
2006-12-28 20:22:32 +03:00
2008-12-13 13:50:26 +03:00
cd - > cpumask = cpumask_of ( cpu ) ;
2007-11-01 13:36:42 +03:00
clockevents_register_device ( cd ) ;
2007-10-26 17:36:10 +04:00
action - > dev_id = cd ;
setup_irq ( SNI_A20R_IRQ_TIMER , & a20r_irqaction ) ;
2006-12-28 20:22:32 +03:00
}
# define SNI_8254_TICK_RATE 1193182UL
# define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
static __init unsigned long dosample ( void )
{
u32 ct0 , ct1 ;
volatile u8 msb , lsb ;
/* Start the counter. */
2007-10-12 02:46:15 +04:00
outb_p ( 0x34 , 0x43 ) ;
2006-12-28 20:22:32 +03:00
outb_p ( SNI_8254_TCSAMP_COUNTER & 0xff , 0x40 ) ;
2007-10-12 02:46:15 +04:00
outb ( SNI_8254_TCSAMP_COUNTER > > 8 , 0x40 ) ;
2006-12-28 20:22:32 +03:00
/* Get initial counter invariant */
ct0 = read_c0_count ( ) ;
/* Latch and spin until top byte of counter0 is zero */
do {
2007-10-12 02:46:15 +04:00
outb ( 0x00 , 0x43 ) ;
lsb = inb ( 0x40 ) ;
msb = inb ( 0x40 ) ;
2006-12-28 20:22:32 +03:00
ct1 = read_c0_count ( ) ;
} while ( msb ) ;
/* Stop the counter. */
2007-10-12 02:46:15 +04:00
outb ( 0x38 , 0x43 ) ;
2006-12-28 20:22:32 +03:00
/*
* Return the difference , this is how far the r4k counter increments
* for every 1 / HZ seconds . We round off the nearest 1 MHz of master
* clock ( = 1000000 / HZ / 2 ) .
*/
/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
return ( ct1 - ct0 ) / ( 500000 / HZ ) * ( 500000 / HZ ) ;
}
/*
* Here we need to calibrate the cycle counter to at least be close .
*/
2007-10-12 02:46:08 +04:00
void __init plat_time_init ( void )
2006-12-28 20:22:32 +03:00
{
unsigned long r4k_ticks [ 3 ] ;
unsigned long r4k_tick ;
/*
* Figure out the r4k offset , the algorithm is very simple and works in
* _all_ cases as long as the 8254 counter register itself works ok ( as
* an interrupt driving timer it does not because of bug , this is why
* we are using the onchip r4k counter / compare register to serve this
* purpose , but for r4k_offset calculation it will work ok for us ) .
* There are other very complicated ways of performing this calculation
* but this one works just fine so I am not going to futz around . ; - )
*/
printk ( KERN_INFO " Calibrating system timer... " ) ;
dosample ( ) ; /* Prime cache. */
dosample ( ) ; /* Prime cache. */
/* Zero is NOT an option. */
do {
r4k_ticks [ 0 ] = dosample ( ) ;
} while ( ! r4k_ticks [ 0 ] ) ;
do {
r4k_ticks [ 1 ] = dosample ( ) ;
} while ( ! r4k_ticks [ 1 ] ) ;
if ( r4k_ticks [ 0 ] ! = r4k_ticks [ 1 ] ) {
printk ( " warning: timer counts differ, retrying... " ) ;
r4k_ticks [ 2 ] = dosample ( ) ;
if ( r4k_ticks [ 2 ] = = r4k_ticks [ 0 ]
| | r4k_ticks [ 2 ] = = r4k_ticks [ 1 ] )
r4k_tick = r4k_ticks [ 2 ] ;
else {
printk ( " disagreement, using average... " ) ;
r4k_tick = ( r4k_ticks [ 0 ] + r4k_ticks [ 1 ]
+ r4k_ticks [ 2 ] ) / 3 ;
}
} else
r4k_tick = r4k_ticks [ 0 ] ;
printk ( " %d [%d.%04d MHz CPU] \n " , ( int ) r4k_tick ,
( int ) ( r4k_tick / ( 500000 / HZ ) ) ,
( int ) ( r4k_tick % ( 500000 / HZ ) ) ) ;
mips_hpt_frequency = r4k_tick * HZ ;
2007-10-12 02:46:10 +04:00
2006-12-28 20:22:32 +03:00
switch ( sni_brd_type ) {
case SNI_BRD_10 :
case SNI_BRD_10NEW :
case SNI_BRD_TOWER_OASIC :
case SNI_BRD_MINITOWER :
2007-10-26 17:36:10 +04:00
sni_a20r_timer_setup ( ) ;
break ;
2006-12-28 20:22:32 +03:00
}
2008-01-05 01:31:07 +03:00
setup_pit_timer ( ) ;
2006-12-28 20:22:32 +03:00
}
2007-10-12 02:46:08 +04:00
unsigned long read_persistent_clock ( void )
{
return - 1 ;
}