License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
# SPDX-License-Identifier: GPL-2.0
2005-04-16 15:20:36 -07:00
#
# Makefile for the kernel block device drivers.
#
# 12 June 2000, Christoph Hellwig <hch@infradead.org>
# Rewritten to use lists instead of if-statements.
#
2020-03-25 10:49:55 -07:00
# needed for trace events
ccflags-y += -I$( src)
2005-04-16 15:20:36 -07:00
obj-$(CONFIG_MAC_FLOPPY) += swim3.o
2008-11-15 16:10:10 +01:00
obj-$(CONFIG_BLK_DEV_SWIM) += swim_mod.o
2005-04-16 15:20:36 -07:00
obj-$(CONFIG_BLK_DEV_FD) += floppy.o
obj-$(CONFIG_AMIGA_FLOPPY) += amiflop.o
2007-07-21 04:37:45 -07:00
obj-$(CONFIG_PS3_DISK) += ps3disk.o
2009-03-06 02:54:09 +00:00
obj-$(CONFIG_PS3_VRAM) += ps3vram.o
2005-04-16 15:20:36 -07:00
obj-$(CONFIG_ATARI_FLOPPY) += ataflop.o
obj-$(CONFIG_AMIGA_Z2RAM) += z2ram.o
2021-01-23 09:53:27 +02:00
obj-$(CONFIG_N64CART) += n64cart.o
rewrite rd
This is a rewrite of the ramdisk block device driver.
The old one is really difficult because it effectively implements a block
device which serves data out of its own buffer cache. It relies on the dirty
bit being set, to pin its backing store in cache, however there are non
trivial paths which can clear the dirty bit (eg. try_to_free_buffers()),
which had recently lead to data corruption. And in general it is completely
wrong for a block device driver to do this.
The new one is more like a regular block device driver. It has no idea about
vm/vfs stuff. It's backing store is similar to the buffer cache (a simple
radix-tree of pages), but it doesn't know anything about page cache (the pages
in the radix tree are not pagecache pages).
There is one slight downside -- direct block device access and filesystem
metadata access goes through an extra copy and gets stored in RAM twice.
However, this downside is only slight, because the real buffercache of the
device is now reclaimable (because we're not playing crazy games with it), so
under memory intensive situations, footprint should effectively be the same --
maybe even a slight advantage to the new driver because it can also reclaim
buffer heads.
The fact that it now goes through all the regular vm/fs paths makes it
much more useful for testing, too.
text data bss dec hex filename
2837 849 384 4070 fe6 drivers/block/rd.o
3528 371 12 3911 f47 drivers/block/brd.o
Text is larger, but data and bss are smaller, making total size smaller.
A few other nice things about it:
- Similar structure and layout to the new loop device handlinag.
- Dynamic ramdisk creation.
- Runtime flexible buffer head size (because it is no longer part of the
ramdisk code).
- Boot / load time flexible ramdisk size, which could easily be extended
to a per-ramdisk runtime changeable size (eg. with an ioctl).
- Can use highmem for the backing store.
[akpm@linux-foundation.org: fix build]
[byron.bbradley@gmail.com: make rd_size non-static]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Byron Bradley <byron.bbradley@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 04:19:49 -08:00
obj-$(CONFIG_BLK_DEV_RAM) += brd.o
2005-04-16 15:20:36 -07:00
obj-$(CONFIG_BLK_DEV_LOOP) += loop.o
2023-01-04 14:44:13 -07:00
obj-$(CONFIG_CDROM_PKTCDVD) += pktcdvd.o
2007-07-16 04:03:56 -07:00
obj-$(CONFIG_SUNVDC) += sunvdc.o
2005-04-16 15:20:36 -07:00
obj-$(CONFIG_BLK_DEV_NBD) += nbd.o
2007-10-22 11:03:38 +10:00
obj-$(CONFIG_VIRTIO_BLK) += virtio_blk.o
2005-04-16 15:20:36 -07:00
2007-07-17 18:37:06 -07:00
obj-$(CONFIG_XEN_BLKDEV_FRONTEND) += xen-blkfront.o
2011-04-18 14:24:23 -04:00
obj-$(CONFIG_XEN_BLKDEV_BACKEND) += xen-blkback/
2009-09-25 16:07:19 -07:00
obj-$(CONFIG_BLK_DEV_DRBD) += drbd/
2010-08-12 16:11:25 -07:00
obj-$(CONFIG_BLK_DEV_RBD) += rbd.o
2011-08-30 08:34:26 -06:00
obj-$(CONFIG_BLK_DEV_PCIESSD_MTIP32XX) += mtip32xx/
2008-11-15 16:10:10 +01:00
zram: promote zram from staging
Zram has lived in staging for a LONG LONG time and have been
fixed/improved by many contributors so code is clean and stable now. Of
course, there are lots of product using zram in real practice.
The major TV companys have used zram as swap since two years ago and
recently our production team released android smart phone with zram
which is used as swap, too and recently Android Kitkat start to use zram
for small memory smart phone. And there was a report Google released
their ChromeOS with zram, too and cyanogenmod have been used zram long
time ago. And I heard some disto have used zram block device for tmpfs.
In addition, I saw many report from many other peoples. For example,
Lubuntu start to use it.
The benefit of zram is very clear. With my experience, one of the
benefit was to remove jitter of video application with backgroud memory
pressure. It would be effect of efficient memory usage by compression
but more issue is whether swap is there or not in the system. Recent
mobile platforms have used JAVA so there are many anonymous pages. But
embedded system normally are reluctant to use eMMC or SDCard as swap
because there is wear-leveling and latency issues so if we do not use
swap, it means we can't reclaim anoymous pages and at last, we could
encounter OOM kill. :(
Although we have real storage as swap, it was a problem, too. Because
it sometime ends up making system very unresponsible caused by slow swap
storage performance.
Quote from Luigi on Google
"Since Chrome OS was mentioned: the main reason why we don't use swap
to a disk (rotating or SSD) is because it doesn't degrade gracefully
and leads to a bad interactive experience. Generally we prefer to
manage RAM at a higher level, by transparently killing and restarting
processes. But we noticed that zram is fast enough to be competitive
with the latter, and it lets us make more efficient use of the
available RAM. " and he announced.
http://www.spinics.net/lists/linux-mm/msg57717.html
Other uses case is to use zram for block device. Zram is block device
so anyone can format the block device and mount on it so some guys on
the internet start zram as /var/tmp.
http://forums.gentoo.org/viewtopic-t-838198-start-0.html
Let's promote zram and enhance/maintain it instead of removing.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30 15:45:52 -08:00
obj-$(CONFIG_ZRAM) += zram/
2020-05-11 15:51:29 +02:00
obj-$(CONFIG_BLK_DEV_RNBD) += rnbd/
2013-02-05 14:15:02 +01:00
2020-11-20 10:55:19 +09:00
obj-$(CONFIG_BLK_DEV_NULL_BLK) += null_blk/
2018-07-06 19:38:39 +02:00
ublk_drv: add io_uring based userspace block driver
This is the driver part of userspace block driver(ublk driver), the other
part is userspace daemon part(ublksrv)[1].
The two parts communicate by io_uring's IORING_OP_URING_CMD with one
shared cmd buffer for storing io command, and the buffer is read only for
ublksrv, each io command is indexed by io request tag directly, and is
written by ublk driver.
For example, when one READ io request is submitted to ublk block driver,
ublk driver stores the io command into cmd buffer first, then completes
one IORING_OP_URING_CMD for notifying ublksrv, and the URING_CMD is issued
to ublk driver beforehand by ublksrv for getting notification of any new
io request, and each URING_CMD is associated with one io request by tag.
After ublksrv gets the io command, it translates and handles the ublk io
request, such as, for the ublk-loop target, ublksrv translates the request
into same request on another file or disk, like the kernel loop block
driver. In ublksrv's implementation, the io is still handled by io_uring,
and share same ring with IORING_OP_URING_CMD command. When the target io
request is done, the same IORING_OP_URING_CMD is issued to ublk driver for
both committing io request result and getting future notification of new
io request.
Another thing done by ublk driver is to copy data between kernel io
request and ublksrv's io buffer:
1) before ubsrv handles WRITE request, copy the request's data into
ublksrv's userspace io buffer, so that ublksrv can handle the write
request
2) after ubsrv handles READ request, copy ublksrv's userspace io buffer
into this READ request, then ublk driver can complete the READ request
Zero copy may be switched if mm is ready to support it.
ublk driver doesn't handle any logic of the specific user space driver,
so it is small/simple enough.
[1] ublksrv
https://github.com/ming1/ubdsrv
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/20220713140711.97356-2-ming.lei@redhat.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-07-13 22:07:10 +08:00
obj-$(CONFIG_BLK_DEV_UBLK) += ublk_drv.o
2011-01-19 08:25:02 -07:00
swim_mod-y := swim.o swim_asm.o