2019-05-27 09:55:01 +03:00
/* SPDX-License-Identifier: GPL-2.0-or-later */
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
/ *
2018-12-05 09:20:03 +03:00
* ChaCha 2 5 6 - b i t c i p h e r a l g o r i t h m , x64 S S S E 3 f u n c t i o n s
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
*
* Copyright ( C ) 2 0 1 5 M a r t i n W i l l i
* /
# include < l i n u x / l i n k a g e . h >
2018-12-05 09:20:02 +03:00
# include < a s m / f r a m e . h >
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 00:33:04 +03:00
.section .rodata .cst16 .ROT8 , " aM" , @progbits, 16
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
.align 16
ROT8 : .octa 0x0e0d0c0f 0 a0 9 0 8 0 b06 0 5 0 4 0 7 0 2 0 1 0 0 0 3
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 00:33:04 +03:00
.section .rodata .cst16 .ROT16 , " aM" , @progbits, 16
.align 16
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
ROT16 : .octa 0x0d0c0f0e 0 9 0 8 0 b0 a05 0 4 0 7 0 6 0 1 0 0 0 3 0 2
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-20 00:33:04 +03:00
.section .rodata .cst16 .CTRINC , " aM" , @progbits, 16
.align 16
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
CTRINC : .octa 0x00000003 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
.text
2018-12-05 09:20:02 +03:00
/ *
2018-12-05 09:20:03 +03:00
* chacha_ p e r m u t e - p e r m u t e o n e b l o c k
2018-12-05 09:20:02 +03:00
*
* Permute o n e 6 4 - b y t e b l o c k w h e r e t h e s t a t e m a t r i x i s i n % x m m 0 - % x m m 3 . T h i s
* function p e r f o r m s m a t r i x o p e r a t i o n s o n f o u r w o r d s i n p a r a l l e l , b u t r e q u i r e s
* shuffling t o r e a r r a n g e t h e w o r d s a f t e r e a c h r o u n d . 8 / 1 6 - b i t w o r d r o t a t i o n i s
* done w i t h t h e s l i g h t l y b e t t e r p e r f o r m i n g S S S E 3 b y t e s h u f f l i n g , 7 / 1 2 - b i t w o r d
* rotation u s e s t r a d i t i o n a l s h i f t + O R .
*
2018-12-05 09:20:03 +03:00
* The r o u n d c o u n t i s g i v e n i n % r8 d .
*
* Clobbers : % r8 d , % x m m 4 - % x m m 7
2018-12-05 09:20:02 +03:00
* /
2019-10-11 14:50:46 +03:00
SYM_ F U N C _ S T A R T _ L O C A L ( c h a c h a _ p e r m u t e )
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
movdqa R O T 8 ( % r i p ) ,% x m m 4
movdqa R O T 1 6 ( % r i p ) ,% x m m 5
.Ldoubleround :
# x0 + = x1 , x3 = r o t l 3 2 ( x3 ^ x0 , 1 6 )
paddd % x m m 1 ,% x m m 0
pxor % x m m 0 ,% x m m 3
pshufb % x m m 5 ,% x m m 3
# x2 + = x3 , x1 = r o t l 3 2 ( x1 ^ x2 , 1 2 )
paddd % x m m 3 ,% x m m 2
pxor % x m m 2 ,% x m m 1
movdqa % x m m 1 ,% x m m 6
pslld $ 1 2 ,% x m m 6
psrld $ 2 0 ,% x m m 1
por % x m m 6 ,% x m m 1
# x0 + = x1 , x3 = r o t l 3 2 ( x3 ^ x0 , 8 )
paddd % x m m 1 ,% x m m 0
pxor % x m m 0 ,% x m m 3
pshufb % x m m 4 ,% x m m 3
# x2 + = x3 , x1 = r o t l 3 2 ( x1 ^ x2 , 7 )
paddd % x m m 3 ,% x m m 2
pxor % x m m 2 ,% x m m 1
movdqa % x m m 1 ,% x m m 7
pslld $ 7 ,% x m m 7
psrld $ 2 5 ,% x m m 1
por % x m m 7 ,% x m m 1
# x1 = s h u f f l e 3 2 ( x1 , M A S K ( 0 , 3 , 2 , 1 ) )
pshufd $ 0 x39 ,% x m m 1 ,% x m m 1
# x2 = s h u f f l e 3 2 ( x2 , M A S K ( 1 , 0 , 3 , 2 ) )
pshufd $ 0 x4 e ,% x m m 2 ,% x m m 2
# x3 = s h u f f l e 3 2 ( x3 , M A S K ( 2 , 1 , 0 , 3 ) )
pshufd $ 0 x93 ,% x m m 3 ,% x m m 3
# x0 + = x1 , x3 = r o t l 3 2 ( x3 ^ x0 , 1 6 )
paddd % x m m 1 ,% x m m 0
pxor % x m m 0 ,% x m m 3
pshufb % x m m 5 ,% x m m 3
# x2 + = x3 , x1 = r o t l 3 2 ( x1 ^ x2 , 1 2 )
paddd % x m m 3 ,% x m m 2
pxor % x m m 2 ,% x m m 1
movdqa % x m m 1 ,% x m m 6
pslld $ 1 2 ,% x m m 6
psrld $ 2 0 ,% x m m 1
por % x m m 6 ,% x m m 1
# x0 + = x1 , x3 = r o t l 3 2 ( x3 ^ x0 , 8 )
paddd % x m m 1 ,% x m m 0
pxor % x m m 0 ,% x m m 3
pshufb % x m m 4 ,% x m m 3
# x2 + = x3 , x1 = r o t l 3 2 ( x1 ^ x2 , 7 )
paddd % x m m 3 ,% x m m 2
pxor % x m m 2 ,% x m m 1
movdqa % x m m 1 ,% x m m 7
pslld $ 7 ,% x m m 7
psrld $ 2 5 ,% x m m 1
por % x m m 7 ,% x m m 1
# x1 = s h u f f l e 3 2 ( x1 , M A S K ( 2 , 1 , 0 , 3 ) )
pshufd $ 0 x93 ,% x m m 1 ,% x m m 1
# x2 = s h u f f l e 3 2 ( x2 , M A S K ( 1 , 0 , 3 , 2 ) )
pshufd $ 0 x4 e ,% x m m 2 ,% x m m 2
# x3 = s h u f f l e 3 2 ( x3 , M A S K ( 0 , 3 , 2 , 1 ) )
pshufd $ 0 x39 ,% x m m 3 ,% x m m 3
2018-12-05 09:20:03 +03:00
sub $ 2 ,% r8 d
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
jnz . L d o u b l e r o u n d
2021-12-04 16:43:40 +03:00
RET
2019-10-11 14:50:46 +03:00
SYM_ F U N C _ E N D ( c h a c h a _ p e r m u t e )
2018-12-05 09:20:02 +03:00
2019-10-11 14:51:04 +03:00
SYM_ F U N C _ S T A R T ( c h a c h a _ b l o c k _ x o r _ s s s e 3 )
2018-12-05 09:20:02 +03:00
# % rdi : Input s t a t e m a t r i x , s
# % rsi : up t o 1 d a t a b l o c k o u t p u t , o
# % rdx : up t o 1 d a t a b l o c k i n p u t , i
# % rcx : input/ o u t p u t l e n g t h i n b y t e s
2018-12-05 09:20:03 +03:00
# % r8d : nrounds
2018-12-05 09:20:02 +03:00
FRAME_ B E G I N
# x0 . . 3 = s0 . . 3
2020-07-08 12:11:18 +03:00
movdqu 0 x00 ( % r d i ) ,% x m m 0
movdqu 0 x10 ( % r d i ) ,% x m m 1
movdqu 0 x20 ( % r d i ) ,% x m m 2
movdqu 0 x30 ( % r d i ) ,% x m m 3
2018-12-05 09:20:02 +03:00
movdqa % x m m 0 ,% x m m 8
movdqa % x m m 1 ,% x m m 9
movdqa % x m m 2 ,% x m m 1 0
movdqa % x m m 3 ,% x m m 1 1
mov % r c x ,% r a x
2018-12-05 09:20:03 +03:00
call c h a c h a _ p e r m u t e
2018-12-05 09:20:02 +03:00
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
# o0 = i 0 ^ ( x0 + s0 )
paddd % x m m 8 ,% x m m 0
2018-11-11 12:36:25 +03:00
cmp $ 0 x10 ,% r a x
jl . L x o r p a r t
movdqu 0 x00 ( % r d x ) ,% x m m 4
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
pxor % x m m 4 ,% x m m 0
movdqu % x m m 0 ,0 x00 ( % r s i )
# o1 = i 1 ^ ( x1 + s1 )
paddd % x m m 9 ,% x m m 1
2018-11-11 12:36:25 +03:00
movdqa % x m m 1 ,% x m m 0
cmp $ 0 x20 ,% r a x
jl . L x o r p a r t
movdqu 0 x10 ( % r d x ) ,% x m m 0
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x10 ( % r s i )
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
# o2 = i 2 ^ ( x2 + s2 )
paddd % x m m 1 0 ,% x m m 2
2018-11-11 12:36:25 +03:00
movdqa % x m m 2 ,% x m m 0
cmp $ 0 x30 ,% r a x
jl . L x o r p a r t
movdqu 0 x20 ( % r d x ) ,% x m m 0
pxor % x m m 2 ,% x m m 0
movdqu % x m m 0 ,0 x20 ( % r s i )
crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:01 +03:00
# o3 = i 3 ^ ( x3 + s3 )
paddd % x m m 1 1 ,% x m m 3
2018-11-11 12:36:25 +03:00
movdqa % x m m 3 ,% x m m 0
cmp $ 0 x40 ,% r a x
jl . L x o r p a r t
movdqu 0 x30 ( % r d x ) ,% x m m 0
pxor % x m m 3 ,% x m m 0
movdqu % x m m 0 ,0 x30 ( % r s i )
.Ldone :
2018-12-05 09:20:02 +03:00
FRAME_ E N D
2021-12-04 16:43:40 +03:00
RET
2018-11-11 12:36:25 +03:00
.Lxorpart :
# xor r e m a i n i n g b y t e s f r o m p a r t i a l r e g i s t e r i n t o o u t p u t
mov % r a x ,% r9
and $ 0 x0 f ,% r9
jz . L d o n e
and $ ~ 0 x0 f ,% r a x
mov % r s i ,% r11
lea 8 ( % r s p ) ,% r10
sub $ 0 x10 ,% r s p
and $ ~ 3 1 ,% r s p
lea ( % r d x ,% r a x ) ,% r s i
mov % r s p ,% r d i
mov % r9 ,% r c x
rep m o v s b
pxor 0 x00 ( % r s p ) ,% x m m 0
movdqa % x m m 0 ,0 x00 ( % r s p )
mov % r s p ,% r s i
lea ( % r11 ,% r a x ) ,% r d i
mov % r9 ,% r c x
rep m o v s b
lea - 8 ( % r10 ) ,% r s p
jmp . L d o n e
2019-10-11 14:51:04 +03:00
SYM_ F U N C _ E N D ( c h a c h a _ b l o c k _ x o r _ s s s e 3 )
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
2019-10-11 14:51:04 +03:00
SYM_ F U N C _ S T A R T ( h c h a c h a _ b l o c k _ s s s e 3 )
2018-12-05 09:20:02 +03:00
# % rdi : Input s t a t e m a t r i x , s
# % rsi : output ( 8 3 2 - b i t w o r d s )
2018-12-05 09:20:03 +03:00
# % edx : nrounds
2018-12-05 09:20:02 +03:00
FRAME_ B E G I N
2020-07-08 12:11:18 +03:00
movdqu 0 x00 ( % r d i ) ,% x m m 0
movdqu 0 x10 ( % r d i ) ,% x m m 1
movdqu 0 x20 ( % r d i ) ,% x m m 2
movdqu 0 x30 ( % r d i ) ,% x m m 3
2018-12-05 09:20:02 +03:00
2018-12-05 09:20:03 +03:00
mov % e d x ,% r8 d
call c h a c h a _ p e r m u t e
2018-12-05 09:20:02 +03:00
movdqu % x m m 0 ,0 x00 ( % r s i )
movdqu % x m m 3 ,0 x10 ( % r s i )
FRAME_ E N D
2021-12-04 16:43:40 +03:00
RET
2019-10-11 14:51:04 +03:00
SYM_ F U N C _ E N D ( h c h a c h a _ b l o c k _ s s s e 3 )
2018-12-05 09:20:02 +03:00
2019-10-11 14:51:04 +03:00
SYM_ F U N C _ S T A R T ( c h a c h a _ 4 b l o c k _ x o r _ s s s e 3 )
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
# % rdi : Input s t a t e m a t r i x , s
2018-11-11 12:36:26 +03:00
# % rsi : up t o 4 d a t a b l o c k s o u t p u t , o
# % rdx : up t o 4 d a t a b l o c k s i n p u t , i
# % rcx : input/ o u t p u t l e n g t h i n b y t e s
2018-12-05 09:20:03 +03:00
# % r8d : nrounds
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
2018-12-05 09:20:03 +03:00
# This f u n c t i o n e n c r y p t s f o u r c o n s e c u t i v e C h a C h a b l o c k s b y l o a d i n g t h e
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
# the s t a t e m a t r i x i n S S E r e g i s t e r s f o u r t i m e s . A s w e n e e d s o m e s c r a t c h
# registers, w e s a v e t h e f i r s t f o u r r e g i s t e r s o n t h e s t a c k . T h e
# algorithm p e r f o r m s e a c h o p e r a t i o n o n t h e c o r r e s p o n d i n g w o r d o f e a c h
# state m a t r i x , h e n c e r e q u i r e s n o w o r d s h u f f l i n g . F o r f i n a l X O R i n g s t e p
# we t r a n s p o s e t h e m a t r i x b y i n t e r l e a v i n g 3 2 - a n d t h e n 6 4 - b i t w o r d s ,
# which a l l o w s u s t o d o X O R i n S S E r e g i s t e r s . 8 / 1 6 - b i t w o r d r o t a t i o n i s
# done w i t h t h e s l i g h t l y b e t t e r p e r f o r m i n g S S S E 3 b y t e s h u f f l i n g ,
# 7 / 1 2 - bit w o r d r o t a t i o n u s e s t r a d i t i o n a l s h i f t + O R .
2017-10-08 23:50:53 +03:00
lea 8 ( % r s p ) ,% r10
2016-01-21 19:24:08 +03:00
sub $ 0 x80 ,% r s p
and $ ~ 6 3 ,% r s p
2018-11-11 12:36:26 +03:00
mov % r c x ,% r a x
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
# x0 . . 1 5 [ 0 - 3 ] = s0 . . 3 [ 0 . . 3 ]
movq 0 x00 ( % r d i ) ,% x m m 1
pshufd $ 0 x00 ,% x m m 1 ,% x m m 0
pshufd $ 0 x55 ,% x m m 1 ,% x m m 1
movq 0 x08 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
movq 0 x10 ( % r d i ) ,% x m m 5
pshufd $ 0 x00 ,% x m m 5 ,% x m m 4
pshufd $ 0 x55 ,% x m m 5 ,% x m m 5
movq 0 x18 ( % r d i ) ,% x m m 7
pshufd $ 0 x00 ,% x m m 7 ,% x m m 6
pshufd $ 0 x55 ,% x m m 7 ,% x m m 7
movq 0 x20 ( % r d i ) ,% x m m 9
pshufd $ 0 x00 ,% x m m 9 ,% x m m 8
pshufd $ 0 x55 ,% x m m 9 ,% x m m 9
movq 0 x28 ( % r d i ) ,% x m m 1 1
pshufd $ 0 x00 ,% x m m 1 1 ,% x m m 1 0
pshufd $ 0 x55 ,% x m m 1 1 ,% x m m 1 1
movq 0 x30 ( % r d i ) ,% x m m 1 3
pshufd $ 0 x00 ,% x m m 1 3 ,% x m m 1 2
pshufd $ 0 x55 ,% x m m 1 3 ,% x m m 1 3
movq 0 x38 ( % r d i ) ,% x m m 1 5
pshufd $ 0 x00 ,% x m m 1 5 ,% x m m 1 4
pshufd $ 0 x55 ,% x m m 1 5 ,% x m m 1 5
# x0 . . 3 o n s t a c k
movdqa % x m m 0 ,0 x00 ( % r s p )
movdqa % x m m 1 ,0 x10 ( % r s p )
movdqa % x m m 2 ,0 x20 ( % r s p )
movdqa % x m m 3 ,0 x30 ( % r s p )
movdqa C T R I N C ( % r i p ) ,% x m m 1
movdqa R O T 8 ( % r i p ) ,% x m m 2
movdqa R O T 1 6 ( % r i p ) ,% x m m 3
# x1 2 + = c o u n t e r v a l u e s 0 - 3
paddd % x m m 1 ,% x m m 1 2
.Ldoubleround4 :
# x0 + = x4 , x12 = r o t l 3 2 ( x12 ^ x0 , 1 6 )
movdqa 0 x00 ( % r s p ) ,% x m m 0
paddd % x m m 4 ,% x m m 0
movdqa % x m m 0 ,0 x00 ( % r s p )
pxor % x m m 0 ,% x m m 1 2
pshufb % x m m 3 ,% x m m 1 2
# x1 + = x5 , x13 = r o t l 3 2 ( x13 ^ x1 , 1 6 )
movdqa 0 x10 ( % r s p ) ,% x m m 0
paddd % x m m 5 ,% x m m 0
movdqa % x m m 0 ,0 x10 ( % r s p )
pxor % x m m 0 ,% x m m 1 3
pshufb % x m m 3 ,% x m m 1 3
# x2 + = x6 , x14 = r o t l 3 2 ( x14 ^ x2 , 1 6 )
movdqa 0 x20 ( % r s p ) ,% x m m 0
paddd % x m m 6 ,% x m m 0
movdqa % x m m 0 ,0 x20 ( % r s p )
pxor % x m m 0 ,% x m m 1 4
pshufb % x m m 3 ,% x m m 1 4
# x3 + = x7 , x15 = r o t l 3 2 ( x15 ^ x3 , 1 6 )
movdqa 0 x30 ( % r s p ) ,% x m m 0
paddd % x m m 7 ,% x m m 0
movdqa % x m m 0 ,0 x30 ( % r s p )
pxor % x m m 0 ,% x m m 1 5
pshufb % x m m 3 ,% x m m 1 5
# x8 + = x12 , x4 = r o t l 3 2 ( x4 ^ x8 , 1 2 )
paddd % x m m 1 2 ,% x m m 8
pxor % x m m 8 ,% x m m 4
movdqa % x m m 4 ,% x m m 0
pslld $ 1 2 ,% x m m 0
psrld $ 2 0 ,% x m m 4
por % x m m 0 ,% x m m 4
# x9 + = x13 , x5 = r o t l 3 2 ( x5 ^ x9 , 1 2 )
paddd % x m m 1 3 ,% x m m 9
pxor % x m m 9 ,% x m m 5
movdqa % x m m 5 ,% x m m 0
pslld $ 1 2 ,% x m m 0
psrld $ 2 0 ,% x m m 5
por % x m m 0 ,% x m m 5
# x1 0 + = x14 , x6 = r o t l 3 2 ( x6 ^ x10 , 1 2 )
paddd % x m m 1 4 ,% x m m 1 0
pxor % x m m 1 0 ,% x m m 6
movdqa % x m m 6 ,% x m m 0
pslld $ 1 2 ,% x m m 0
psrld $ 2 0 ,% x m m 6
por % x m m 0 ,% x m m 6
# x1 1 + = x15 , x7 = r o t l 3 2 ( x7 ^ x11 , 1 2 )
paddd % x m m 1 5 ,% x m m 1 1
pxor % x m m 1 1 ,% x m m 7
movdqa % x m m 7 ,% x m m 0
pslld $ 1 2 ,% x m m 0
psrld $ 2 0 ,% x m m 7
por % x m m 0 ,% x m m 7
# x0 + = x4 , x12 = r o t l 3 2 ( x12 ^ x0 , 8 )
movdqa 0 x00 ( % r s p ) ,% x m m 0
paddd % x m m 4 ,% x m m 0
movdqa % x m m 0 ,0 x00 ( % r s p )
pxor % x m m 0 ,% x m m 1 2
pshufb % x m m 2 ,% x m m 1 2
# x1 + = x5 , x13 = r o t l 3 2 ( x13 ^ x1 , 8 )
movdqa 0 x10 ( % r s p ) ,% x m m 0
paddd % x m m 5 ,% x m m 0
movdqa % x m m 0 ,0 x10 ( % r s p )
pxor % x m m 0 ,% x m m 1 3
pshufb % x m m 2 ,% x m m 1 3
# x2 + = x6 , x14 = r o t l 3 2 ( x14 ^ x2 , 8 )
movdqa 0 x20 ( % r s p ) ,% x m m 0
paddd % x m m 6 ,% x m m 0
movdqa % x m m 0 ,0 x20 ( % r s p )
pxor % x m m 0 ,% x m m 1 4
pshufb % x m m 2 ,% x m m 1 4
# x3 + = x7 , x15 = r o t l 3 2 ( x15 ^ x3 , 8 )
movdqa 0 x30 ( % r s p ) ,% x m m 0
paddd % x m m 7 ,% x m m 0
movdqa % x m m 0 ,0 x30 ( % r s p )
pxor % x m m 0 ,% x m m 1 5
pshufb % x m m 2 ,% x m m 1 5
# x8 + = x12 , x4 = r o t l 3 2 ( x4 ^ x8 , 7 )
paddd % x m m 1 2 ,% x m m 8
pxor % x m m 8 ,% x m m 4
movdqa % x m m 4 ,% x m m 0
pslld $ 7 ,% x m m 0
psrld $ 2 5 ,% x m m 4
por % x m m 0 ,% x m m 4
# x9 + = x13 , x5 = r o t l 3 2 ( x5 ^ x9 , 7 )
paddd % x m m 1 3 ,% x m m 9
pxor % x m m 9 ,% x m m 5
movdqa % x m m 5 ,% x m m 0
pslld $ 7 ,% x m m 0
psrld $ 2 5 ,% x m m 5
por % x m m 0 ,% x m m 5
# x1 0 + = x14 , x6 = r o t l 3 2 ( x6 ^ x10 , 7 )
paddd % x m m 1 4 ,% x m m 1 0
pxor % x m m 1 0 ,% x m m 6
movdqa % x m m 6 ,% x m m 0
pslld $ 7 ,% x m m 0
psrld $ 2 5 ,% x m m 6
por % x m m 0 ,% x m m 6
# x1 1 + = x15 , x7 = r o t l 3 2 ( x7 ^ x11 , 7 )
paddd % x m m 1 5 ,% x m m 1 1
pxor % x m m 1 1 ,% x m m 7
movdqa % x m m 7 ,% x m m 0
pslld $ 7 ,% x m m 0
psrld $ 2 5 ,% x m m 7
por % x m m 0 ,% x m m 7
# x0 + = x5 , x15 = r o t l 3 2 ( x15 ^ x0 , 1 6 )
movdqa 0 x00 ( % r s p ) ,% x m m 0
paddd % x m m 5 ,% x m m 0
movdqa % x m m 0 ,0 x00 ( % r s p )
pxor % x m m 0 ,% x m m 1 5
pshufb % x m m 3 ,% x m m 1 5
# x1 + = x6 , x12 = r o t l 3 2 ( x12 ^ x1 , 1 6 )
movdqa 0 x10 ( % r s p ) ,% x m m 0
paddd % x m m 6 ,% x m m 0
movdqa % x m m 0 ,0 x10 ( % r s p )
pxor % x m m 0 ,% x m m 1 2
pshufb % x m m 3 ,% x m m 1 2
# x2 + = x7 , x13 = r o t l 3 2 ( x13 ^ x2 , 1 6 )
movdqa 0 x20 ( % r s p ) ,% x m m 0
paddd % x m m 7 ,% x m m 0
movdqa % x m m 0 ,0 x20 ( % r s p )
pxor % x m m 0 ,% x m m 1 3
pshufb % x m m 3 ,% x m m 1 3
# x3 + = x4 , x14 = r o t l 3 2 ( x14 ^ x3 , 1 6 )
movdqa 0 x30 ( % r s p ) ,% x m m 0
paddd % x m m 4 ,% x m m 0
movdqa % x m m 0 ,0 x30 ( % r s p )
pxor % x m m 0 ,% x m m 1 4
pshufb % x m m 3 ,% x m m 1 4
# x1 0 + = x15 , x5 = r o t l 3 2 ( x5 ^ x10 , 1 2 )
paddd % x m m 1 5 ,% x m m 1 0
pxor % x m m 1 0 ,% x m m 5
movdqa % x m m 5 ,% x m m 0
pslld $ 1 2 ,% x m m 0
psrld $ 2 0 ,% x m m 5
por % x m m 0 ,% x m m 5
# x1 1 + = x12 , x6 = r o t l 3 2 ( x6 ^ x11 , 1 2 )
paddd % x m m 1 2 ,% x m m 1 1
pxor % x m m 1 1 ,% x m m 6
movdqa % x m m 6 ,% x m m 0
pslld $ 1 2 ,% x m m 0
psrld $ 2 0 ,% x m m 6
por % x m m 0 ,% x m m 6
# x8 + = x13 , x7 = r o t l 3 2 ( x7 ^ x8 , 1 2 )
paddd % x m m 1 3 ,% x m m 8
pxor % x m m 8 ,% x m m 7
movdqa % x m m 7 ,% x m m 0
pslld $ 1 2 ,% x m m 0
psrld $ 2 0 ,% x m m 7
por % x m m 0 ,% x m m 7
# x9 + = x14 , x4 = r o t l 3 2 ( x4 ^ x9 , 1 2 )
paddd % x m m 1 4 ,% x m m 9
pxor % x m m 9 ,% x m m 4
movdqa % x m m 4 ,% x m m 0
pslld $ 1 2 ,% x m m 0
psrld $ 2 0 ,% x m m 4
por % x m m 0 ,% x m m 4
# x0 + = x5 , x15 = r o t l 3 2 ( x15 ^ x0 , 8 )
movdqa 0 x00 ( % r s p ) ,% x m m 0
paddd % x m m 5 ,% x m m 0
movdqa % x m m 0 ,0 x00 ( % r s p )
pxor % x m m 0 ,% x m m 1 5
pshufb % x m m 2 ,% x m m 1 5
# x1 + = x6 , x12 = r o t l 3 2 ( x12 ^ x1 , 8 )
movdqa 0 x10 ( % r s p ) ,% x m m 0
paddd % x m m 6 ,% x m m 0
movdqa % x m m 0 ,0 x10 ( % r s p )
pxor % x m m 0 ,% x m m 1 2
pshufb % x m m 2 ,% x m m 1 2
# x2 + = x7 , x13 = r o t l 3 2 ( x13 ^ x2 , 8 )
movdqa 0 x20 ( % r s p ) ,% x m m 0
paddd % x m m 7 ,% x m m 0
movdqa % x m m 0 ,0 x20 ( % r s p )
pxor % x m m 0 ,% x m m 1 3
pshufb % x m m 2 ,% x m m 1 3
# x3 + = x4 , x14 = r o t l 3 2 ( x14 ^ x3 , 8 )
movdqa 0 x30 ( % r s p ) ,% x m m 0
paddd % x m m 4 ,% x m m 0
movdqa % x m m 0 ,0 x30 ( % r s p )
pxor % x m m 0 ,% x m m 1 4
pshufb % x m m 2 ,% x m m 1 4
# x1 0 + = x15 , x5 = r o t l 3 2 ( x5 ^ x10 , 7 )
paddd % x m m 1 5 ,% x m m 1 0
pxor % x m m 1 0 ,% x m m 5
movdqa % x m m 5 ,% x m m 0
pslld $ 7 ,% x m m 0
psrld $ 2 5 ,% x m m 5
por % x m m 0 ,% x m m 5
# x1 1 + = x12 , x6 = r o t l 3 2 ( x6 ^ x11 , 7 )
paddd % x m m 1 2 ,% x m m 1 1
pxor % x m m 1 1 ,% x m m 6
movdqa % x m m 6 ,% x m m 0
pslld $ 7 ,% x m m 0
psrld $ 2 5 ,% x m m 6
por % x m m 0 ,% x m m 6
# x8 + = x13 , x7 = r o t l 3 2 ( x7 ^ x8 , 7 )
paddd % x m m 1 3 ,% x m m 8
pxor % x m m 8 ,% x m m 7
movdqa % x m m 7 ,% x m m 0
pslld $ 7 ,% x m m 0
psrld $ 2 5 ,% x m m 7
por % x m m 0 ,% x m m 7
# x9 + = x14 , x4 = r o t l 3 2 ( x4 ^ x9 , 7 )
paddd % x m m 1 4 ,% x m m 9
pxor % x m m 9 ,% x m m 4
movdqa % x m m 4 ,% x m m 0
pslld $ 7 ,% x m m 0
psrld $ 2 5 ,% x m m 4
por % x m m 0 ,% x m m 4
2018-12-05 09:20:03 +03:00
sub $ 2 ,% r8 d
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
jnz . L d o u b l e r o u n d4
# x0 [ 0 - 3 ] + = s0 [ 0 ]
# x1 [ 0 - 3 ] + = s0 [ 1 ]
movq 0 x00 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
paddd 0 x00 ( % r s p ) ,% x m m 2
movdqa % x m m 2 ,0 x00 ( % r s p )
paddd 0 x10 ( % r s p ) ,% x m m 3
movdqa % x m m 3 ,0 x10 ( % r s p )
# x2 [ 0 - 3 ] + = s0 [ 2 ]
# x3 [ 0 - 3 ] + = s0 [ 3 ]
movq 0 x08 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
paddd 0 x20 ( % r s p ) ,% x m m 2
movdqa % x m m 2 ,0 x20 ( % r s p )
paddd 0 x30 ( % r s p ) ,% x m m 3
movdqa % x m m 3 ,0 x30 ( % r s p )
# x4 [ 0 - 3 ] + = s1 [ 0 ]
# x5 [ 0 - 3 ] + = s1 [ 1 ]
movq 0 x10 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
paddd % x m m 2 ,% x m m 4
paddd % x m m 3 ,% x m m 5
# x6 [ 0 - 3 ] + = s1 [ 2 ]
# x7 [ 0 - 3 ] + = s1 [ 3 ]
movq 0 x18 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
paddd % x m m 2 ,% x m m 6
paddd % x m m 3 ,% x m m 7
# x8 [ 0 - 3 ] + = s2 [ 0 ]
# x9 [ 0 - 3 ] + = s2 [ 1 ]
movq 0 x20 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
paddd % x m m 2 ,% x m m 8
paddd % x m m 3 ,% x m m 9
# x1 0 [ 0 - 3 ] + = s2 [ 2 ]
# x1 1 [ 0 - 3 ] + = s2 [ 3 ]
movq 0 x28 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
paddd % x m m 2 ,% x m m 1 0
paddd % x m m 3 ,% x m m 1 1
# x1 2 [ 0 - 3 ] + = s3 [ 0 ]
# x1 3 [ 0 - 3 ] + = s3 [ 1 ]
movq 0 x30 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
paddd % x m m 2 ,% x m m 1 2
paddd % x m m 3 ,% x m m 1 3
# x1 4 [ 0 - 3 ] + = s3 [ 2 ]
# x1 5 [ 0 - 3 ] + = s3 [ 3 ]
movq 0 x38 ( % r d i ) ,% x m m 3
pshufd $ 0 x00 ,% x m m 3 ,% x m m 2
pshufd $ 0 x55 ,% x m m 3 ,% x m m 3
paddd % x m m 2 ,% x m m 1 4
paddd % x m m 3 ,% x m m 1 5
# x1 2 + = c o u n t e r v a l u e s 0 - 3
paddd % x m m 1 ,% x m m 1 2
# interleave 3 2 - b i t w o r d s i n s t a t e n , n + 1
movdqa 0 x00 ( % r s p ) ,% x m m 0
movdqa 0 x10 ( % r s p ) ,% x m m 1
movdqa % x m m 0 ,% x m m 2
punpckldq % x m m 1 ,% x m m 2
punpckhdq % x m m 1 ,% x m m 0
movdqa % x m m 2 ,0 x00 ( % r s p )
movdqa % x m m 0 ,0 x10 ( % r s p )
movdqa 0 x20 ( % r s p ) ,% x m m 0
movdqa 0 x30 ( % r s p ) ,% x m m 1
movdqa % x m m 0 ,% x m m 2
punpckldq % x m m 1 ,% x m m 2
punpckhdq % x m m 1 ,% x m m 0
movdqa % x m m 2 ,0 x20 ( % r s p )
movdqa % x m m 0 ,0 x30 ( % r s p )
movdqa % x m m 4 ,% x m m 0
punpckldq % x m m 5 ,% x m m 4
punpckhdq % x m m 5 ,% x m m 0
movdqa % x m m 0 ,% x m m 5
movdqa % x m m 6 ,% x m m 0
punpckldq % x m m 7 ,% x m m 6
punpckhdq % x m m 7 ,% x m m 0
movdqa % x m m 0 ,% x m m 7
movdqa % x m m 8 ,% x m m 0
punpckldq % x m m 9 ,% x m m 8
punpckhdq % x m m 9 ,% x m m 0
movdqa % x m m 0 ,% x m m 9
movdqa % x m m 1 0 ,% x m m 0
punpckldq % x m m 1 1 ,% x m m 1 0
punpckhdq % x m m 1 1 ,% x m m 0
movdqa % x m m 0 ,% x m m 1 1
movdqa % x m m 1 2 ,% x m m 0
punpckldq % x m m 1 3 ,% x m m 1 2
punpckhdq % x m m 1 3 ,% x m m 0
movdqa % x m m 0 ,% x m m 1 3
movdqa % x m m 1 4 ,% x m m 0
punpckldq % x m m 1 5 ,% x m m 1 4
punpckhdq % x m m 1 5 ,% x m m 0
movdqa % x m m 0 ,% x m m 1 5
# interleave 6 4 - b i t w o r d s i n s t a t e n , n + 2
movdqa 0 x00 ( % r s p ) ,% x m m 0
movdqa 0 x20 ( % r s p ) ,% x m m 1
movdqa % x m m 0 ,% x m m 2
punpcklqdq % x m m 1 ,% x m m 2
punpckhqdq % x m m 1 ,% x m m 0
movdqa % x m m 2 ,0 x00 ( % r s p )
movdqa % x m m 0 ,0 x20 ( % r s p )
movdqa 0 x10 ( % r s p ) ,% x m m 0
movdqa 0 x30 ( % r s p ) ,% x m m 1
movdqa % x m m 0 ,% x m m 2
punpcklqdq % x m m 1 ,% x m m 2
punpckhqdq % x m m 1 ,% x m m 0
movdqa % x m m 2 ,0 x10 ( % r s p )
movdqa % x m m 0 ,0 x30 ( % r s p )
movdqa % x m m 4 ,% x m m 0
punpcklqdq % x m m 6 ,% x m m 4
punpckhqdq % x m m 6 ,% x m m 0
movdqa % x m m 0 ,% x m m 6
movdqa % x m m 5 ,% x m m 0
punpcklqdq % x m m 7 ,% x m m 5
punpckhqdq % x m m 7 ,% x m m 0
movdqa % x m m 0 ,% x m m 7
movdqa % x m m 8 ,% x m m 0
punpcklqdq % x m m 1 0 ,% x m m 8
punpckhqdq % x m m 1 0 ,% x m m 0
movdqa % x m m 0 ,% x m m 1 0
movdqa % x m m 9 ,% x m m 0
punpcklqdq % x m m 1 1 ,% x m m 9
punpckhqdq % x m m 1 1 ,% x m m 0
movdqa % x m m 0 ,% x m m 1 1
movdqa % x m m 1 2 ,% x m m 0
punpcklqdq % x m m 1 4 ,% x m m 1 2
punpckhqdq % x m m 1 4 ,% x m m 0
movdqa % x m m 0 ,% x m m 1 4
movdqa % x m m 1 3 ,% x m m 0
punpcklqdq % x m m 1 5 ,% x m m 1 3
punpckhqdq % x m m 1 5 ,% x m m 0
movdqa % x m m 0 ,% x m m 1 5
# xor w i t h c o r r e s p o n d i n g i n p u t , w r i t e t o o u t p u t
movdqa 0 x00 ( % r s p ) ,% x m m 0
2018-11-11 12:36:26 +03:00
cmp $ 0 x10 ,% r a x
jl . L x o r p a r t 4
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
movdqu 0 x00 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x00 ( % r s i )
2018-11-11 12:36:26 +03:00
movdqu % x m m 4 ,% x m m 0
cmp $ 0 x20 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x10 ( % r d x ) ,% x m m 1
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
pxor % x m m 1 ,% x m m 0
2018-11-11 12:36:26 +03:00
movdqu % x m m 0 ,0 x10 ( % r s i )
movdqu % x m m 8 ,% x m m 0
cmp $ 0 x30 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x20 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x20 ( % r s i )
movdqu % x m m 1 2 ,% x m m 0
cmp $ 0 x40 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x30 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x30 ( % r s i )
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
movdqa 0 x20 ( % r s p ) ,% x m m 0
2018-11-11 12:36:26 +03:00
cmp $ 0 x50 ,% r a x
jl . L x o r p a r t 4
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
movdqu 0 x40 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x40 ( % r s i )
2018-11-11 12:36:26 +03:00
movdqu % x m m 6 ,% x m m 0
cmp $ 0 x60 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x50 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x50 ( % r s i )
movdqu % x m m 1 0 ,% x m m 0
cmp $ 0 x70 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x60 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x60 ( % r s i )
movdqu % x m m 1 4 ,% x m m 0
cmp $ 0 x80 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x70 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x70 ( % r s i )
movdqa 0 x10 ( % r s p ) ,% x m m 0
cmp $ 0 x90 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x80 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x80 ( % r s i )
movdqu % x m m 5 ,% x m m 0
cmp $ 0 x a0 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x90 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x90 ( % r s i )
movdqu % x m m 9 ,% x m m 0
cmp $ 0 x b0 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x a0 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x a0 ( % r s i )
movdqu % x m m 1 3 ,% x m m 0
cmp $ 0 x c0 ,% r a x
jl . L x o r p a r t 4
movdqu 0 x b0 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x b0 ( % r s i )
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
movdqa 0 x30 ( % r s p ) ,% x m m 0
2018-11-11 12:36:26 +03:00
cmp $ 0 x d0 ,% r a x
jl . L x o r p a r t 4
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
movdqu 0 x c0 ( % r d x ) ,% x m m 1
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x c0 ( % r s i )
2018-11-11 12:36:26 +03:00
movdqu % x m m 7 ,% x m m 0
cmp $ 0 x e 0 ,% r a x
jl . L x o r p a r t 4
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
movdqu 0 x d0 ( % r d x ) ,% x m m 1
2018-11-11 12:36:26 +03:00
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x d0 ( % r s i )
movdqu % x m m 1 1 ,% x m m 0
cmp $ 0 x f0 ,% r a x
jl . L x o r p a r t 4
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
movdqu 0 x e 0 ( % r d x ) ,% x m m 1
2018-11-11 12:36:26 +03:00
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x e 0 ( % r s i )
movdqu % x m m 1 5 ,% x m m 0
cmp $ 0 x10 0 ,% r a x
jl . L x o r p a r t 4
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
movdqu 0 x f0 ( % r d x ) ,% x m m 1
2018-11-11 12:36:26 +03:00
pxor % x m m 1 ,% x m m 0
movdqu % x m m 0 ,0 x f0 ( % r s i )
crypto: chacha20 - Add a four block SSSE3 variant for x86_64
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-16 20:14:02 +03:00
2018-11-11 12:36:26 +03:00
.Ldone4 :
2017-10-08 23:50:53 +03:00
lea - 8 ( % r10 ) ,% r s p
2021-12-04 16:43:40 +03:00
RET
2018-11-11 12:36:26 +03:00
.Lxorpart4 :
# xor r e m a i n i n g b y t e s f r o m p a r t i a l r e g i s t e r i n t o o u t p u t
mov % r a x ,% r9
and $ 0 x0 f ,% r9
jz . L d o n e 4
and $ ~ 0 x0 f ,% r a x
mov % r s i ,% r11
lea ( % r d x ,% r a x ) ,% r s i
mov % r s p ,% r d i
mov % r9 ,% r c x
rep m o v s b
pxor 0 x00 ( % r s p ) ,% x m m 0
movdqa % x m m 0 ,0 x00 ( % r s p )
mov % r s p ,% r s i
lea ( % r11 ,% r a x ) ,% r d i
mov % r9 ,% r c x
rep m o v s b
jmp . L d o n e 4
2019-10-11 14:51:04 +03:00
SYM_ F U N C _ E N D ( c h a c h a _ 4 b l o c k _ x o r _ s s s e 3 )