linux/drivers/clk/ti/apll.c

419 lines
9.5 KiB
C
Raw Normal View History

/*
* OMAP APLL clock support
*
* Copyright (C) 2013 Texas Instruments, Inc.
*
* J Keerthy <j-keerthy@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/log2.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/clk/ti.h>
#include <linux/delay.h>
#include "clock.h"
#define APLL_FORCE_LOCK 0x1
#define APLL_AUTO_IDLE 0x2
#define MAX_APLL_WAIT_TRIES 1000000
#undef pr_fmt
#define pr_fmt(fmt) "%s: " fmt, __func__
static int dra7_apll_enable(struct clk_hw *hw)
{
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
int r = 0, i = 0;
struct dpll_data *ad;
const char *clk_name;
u8 state = 1;
u32 v;
ad = clk->dpll_data;
if (!ad)
return -EINVAL;
clk_name = clk_hw_get_name(&clk->hw);
state <<= __ffs(ad->idlest_mask);
/* Check is already locked */
v = ti_clk_ll_ops->clk_readl(&ad->idlest_reg);
if ((v & ad->idlest_mask) == state)
return r;
v = ti_clk_ll_ops->clk_readl(&ad->control_reg);
v &= ~ad->enable_mask;
v |= APLL_FORCE_LOCK << __ffs(ad->enable_mask);
ti_clk_ll_ops->clk_writel(v, &ad->control_reg);
state <<= __ffs(ad->idlest_mask);
while (1) {
v = ti_clk_ll_ops->clk_readl(&ad->idlest_reg);
if ((v & ad->idlest_mask) == state)
break;
if (i > MAX_APLL_WAIT_TRIES)
break;
i++;
udelay(1);
}
if (i == MAX_APLL_WAIT_TRIES) {
pr_warn("clock: %s failed transition to '%s'\n",
clk_name, (state) ? "locked" : "bypassed");
r = -EBUSY;
} else
pr_debug("clock: %s transition to '%s' in %d loops\n",
clk_name, (state) ? "locked" : "bypassed", i);
return r;
}
static void dra7_apll_disable(struct clk_hw *hw)
{
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
struct dpll_data *ad;
u8 state = 1;
u32 v;
ad = clk->dpll_data;
state <<= __ffs(ad->idlest_mask);
v = ti_clk_ll_ops->clk_readl(&ad->control_reg);
v &= ~ad->enable_mask;
v |= APLL_AUTO_IDLE << __ffs(ad->enable_mask);
ti_clk_ll_ops->clk_writel(v, &ad->control_reg);
}
static int dra7_apll_is_enabled(struct clk_hw *hw)
{
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
struct dpll_data *ad;
u32 v;
ad = clk->dpll_data;
v = ti_clk_ll_ops->clk_readl(&ad->control_reg);
v &= ad->enable_mask;
v >>= __ffs(ad->enable_mask);
return v == APLL_AUTO_IDLE ? 0 : 1;
}
static u8 dra7_init_apll_parent(struct clk_hw *hw)
{
return 0;
}
static const struct clk_ops apll_ck_ops = {
.enable = &dra7_apll_enable,
.disable = &dra7_apll_disable,
.is_enabled = &dra7_apll_is_enabled,
.get_parent = &dra7_init_apll_parent,
};
static void __init omap_clk_register_apll(void *user,
struct device_node *node)
{
struct clk_hw *hw = user;
struct clk_hw_omap *clk_hw = to_clk_hw_omap(hw);
struct dpll_data *ad = clk_hw->dpll_data;
struct clk *clk;
const struct clk_init_data *init = clk_hw->hw.init;
clk = of_clk_get(node, 0);
if (IS_ERR(clk)) {
pr_debug("clk-ref for %pOFn not ready, retry\n",
node);
if (!ti_clk_retry_init(node, hw, omap_clk_register_apll))
return;
goto cleanup;
}
ad->clk_ref = __clk_get_hw(clk);
clk = of_clk_get(node, 1);
if (IS_ERR(clk)) {
pr_debug("clk-bypass for %pOFn not ready, retry\n",
node);
if (!ti_clk_retry_init(node, hw, omap_clk_register_apll))
return;
goto cleanup;
}
ad->clk_bypass = __clk_get_hw(clk);
clk = ti_clk_register_omap_hw(NULL, &clk_hw->hw, node->name);
if (!IS_ERR(clk)) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
kfree(init->parent_names);
kfree(init);
return;
}
cleanup:
kfree(clk_hw->dpll_data);
kfree(init->parent_names);
kfree(init);
kfree(clk_hw);
}
static void __init of_dra7_apll_setup(struct device_node *node)
{
struct dpll_data *ad = NULL;
struct clk_hw_omap *clk_hw = NULL;
struct clk_init_data *init = NULL;
const char **parent_names = NULL;
int ret;
ad = kzalloc(sizeof(*ad), GFP_KERNEL);
clk_hw = kzalloc(sizeof(*clk_hw), GFP_KERNEL);
init = kzalloc(sizeof(*init), GFP_KERNEL);
if (!ad || !clk_hw || !init)
goto cleanup;
clk_hw->dpll_data = ad;
clk_hw->hw.init = init;
init->name = node->name;
init->ops = &apll_ck_ops;
init->num_parents = of_clk_get_parent_count(node);
if (init->num_parents < 1) {
pr_err("dra7 apll %pOFn must have parent(s)\n", node);
goto cleanup;
}
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:03:40 -07:00
parent_names = kcalloc(init->num_parents, sizeof(char *), GFP_KERNEL);
if (!parent_names)
goto cleanup;
of_clk_parent_fill(node, parent_names, init->num_parents);
init->parent_names = parent_names;
ret = ti_clk_get_reg_addr(node, 0, &ad->control_reg);
ret |= ti_clk_get_reg_addr(node, 1, &ad->idlest_reg);
if (ret)
goto cleanup;
ad->idlest_mask = 0x1;
ad->enable_mask = 0x3;
omap_clk_register_apll(&clk_hw->hw, node);
return;
cleanup:
kfree(parent_names);
kfree(ad);
kfree(clk_hw);
kfree(init);
}
CLK_OF_DECLARE(dra7_apll_clock, "ti,dra7-apll-clock", of_dra7_apll_setup);
#define OMAP2_EN_APLL_LOCKED 0x3
#define OMAP2_EN_APLL_STOPPED 0x0
static int omap2_apll_is_enabled(struct clk_hw *hw)
{
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
struct dpll_data *ad = clk->dpll_data;
u32 v;
v = ti_clk_ll_ops->clk_readl(&ad->control_reg);
v &= ad->enable_mask;
v >>= __ffs(ad->enable_mask);
return v == OMAP2_EN_APLL_LOCKED ? 1 : 0;
}
static unsigned long omap2_apll_recalc(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
if (omap2_apll_is_enabled(hw))
return clk->fixed_rate;
return 0;
}
static int omap2_apll_enable(struct clk_hw *hw)
{
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
struct dpll_data *ad = clk->dpll_data;
u32 v;
int i = 0;
v = ti_clk_ll_ops->clk_readl(&ad->control_reg);
v &= ~ad->enable_mask;
v |= OMAP2_EN_APLL_LOCKED << __ffs(ad->enable_mask);
ti_clk_ll_ops->clk_writel(v, &ad->control_reg);
while (1) {
v = ti_clk_ll_ops->clk_readl(&ad->idlest_reg);
if (v & ad->idlest_mask)
break;
if (i > MAX_APLL_WAIT_TRIES)
break;
i++;
udelay(1);
}
if (i == MAX_APLL_WAIT_TRIES) {
pr_warn("%s failed to transition to locked\n",
clk_hw_get_name(&clk->hw));
return -EBUSY;
}
return 0;
}
static void omap2_apll_disable(struct clk_hw *hw)
{
struct clk_hw_omap *clk = to_clk_hw_omap(hw);
struct dpll_data *ad = clk->dpll_data;
u32 v;
v = ti_clk_ll_ops->clk_readl(&ad->control_reg);
v &= ~ad->enable_mask;
v |= OMAP2_EN_APLL_STOPPED << __ffs(ad->enable_mask);
ti_clk_ll_ops->clk_writel(v, &ad->control_reg);
}
static const struct clk_ops omap2_apll_ops = {
.enable = &omap2_apll_enable,
.disable = &omap2_apll_disable,
.is_enabled = &omap2_apll_is_enabled,
.recalc_rate = &omap2_apll_recalc,
};
static void omap2_apll_set_autoidle(struct clk_hw_omap *clk, u32 val)
{
struct dpll_data *ad = clk->dpll_data;
u32 v;
v = ti_clk_ll_ops->clk_readl(&ad->autoidle_reg);
v &= ~ad->autoidle_mask;
v |= val << __ffs(ad->autoidle_mask);
ti_clk_ll_ops->clk_writel(v, &ad->control_reg);
}
#define OMAP2_APLL_AUTOIDLE_LOW_POWER_STOP 0x3
#define OMAP2_APLL_AUTOIDLE_DISABLE 0x0
static void omap2_apll_allow_idle(struct clk_hw_omap *clk)
{
omap2_apll_set_autoidle(clk, OMAP2_APLL_AUTOIDLE_LOW_POWER_STOP);
}
static void omap2_apll_deny_idle(struct clk_hw_omap *clk)
{
omap2_apll_set_autoidle(clk, OMAP2_APLL_AUTOIDLE_DISABLE);
}
static const struct clk_hw_omap_ops omap2_apll_hwops = {
.allow_idle = &omap2_apll_allow_idle,
.deny_idle = &omap2_apll_deny_idle,
};
static void __init of_omap2_apll_setup(struct device_node *node)
{
struct dpll_data *ad = NULL;
struct clk_hw_omap *clk_hw = NULL;
struct clk_init_data *init = NULL;
struct clk *clk;
const char *parent_name;
u32 val;
int ret;
ad = kzalloc(sizeof(*ad), GFP_KERNEL);
clk_hw = kzalloc(sizeof(*clk_hw), GFP_KERNEL);
init = kzalloc(sizeof(*init), GFP_KERNEL);
if (!ad || !clk_hw || !init)
goto cleanup;
clk_hw->dpll_data = ad;
clk_hw->hw.init = init;
init->ops = &omap2_apll_ops;
init->name = node->name;
clk_hw->ops = &omap2_apll_hwops;
init->num_parents = of_clk_get_parent_count(node);
if (init->num_parents != 1) {
pr_err("%pOFn must have one parent\n", node);
goto cleanup;
}
parent_name = of_clk_get_parent_name(node, 0);
init->parent_names = &parent_name;
if (of_property_read_u32(node, "ti,clock-frequency", &val)) {
pr_err("%pOFn missing clock-frequency\n", node);
goto cleanup;
}
clk_hw->fixed_rate = val;
if (of_property_read_u32(node, "ti,bit-shift", &val)) {
pr_err("%pOFn missing bit-shift\n", node);
goto cleanup;
}
clk_hw->enable_bit = val;
ad->enable_mask = 0x3 << val;
ad->autoidle_mask = 0x3 << val;
if (of_property_read_u32(node, "ti,idlest-shift", &val)) {
pr_err("%pOFn missing idlest-shift\n", node);
goto cleanup;
}
ad->idlest_mask = 1 << val;
ret = ti_clk_get_reg_addr(node, 0, &ad->control_reg);
ret |= ti_clk_get_reg_addr(node, 1, &ad->autoidle_reg);
ret |= ti_clk_get_reg_addr(node, 2, &ad->idlest_reg);
if (ret)
goto cleanup;
clk = ti_clk_register_omap_hw(NULL, &clk_hw->hw, node->name);
if (!IS_ERR(clk)) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
kfree(init);
return;
}
cleanup:
kfree(ad);
kfree(clk_hw);
kfree(init);
}
CLK_OF_DECLARE(omap2_apll_clock, "ti,omap2-apll-clock",
of_omap2_apll_setup);