linux/arch/powerpc/perf/imc-pmu.c

1865 lines
46 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* In-Memory Collection (IMC) Performance Monitor counter support.
*
* Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
* (C) 2017 Anju T Sudhakar, IBM Corporation.
* (C) 2017 Hemant K Shaw, IBM Corporation.
*/
#include <linux/perf_event.h>
#include <linux/slab.h>
#include <asm/opal.h>
#include <asm/imc-pmu.h>
#include <asm/cputhreads.h>
#include <asm/smp.h>
#include <linux/string.h>
/* Nest IMC data structures and variables */
/*
* Used to avoid races in counting the nest-pmu units during hotplug
* register and unregister
*/
static DEFINE_MUTEX(nest_init_lock);
static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
static struct imc_pmu **per_nest_pmu_arr;
static cpumask_t nest_imc_cpumask;
static struct imc_pmu_ref *nest_imc_refc;
static int nest_pmus;
/* Core IMC data structures and variables */
static cpumask_t core_imc_cpumask;
static struct imc_pmu_ref *core_imc_refc;
static struct imc_pmu *core_imc_pmu;
/* Thread IMC data structures and variables */
static DEFINE_PER_CPU(u64 *, thread_imc_mem);
static struct imc_pmu *thread_imc_pmu;
static int thread_imc_mem_size;
/* Trace IMC data structures */
static DEFINE_PER_CPU(u64 *, trace_imc_mem);
static struct imc_pmu_ref *trace_imc_refc;
static int trace_imc_mem_size;
/*
* Global data structure used to avoid races between thread,
* core and trace-imc
*/
static struct imc_pmu_ref imc_global_refc = {
.lock = __MUTEX_INITIALIZER(imc_global_refc.lock),
.id = 0,
.refc = 0,
};
static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
{
return container_of(event->pmu, struct imc_pmu, pmu);
}
PMU_FORMAT_ATTR(event, "config:0-61");
PMU_FORMAT_ATTR(offset, "config:0-31");
PMU_FORMAT_ATTR(rvalue, "config:32");
PMU_FORMAT_ATTR(mode, "config:33-40");
static struct attribute *imc_format_attrs[] = {
&format_attr_event.attr,
&format_attr_offset.attr,
&format_attr_rvalue.attr,
&format_attr_mode.attr,
NULL,
};
static struct attribute_group imc_format_group = {
.name = "format",
.attrs = imc_format_attrs,
};
/* Format attribute for imc trace-mode */
PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
static struct attribute *trace_imc_format_attrs[] = {
&format_attr_event.attr,
&format_attr_cpmc_reserved.attr,
&format_attr_cpmc_event.attr,
&format_attr_cpmc_samplesel.attr,
&format_attr_cpmc_load.attr,
NULL,
};
static struct attribute_group trace_imc_format_group = {
.name = "format",
.attrs = trace_imc_format_attrs,
};
/* Get the cpumask printed to a buffer "buf" */
static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
cpumask_t *active_mask;
switch(imc_pmu->domain){
case IMC_DOMAIN_NEST:
active_mask = &nest_imc_cpumask;
break;
case IMC_DOMAIN_CORE:
active_mask = &core_imc_cpumask;
break;
default:
return 0;
}
return cpumap_print_to_pagebuf(true, buf, active_mask);
}
static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
static struct attribute *imc_pmu_cpumask_attrs[] = {
&dev_attr_cpumask.attr,
NULL,
};
static struct attribute_group imc_pmu_cpumask_attr_group = {
.attrs = imc_pmu_cpumask_attrs,
};
/* device_str_attr_create : Populate event "name" and string "str" in attribute */
static struct attribute *device_str_attr_create(const char *name, const char *str)
{
struct perf_pmu_events_attr *attr;
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
return NULL;
sysfs_attr_init(&attr->attr.attr);
attr->event_str = str;
attr->attr.attr.name = name;
attr->attr.attr.mode = 0444;
attr->attr.show = perf_event_sysfs_show;
return &attr->attr.attr;
}
static int imc_parse_event(struct device_node *np, const char *scale,
const char *unit, const char *prefix,
u32 base, struct imc_events *event)
{
const char *s;
u32 reg;
if (of_property_read_u32(np, "reg", &reg))
goto error;
/* Add the base_reg value to the "reg" */
event->value = base + reg;
if (of_property_read_string(np, "event-name", &s))
goto error;
event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
if (!event->name)
goto error;
if (of_property_read_string(np, "scale", &s))
s = scale;
if (s) {
event->scale = kstrdup(s, GFP_KERNEL);
if (!event->scale)
goto error;
}
if (of_property_read_string(np, "unit", &s))
s = unit;
if (s) {
event->unit = kstrdup(s, GFP_KERNEL);
if (!event->unit)
goto error;
}
return 0;
error:
kfree(event->unit);
kfree(event->scale);
kfree(event->name);
return -EINVAL;
}
/*
* imc_free_events: Function to cleanup the events list, having
* "nr_entries".
*/
static void imc_free_events(struct imc_events *events, int nr_entries)
{
int i;
/* Nothing to clean, return */
if (!events)
return;
for (i = 0; i < nr_entries; i++) {
kfree(events[i].unit);
kfree(events[i].scale);
kfree(events[i].name);
}
kfree(events);
}
/*
* update_events_in_group: Update the "events" information in an attr_group
* and assign the attr_group to the pmu "pmu".
*/
static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
{
struct attribute_group *attr_group;
struct attribute **attrs, *dev_str;
struct device_node *np, *pmu_events;
u32 handle, base_reg;
int i = 0, j = 0, ct, ret;
const char *prefix, *g_scale, *g_unit;
const char *ev_val_str, *ev_scale_str, *ev_unit_str;
if (!of_property_read_u32(node, "events", &handle))
pmu_events = of_find_node_by_phandle(handle);
else
return 0;
/* Did not find any node with a given phandle */
if (!pmu_events)
return 0;
/* Get a count of number of child nodes */
ct = of_get_child_count(pmu_events);
/* Get the event prefix */
if (of_property_read_string(node, "events-prefix", &prefix))
return 0;
/* Get a global unit and scale data if available */
if (of_property_read_string(node, "scale", &g_scale))
g_scale = NULL;
if (of_property_read_string(node, "unit", &g_unit))
g_unit = NULL;
/* "reg" property gives out the base offset of the counters data */
of_property_read_u32(node, "reg", &base_reg);
/* Allocate memory for the events */
pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
if (!pmu->events)
return -ENOMEM;
ct = 0;
/* Parse the events and update the struct */
for_each_child_of_node(pmu_events, np) {
ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
if (!ret)
ct++;
}
/* Allocate memory for attribute group */
attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
if (!attr_group) {
imc_free_events(pmu->events, ct);
return -ENOMEM;
}
/*
* Allocate memory for attributes.
* Since we have count of events for this pmu, we also allocate
* memory for the scale and unit attribute for now.
* "ct" has the total event structs added from the events-parent node.
* So allocate three times the "ct" (this includes event, event_scale and
* event_unit).
*/
attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
if (!attrs) {
kfree(attr_group);
imc_free_events(pmu->events, ct);
return -ENOMEM;
}
attr_group->name = "events";
attr_group->attrs = attrs;
do {
ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
if (!dev_str)
continue;
attrs[j++] = dev_str;
if (pmu->events[i].scale) {
ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
if (!dev_str)
continue;
attrs[j++] = dev_str;
}
if (pmu->events[i].unit) {
ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
if (!dev_str)
continue;
attrs[j++] = dev_str;
}
} while (++i < ct);
/* Save the event attribute */
pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
return 0;
}
/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
{
return per_cpu(local_nest_imc_refc, cpu);
}
static void nest_change_cpu_context(int old_cpu, int new_cpu)
{
struct imc_pmu **pn = per_nest_pmu_arr;
if (old_cpu < 0 || new_cpu < 0)
return;
while (*pn) {
perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
pn++;
}
}
static int ppc_nest_imc_cpu_offline(unsigned int cpu)
{
int nid, target = -1;
const struct cpumask *l_cpumask;
struct imc_pmu_ref *ref;
/*
* Check in the designated list for this cpu. Dont bother
* if not one of them.
*/
if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
return 0;
/*
* Check whether nest_imc is registered. We could end up here if the
* cpuhotplug callback registration fails. i.e, callback invokes the
* offline path for all successfully registered nodes. At this stage,
* nest_imc pmu will not be registered and we should return here.
*
* We return with a zero since this is not an offline failure. And
* cpuhp_setup_state() returns the actual failure reason to the caller,
* which in turn will call the cleanup routine.
*/
if (!nest_pmus)
return 0;
/*
* Now that this cpu is one of the designated,
* find a next cpu a) which is online and b) in same chip.
*/
nid = cpu_to_node(cpu);
l_cpumask = cpumask_of_node(nid);
powerpc/perf: Use cpumask_last() to determine the designated cpu for nest/core units. Nest and core IMC (In-Memory Collection counters) assigns a particular cpu as the designated target for counter data collection. During system boot, the first online cpu in a chip gets assigned as the designated cpu for that chip(for nest-imc) and the first online cpu in a core gets assigned as the designated cpu for that core(for core-imc). If the designated cpu goes offline, the next online cpu from the same chip(for nest-imc)/core(for core-imc) is assigned as the next target, and the event context is migrated to the target cpu. Currently, cpumask_any_but() function is used to find the target cpu. Though this function is expected to return a `random` cpu, this always returns the next online cpu. If all cpus in a chip/core is offlined in a sequential manner, starting from the first cpu, the event migration has to happen for all the cpus which goes offline. Since the migration process involves a grace period, the total time taken to offline all the cpus will be significantly high. Example: In a system which has 2 sockets, with NUMA node0 CPU(s): 0-87 NUMA node8 CPU(s): 88-175 Time taken to offline cpu 88-175: real 2m56.099s user 0m0.191s sys 0m0.000s Use cpumask_last() to choose the target cpu, when the designated cpu goes online, so the migration will happen only when the last_cpu in the mask goes offline. This way the time taken to offline all cpus in a chip/core can be reduced. With the patch: Time taken to offline cpu 88-175: real 0m12.207s user 0m0.171s sys 0m0.000s Offlining all cpus in reverse order is also taken care because, cpumask_any_but() is used to find the designated cpu if the last cpu in the mask goes offline. Since cpumask_any_but() always return the first cpu in the mask, that becomes the designated cpu and migration will happen only when the first_cpu in the mask goes offline. Example: With the patch, Time taken to offline cpu from 175-88: real 0m9.330s user 0m0.110s sys 0m0.000s Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-06-10 12:02:29 +05:30
target = cpumask_last(l_cpumask);
/*
* If this(target) is the last cpu in the cpumask for this chip,
* check for any possible online cpu in the chip.
*/
if (unlikely(target == cpu))
target = cpumask_any_but(l_cpumask, cpu);
/*
* Update the cpumask with the target cpu and
* migrate the context if needed
*/
if (target >= 0 && target < nr_cpu_ids) {
cpumask_set_cpu(target, &nest_imc_cpumask);
nest_change_cpu_context(cpu, target);
} else {
opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
get_hard_smp_processor_id(cpu));
/*
* If this is the last cpu in this chip then, skip the reference
* count mutex lock and make the reference count on this chip zero.
*/
ref = get_nest_pmu_ref(cpu);
if (!ref)
return -EINVAL;
ref->refc = 0;
}
return 0;
}
static int ppc_nest_imc_cpu_online(unsigned int cpu)
{
const struct cpumask *l_cpumask;
static struct cpumask tmp_mask;
int res;
/* Get the cpumask of this node */
l_cpumask = cpumask_of_node(cpu_to_node(cpu));
/*
* If this is not the first online CPU on this node, then
* just return.
*/
if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
return 0;
/*
* If this is the first online cpu on this node
* disable the nest counters by making an OPAL call.
*/
res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
get_hard_smp_processor_id(cpu));
if (res)
return res;
/* Make this CPU the designated target for counter collection */
cpumask_set_cpu(cpu, &nest_imc_cpumask);
return 0;
}
static int nest_pmu_cpumask_init(void)
{
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
"perf/powerpc/imc:online",
ppc_nest_imc_cpu_online,
ppc_nest_imc_cpu_offline);
}
static void nest_imc_counters_release(struct perf_event *event)
{
int rc, node_id;
struct imc_pmu_ref *ref;
if (event->cpu < 0)
return;
node_id = cpu_to_node(event->cpu);
/*
* See if we need to disable the nest PMU.
* If no events are currently in use, then we have to take a
* mutex to ensure that we don't race with another task doing
* enable or disable the nest counters.
*/
ref = get_nest_pmu_ref(event->cpu);
if (!ref)
return;
/* Take the mutex lock for this node and then decrement the reference count */
mutex_lock(&ref->lock);
if (ref->refc == 0) {
/*
* The scenario where this is true is, when perf session is
* started, followed by offlining of all cpus in a given node.
*
* In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
* function set the ref->count to zero, if the cpu which is
* about to offline is the last cpu in a given node and make
* an OPAL call to disable the engine in that node.
*
*/
mutex_unlock(&ref->lock);
return;
}
ref->refc--;
if (ref->refc == 0) {
rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
get_hard_smp_processor_id(event->cpu));
if (rc) {
mutex_unlock(&ref->lock);
pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
return;
}
} else if (ref->refc < 0) {
WARN(1, "nest-imc: Invalid event reference count\n");
ref->refc = 0;
}
mutex_unlock(&ref->lock);
}
static int nest_imc_event_init(struct perf_event *event)
{
int chip_id, rc, node_id;
u32 l_config, config = event->attr.config;
struct imc_mem_info *pcni;
struct imc_pmu *pmu;
struct imc_pmu_ref *ref;
bool flag = false;
if (event->attr.type != event->pmu->type)
return -ENOENT;
/* Sampling not supported */
if (event->hw.sample_period)
return -EINVAL;
if (event->cpu < 0)
return -EINVAL;
pmu = imc_event_to_pmu(event);
/* Sanity check for config (event offset) */
if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
return -EINVAL;
/*
* Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
* Get the base memory addresss for this cpu.
*/
chip_id = cpu_to_chip_id(event->cpu);
/* Return, if chip_id is not valid */
if (chip_id < 0)
return -ENODEV;
pcni = pmu->mem_info;
do {
if (pcni->id == chip_id) {
flag = true;
break;
}
pcni++;
} while (pcni->vbase != 0);
if (!flag)
return -ENODEV;
/*
* Add the event offset to the base address.
*/
l_config = config & IMC_EVENT_OFFSET_MASK;
event->hw.event_base = (u64)pcni->vbase + l_config;
node_id = cpu_to_node(event->cpu);
/*
* Get the imc_pmu_ref struct for this node.
* Take the mutex lock and then increment the count of nest pmu events
* inited.
*/
ref = get_nest_pmu_ref(event->cpu);
if (!ref)
return -EINVAL;
mutex_lock(&ref->lock);
if (ref->refc == 0) {
rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
get_hard_smp_processor_id(event->cpu));
if (rc) {
mutex_unlock(&ref->lock);
pr_err("nest-imc: Unable to start the counters for node %d\n",
node_id);
return rc;
}
}
++ref->refc;
mutex_unlock(&ref->lock);
event->destroy = nest_imc_counters_release;
return 0;
}
/*
* core_imc_mem_init : Initializes memory for the current core.
*
* Uses alloc_pages_node() and uses the returned address as an argument to
* an opal call to configure the pdbar. The address sent as an argument is
* converted to physical address before the opal call is made. This is the
* base address at which the core imc counters are populated.
*/
static int core_imc_mem_init(int cpu, int size)
{
int nid, rc = 0, core_id = (cpu / threads_per_core);
struct imc_mem_info *mem_info;
struct page *page;
/*
* alloc_pages_node() will allocate memory for core in the
* local node only.
*/
nid = cpu_to_node(cpu);
mem_info = &core_imc_pmu->mem_info[core_id];
mem_info->id = core_id;
/* We need only vbase for core counters */
page = alloc_pages_node(nid,
GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
__GFP_NOWARN, get_order(size));
if (!page)
return -ENOMEM;
mem_info->vbase = page_address(page);
/* Init the mutex */
core_imc_refc[core_id].id = core_id;
mutex_init(&core_imc_refc[core_id].lock);
rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
__pa((void *)mem_info->vbase),
get_hard_smp_processor_id(cpu));
if (rc) {
free_pages((u64)mem_info->vbase, get_order(size));
mem_info->vbase = NULL;
}
return rc;
}
static bool is_core_imc_mem_inited(int cpu)
{
struct imc_mem_info *mem_info;
int core_id = (cpu / threads_per_core);
mem_info = &core_imc_pmu->mem_info[core_id];
if (!mem_info->vbase)
return false;
return true;
}
static int ppc_core_imc_cpu_online(unsigned int cpu)
{
const struct cpumask *l_cpumask;
static struct cpumask tmp_mask;
int ret = 0;
/* Get the cpumask for this core */
l_cpumask = cpu_sibling_mask(cpu);
/* If a cpu for this core is already set, then, don't do anything */
if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
return 0;
if (!is_core_imc_mem_inited(cpu)) {
ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
if (ret) {
pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
return ret;
}
}
/* set the cpu in the mask */
cpumask_set_cpu(cpu, &core_imc_cpumask);
return 0;
}
static int ppc_core_imc_cpu_offline(unsigned int cpu)
{
unsigned int core_id;
int ncpu;
struct imc_pmu_ref *ref;
/*
* clear this cpu out of the mask, if not present in the mask,
* don't bother doing anything.
*/
if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
return 0;
powerpc/perf: Fix core-imc hotplug callback failure during imc initialization Call trace observed during boot: nest_capp0_imc performance monitor hardware support registered nest_capp1_imc performance monitor hardware support registered core_imc memory allocation for cpu 56 failed Unable to handle kernel paging request for data at address 0xffa400010 Faulting instruction address: 0xc000000000bf3294 0:mon> e cpu 0x0: Vector: 300 (Data Access) at [c000000ff38ff8d0] pc: c000000000bf3294: mutex_lock+0x34/0x90 lr: c000000000bf3288: mutex_lock+0x28/0x90 sp: c000000ff38ffb50 msr: 9000000002009033 dar: ffa400010 dsisr: 80000 current = 0xc000000ff383de00 paca = 0xc000000007ae0000 softe: 0 irq_happened: 0x01 pid = 13, comm = cpuhp/0 Linux version 4.11.0-39.el7a.ppc64le (mockbuild@ppc-058.build.eng.bos.redhat.com) (gcc version 4.8.5 20150623 (Red Hat 4.8.5-16) (GCC) ) #1 SMP Tue Oct 3 07:42:44 EDT 2017 0:mon> t [c000000ff38ffb80] c0000000002ddfac perf_pmu_migrate_context+0xac/0x470 [c000000ff38ffc40] c00000000011385c ppc_core_imc_cpu_offline+0x1ac/0x1e0 [c000000ff38ffc90] c000000000125758 cpuhp_invoke_callback+0x198/0x5d0 [c000000ff38ffd00] c00000000012782c cpuhp_thread_fun+0x8c/0x3d0 [c000000ff38ffd60] c0000000001678d0 smpboot_thread_fn+0x290/0x2a0 [c000000ff38ffdc0] c00000000015ee78 kthread+0x168/0x1b0 [c000000ff38ffe30] c00000000000b368 ret_from_kernel_thread+0x5c/0x74 While registering the cpuhoplug callbacks for core-imc, if we fails in the cpuhotplug online path for any random core (either because opal call to initialize the core-imc counters fails or because memory allocation fails for that core), ppc_core_imc_cpu_offline() will get invoked for other cpus who successfully returned from cpuhotplug online path. But in the ppc_core_imc_cpu_offline() path we are trying to migrate the event context, when core-imc counters are not even initialized. Thus creating the above stack dump. Add a check to see if core-imc counters are enabled or not in the cpuhotplug offline path before migrating the context to handle this failing scenario. Fixes: 885dcd709ba9 ("powerpc/perf: Add nest IMC PMU support") Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-11-02 17:42:26 +05:30
/*
* Check whether core_imc is registered. We could end up here
* if the cpuhotplug callback registration fails. i.e, callback
* invokes the offline path for all sucessfully registered cpus.
* At this stage, core_imc pmu will not be registered and we
* should return here.
*
* We return with a zero since this is not an offline failure.
* And cpuhp_setup_state() returns the actual failure reason
* to the caller, which inturn will call the cleanup routine.
*/
if (!core_imc_pmu->pmu.event_init)
return 0;
/* Find any online cpu in that core except the current "cpu" */
powerpc/perf: Use cpumask_last() to determine the designated cpu for nest/core units. Nest and core IMC (In-Memory Collection counters) assigns a particular cpu as the designated target for counter data collection. During system boot, the first online cpu in a chip gets assigned as the designated cpu for that chip(for nest-imc) and the first online cpu in a core gets assigned as the designated cpu for that core(for core-imc). If the designated cpu goes offline, the next online cpu from the same chip(for nest-imc)/core(for core-imc) is assigned as the next target, and the event context is migrated to the target cpu. Currently, cpumask_any_but() function is used to find the target cpu. Though this function is expected to return a `random` cpu, this always returns the next online cpu. If all cpus in a chip/core is offlined in a sequential manner, starting from the first cpu, the event migration has to happen for all the cpus which goes offline. Since the migration process involves a grace period, the total time taken to offline all the cpus will be significantly high. Example: In a system which has 2 sockets, with NUMA node0 CPU(s): 0-87 NUMA node8 CPU(s): 88-175 Time taken to offline cpu 88-175: real 2m56.099s user 0m0.191s sys 0m0.000s Use cpumask_last() to choose the target cpu, when the designated cpu goes online, so the migration will happen only when the last_cpu in the mask goes offline. This way the time taken to offline all cpus in a chip/core can be reduced. With the patch: Time taken to offline cpu 88-175: real 0m12.207s user 0m0.171s sys 0m0.000s Offlining all cpus in reverse order is also taken care because, cpumask_any_but() is used to find the designated cpu if the last cpu in the mask goes offline. Since cpumask_any_but() always return the first cpu in the mask, that becomes the designated cpu and migration will happen only when the first_cpu in the mask goes offline. Example: With the patch, Time taken to offline cpu from 175-88: real 0m9.330s user 0m0.110s sys 0m0.000s Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-06-10 12:02:29 +05:30
ncpu = cpumask_last(cpu_sibling_mask(cpu));
if (unlikely(ncpu == cpu))
ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
if (ncpu >= 0 && ncpu < nr_cpu_ids) {
cpumask_set_cpu(ncpu, &core_imc_cpumask);
perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
} else {
/*
* If this is the last cpu in this core then, skip taking refernce
* count mutex lock for this core and directly zero "refc" for
* this core.
*/
opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
get_hard_smp_processor_id(cpu));
core_id = cpu / threads_per_core;
ref = &core_imc_refc[core_id];
if (!ref)
return -EINVAL;
ref->refc = 0;
/*
* Reduce the global reference count, if this is the
* last cpu in this core and core-imc event running
* in this cpu.
*/
mutex_lock(&imc_global_refc.lock);
if (imc_global_refc.id == IMC_DOMAIN_CORE)
imc_global_refc.refc--;
mutex_unlock(&imc_global_refc.lock);
}
return 0;
}
static int core_imc_pmu_cpumask_init(void)
{
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
"perf/powerpc/imc_core:online",
ppc_core_imc_cpu_online,
ppc_core_imc_cpu_offline);
}
static void reset_global_refc(struct perf_event *event)
{
mutex_lock(&imc_global_refc.lock);
imc_global_refc.refc--;
/*
* If no other thread is running any
* event for this domain(thread/core/trace),
* set the global id to zero.
*/
if (imc_global_refc.refc <= 0) {
imc_global_refc.refc = 0;
imc_global_refc.id = 0;
}
mutex_unlock(&imc_global_refc.lock);
}
static void core_imc_counters_release(struct perf_event *event)
{
int rc, core_id;
struct imc_pmu_ref *ref;
if (event->cpu < 0)
return;
/*
* See if we need to disable the IMC PMU.
* If no events are currently in use, then we have to take a
* mutex to ensure that we don't race with another task doing
* enable or disable the core counters.
*/
core_id = event->cpu / threads_per_core;
/* Take the mutex lock and decrement the refernce count for this core */
ref = &core_imc_refc[core_id];
if (!ref)
return;
mutex_lock(&ref->lock);
if (ref->refc == 0) {
/*
* The scenario where this is true is, when perf session is
* started, followed by offlining of all cpus in a given core.
*
* In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
* function set the ref->count to zero, if the cpu which is
* about to offline is the last cpu in a given core and make
* an OPAL call to disable the engine in that core.
*
*/
mutex_unlock(&ref->lock);
return;
}
ref->refc--;
if (ref->refc == 0) {
rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
get_hard_smp_processor_id(event->cpu));
if (rc) {
mutex_unlock(&ref->lock);
pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
return;
}
} else if (ref->refc < 0) {
WARN(1, "core-imc: Invalid event reference count\n");
ref->refc = 0;
}
mutex_unlock(&ref->lock);
reset_global_refc(event);
}
static int core_imc_event_init(struct perf_event *event)
{
int core_id, rc;
u64 config = event->attr.config;
struct imc_mem_info *pcmi;
struct imc_pmu *pmu;
struct imc_pmu_ref *ref;
if (event->attr.type != event->pmu->type)
return -ENOENT;
/* Sampling not supported */
if (event->hw.sample_period)
return -EINVAL;
if (event->cpu < 0)
return -EINVAL;
event->hw.idx = -1;
pmu = imc_event_to_pmu(event);
/* Sanity check for config (event offset) */
if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
return -EINVAL;
if (!is_core_imc_mem_inited(event->cpu))
return -ENODEV;
core_id = event->cpu / threads_per_core;
pcmi = &core_imc_pmu->mem_info[core_id];
if ((!pcmi->vbase))
return -ENODEV;
/* Get the core_imc mutex for this core */
ref = &core_imc_refc[core_id];
if (!ref)
return -EINVAL;
/*
* Core pmu units are enabled only when it is used.
* See if this is triggered for the first time.
* If yes, take the mutex lock and enable the core counters.
* If not, just increment the count in core_imc_refc struct.
*/
mutex_lock(&ref->lock);
if (ref->refc == 0) {
rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
get_hard_smp_processor_id(event->cpu));
if (rc) {
mutex_unlock(&ref->lock);
pr_err("core-imc: Unable to start the counters for core %d\n",
core_id);
return rc;
}
}
++ref->refc;
mutex_unlock(&ref->lock);
/*
* Since the system can run either in accumulation or trace-mode
* of IMC at a time, core-imc events are allowed only if no other
* trace/thread imc events are enabled/monitored.
*
* Take the global lock, and check the refc.id
* to know whether any other trace/thread imc
* events are running.
*/
mutex_lock(&imc_global_refc.lock);
if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
/*
* No other trace/thread imc events are running in
* the system, so set the refc.id to core-imc.
*/
imc_global_refc.id = IMC_DOMAIN_CORE;
imc_global_refc.refc++;
} else {
mutex_unlock(&imc_global_refc.lock);
return -EBUSY;
}
mutex_unlock(&imc_global_refc.lock);
event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
event->destroy = core_imc_counters_release;
return 0;
}
/*
* Allocates a page of memory for each of the online cpus, and load
* LDBAR with 0.
* The physical base address of the page allocated for a cpu will be
* written to the LDBAR for that cpu, when the thread-imc event
* is added.
*
* LDBAR Register Layout:
*
* 0 4 8 12 16 20 24 28
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* | | [ ] [ Counter Address [8:50]
* | * Mode |
* | * PB Scope
* * Enable/Disable
*
* 32 36 40 44 48 52 56 60
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* Counter Address [8:50] ]
*
*/
static int thread_imc_mem_alloc(int cpu_id, int size)
{
u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
int nid = cpu_to_node(cpu_id);
if (!local_mem) {
struct page *page;
/*
* This case could happen only once at start, since we dont
* free the memory in cpu offline path.
*/
page = alloc_pages_node(nid,
powerpc/perf: Add ___GFP_NOWARN flag to alloc_pages_node() Stack trace output during a stress test: [ 4.310049] Freeing initrd memory: 22592K [ 4.310646] rtas_flash: no firmware flash support [ 4.313341] cpuhp/64: page allocation failure: order:0, mode:0x14480c0(GFP_KERNEL|__GFP_ZERO|__GFP_THISNODE), nodemask=(null) [ 4.313465] cpuhp/64 cpuset=/ mems_allowed=0 [ 4.313521] CPU: 64 PID: 392 Comm: cpuhp/64 Not tainted 4.11.0-39.el7a.ppc64le #1 [ 4.313588] Call Trace: [ 4.313622] [c000000f1fb1b8e0] [c000000000c09388] dump_stack+0xb0/0xf0 (unreliable) [ 4.313694] [c000000f1fb1b920] [c00000000030ef6c] warn_alloc+0x12c/0x1c0 [ 4.313753] [c000000f1fb1b9c0] [c00000000030ff68] __alloc_pages_nodemask+0xea8/0x1000 [ 4.313823] [c000000f1fb1bbb0] [c000000000113a8c] core_imc_mem_init+0xbc/0x1c0 [ 4.313892] [c000000f1fb1bc00] [c000000000113cdc] ppc_core_imc_cpu_online+0x14c/0x170 [ 4.313962] [c000000f1fb1bc90] [c000000000125758] cpuhp_invoke_callback+0x198/0x5d0 [ 4.314031] [c000000f1fb1bd00] [c00000000012782c] cpuhp_thread_fun+0x8c/0x3d0 [ 4.314101] [c000000f1fb1bd60] [c0000000001678d0] smpboot_thread_fn+0x290/0x2a0 [ 4.314169] [c000000f1fb1bdc0] [c00000000015ee78] kthread+0x168/0x1b0 [ 4.314229] [c000000f1fb1be30] [c00000000000b368] ret_from_kernel_thread+0x5c/0x74 [ 4.314313] Mem-Info: [ 4.314356] active_anon:0 inactive_anon:0 isolated_anon:0 core_imc_mem_init() at system boot use alloc_pages_node() to get memory and alloc_pages_node() throws this stack dump when tried to allocate memory from a node which has no memory behind it. Add a ___GFP_NOWARN flag in allocation request as a fix. Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reported-by: Michael Ellerman <mpe@ellerman.id.au> Reported-by: Venkat R.B <venkatb3@in.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-10-11 18:27:39 +05:30
GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
__GFP_NOWARN, get_order(size));
if (!page)
return -ENOMEM;
local_mem = page_address(page);
per_cpu(thread_imc_mem, cpu_id) = local_mem;
}
mtspr(SPRN_LDBAR, 0);
return 0;
}
static int ppc_thread_imc_cpu_online(unsigned int cpu)
{
return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
}
static int ppc_thread_imc_cpu_offline(unsigned int cpu)
{
/*
* Set the bit 0 of LDBAR to zero.
*
* If bit 0 of LDBAR is unset, it will stop posting
* the counter data to memory.
* For thread-imc, bit 0 of LDBAR will be set to 1 in the
* event_add function. So reset this bit here, to stop the updates
* to memory in the cpu_offline path.
*/
mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
/* Reduce the refc if thread-imc event running on this cpu */
mutex_lock(&imc_global_refc.lock);
if (imc_global_refc.id == IMC_DOMAIN_THREAD)
imc_global_refc.refc--;
mutex_unlock(&imc_global_refc.lock);
return 0;
}
static int thread_imc_cpu_init(void)
{
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
"perf/powerpc/imc_thread:online",
ppc_thread_imc_cpu_online,
ppc_thread_imc_cpu_offline);
}
static int thread_imc_event_init(struct perf_event *event)
{
u32 config = event->attr.config;
struct task_struct *target;
struct imc_pmu *pmu;
if (event->attr.type != event->pmu->type)
return -ENOENT;
powerpc/perf: open access for CAP_PERFMON privileged process Open access to monitoring for CAP_PERFMON privileged process. Providing the access under CAP_PERFMON capability singly, without the rest of CAP_SYS_ADMIN credentials, excludes chances to misuse the credentials and makes operation more secure. CAP_PERFMON implements the principle of least privilege for performance monitoring and observability operations (POSIX IEEE 1003.1e 2.2.2.39 principle of least privilege: A security design principle that states that a process or program be granted only those privileges (e.g., capabilities) necessary to accomplish its legitimate function, and only for the time that such privileges are actually required) For backward compatibility reasons access to the monitoring remains open for CAP_SYS_ADMIN privileged processes but CAP_SYS_ADMIN usage for secure monitoring is discouraged with respect to CAP_PERFMON capability. Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Acked-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Igor Lubashev <ilubashe@akamai.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Serge Hallyn <serge@hallyn.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: intel-gfx@lists.freedesktop.org Cc: linux-doc@vger.kernel.org Cc: linux-man@vger.kernel.org Cc: linux-security-module@vger.kernel.org Cc: selinux@vger.kernel.org Link: http://lore.kernel.org/lkml/ac98cd9f-b59e-673c-c70d-180b3e7695d2@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-02 11:49:36 +03:00
if (!perfmon_capable())
return -EACCES;
/* Sampling not supported */
if (event->hw.sample_period)
return -EINVAL;
event->hw.idx = -1;
pmu = imc_event_to_pmu(event);
/* Sanity check for config offset */
if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
return -EINVAL;
target = event->hw.target;
if (!target)
return -EINVAL;
mutex_lock(&imc_global_refc.lock);
/*
* Check if any other trace/core imc events are running in the
* system, if not set the global id to thread-imc.
*/
if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
imc_global_refc.id = IMC_DOMAIN_THREAD;
imc_global_refc.refc++;
} else {
mutex_unlock(&imc_global_refc.lock);
return -EBUSY;
}
mutex_unlock(&imc_global_refc.lock);
event->pmu->task_ctx_nr = perf_sw_context;
event->destroy = reset_global_refc;
return 0;
}
static bool is_thread_imc_pmu(struct perf_event *event)
{
if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
return true;
return false;
}
static u64 * get_event_base_addr(struct perf_event *event)
{
u64 addr;
if (is_thread_imc_pmu(event)) {
addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
}
return (u64 *)event->hw.event_base;
}
static void thread_imc_pmu_start_txn(struct pmu *pmu,
unsigned int txn_flags)
{
if (txn_flags & ~PERF_PMU_TXN_ADD)
return;
perf_pmu_disable(pmu);
}
static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
{
perf_pmu_enable(pmu);
}
static int thread_imc_pmu_commit_txn(struct pmu *pmu)
{
perf_pmu_enable(pmu);
return 0;
}
static u64 imc_read_counter(struct perf_event *event)
{
u64 *addr, data;
/*
* In-Memory Collection (IMC) counters are free flowing counters.
* So we take a snapshot of the counter value on enable and save it
* to calculate the delta at later stage to present the event counter
* value.
*/
addr = get_event_base_addr(event);
data = be64_to_cpu(READ_ONCE(*addr));
local64_set(&event->hw.prev_count, data);
return data;
}
static void imc_event_update(struct perf_event *event)
{
u64 counter_prev, counter_new, final_count;
counter_prev = local64_read(&event->hw.prev_count);
counter_new = imc_read_counter(event);
final_count = counter_new - counter_prev;
/* Update the delta to the event count */
local64_add(final_count, &event->count);
}
static void imc_event_start(struct perf_event *event, int flags)
{
/*
* In Memory Counters are free flowing counters. HW or the microcode
* keeps adding to the counter offset in memory. To get event
* counter value, we snapshot the value here and we calculate
* delta at later point.
*/
imc_read_counter(event);
}
static void imc_event_stop(struct perf_event *event, int flags)
{
/*
* Take a snapshot and calculate the delta and update
* the event counter values.
*/
imc_event_update(event);
}
static int imc_event_add(struct perf_event *event, int flags)
{
if (flags & PERF_EF_START)
imc_event_start(event, flags);
return 0;
}
static int thread_imc_event_add(struct perf_event *event, int flags)
{
powerpc/perf: Remove sched_task function defined for thread-imc Call trace observed while running perf-fuzzer: CPU: 43 PID: 9088 Comm: perf_fuzzer Not tainted 4.13.0-32-generic #35~lp1746225 task: c000003f776ac900 task.stack: c000003f77728000 NIP: c000000000299b70 LR: c0000000002a4534 CTR: c00000000029bb80 REGS: c000003f7772b760 TRAP: 0700 Not tainted (4.13.0-32-generic) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24008822 XER: 00000000 CFAR: c000000000299a70 SOFTE: 0 GPR00: c0000000002a4534 c000003f7772b9e0 c000000001606200 c000003fef858908 GPR04: c000003f776ac900 0000000000000001 ffffffffffffffff 0000003fee730000 GPR08: 0000000000000000 0000000000000000 c0000000011220d8 0000000000000002 GPR12: c00000000029bb80 c000000007a3d900 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 c000003f776ad090 c000000000c71354 GPR24: c000003fef716780 0000003fee730000 c000003fe69d4200 c000003f776ad330 GPR28: c0000000011220d8 0000000000000001 c0000000014c6108 c000003fef858900 NIP [c000000000299b70] perf_pmu_sched_task+0x170/0x180 LR [c0000000002a4534] __perf_event_task_sched_in+0xc4/0x230 Call Trace: perf_iterate_sb+0x158/0x2a0 (unreliable) __perf_event_task_sched_in+0xc4/0x230 finish_task_switch+0x21c/0x310 __schedule+0x304/0xb80 schedule+0x40/0xc0 do_wait+0x254/0x2e0 kernel_wait4+0xa0/0x1a0 SyS_wait4+0x64/0xc0 system_call+0x58/0x6c Instruction dump: 3beafea0 7faa4800 409eff18 e8010060 eb610028 ebc10040 7c0803a6 38210050 eb81ffe0 eba1ffe8 ebe1fff8 4e800020 <0fe00000> 4bffffbc 60000000 60420000 ---[ end trace 8c46856d314c1811 ]--- The context switch call-backs for thread-imc are defined in sched_task function. So when thread-imc events are grouped with software pmu events, perf_pmu_sched_task hits the WARN_ON_ONCE condition, since software PMUs are assumed not to have a sched_task defined. Patch to move the thread_imc enable/disable opal call back from sched_task to event_[add/del] function Fixes: f74c89bd80fb ("powerpc/perf: Add thread IMC PMU support") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Tested-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-18 13:05:25 +05:30
int core_id;
struct imc_pmu_ref *ref;
u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
powerpc/perf: Remove sched_task function defined for thread-imc Call trace observed while running perf-fuzzer: CPU: 43 PID: 9088 Comm: perf_fuzzer Not tainted 4.13.0-32-generic #35~lp1746225 task: c000003f776ac900 task.stack: c000003f77728000 NIP: c000000000299b70 LR: c0000000002a4534 CTR: c00000000029bb80 REGS: c000003f7772b760 TRAP: 0700 Not tainted (4.13.0-32-generic) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24008822 XER: 00000000 CFAR: c000000000299a70 SOFTE: 0 GPR00: c0000000002a4534 c000003f7772b9e0 c000000001606200 c000003fef858908 GPR04: c000003f776ac900 0000000000000001 ffffffffffffffff 0000003fee730000 GPR08: 0000000000000000 0000000000000000 c0000000011220d8 0000000000000002 GPR12: c00000000029bb80 c000000007a3d900 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 c000003f776ad090 c000000000c71354 GPR24: c000003fef716780 0000003fee730000 c000003fe69d4200 c000003f776ad330 GPR28: c0000000011220d8 0000000000000001 c0000000014c6108 c000003fef858900 NIP [c000000000299b70] perf_pmu_sched_task+0x170/0x180 LR [c0000000002a4534] __perf_event_task_sched_in+0xc4/0x230 Call Trace: perf_iterate_sb+0x158/0x2a0 (unreliable) __perf_event_task_sched_in+0xc4/0x230 finish_task_switch+0x21c/0x310 __schedule+0x304/0xb80 schedule+0x40/0xc0 do_wait+0x254/0x2e0 kernel_wait4+0xa0/0x1a0 SyS_wait4+0x64/0xc0 system_call+0x58/0x6c Instruction dump: 3beafea0 7faa4800 409eff18 e8010060 eb610028 ebc10040 7c0803a6 38210050 eb81ffe0 eba1ffe8 ebe1fff8 4e800020 <0fe00000> 4bffffbc 60000000 60420000 ---[ end trace 8c46856d314c1811 ]--- The context switch call-backs for thread-imc are defined in sched_task function. So when thread-imc events are grouped with software pmu events, perf_pmu_sched_task hits the WARN_ON_ONCE condition, since software PMUs are assumed not to have a sched_task defined. Patch to move the thread_imc enable/disable opal call back from sched_task to event_[add/del] function Fixes: f74c89bd80fb ("powerpc/perf: Add thread IMC PMU support") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Tested-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-18 13:05:25 +05:30
if (flags & PERF_EF_START)
imc_event_start(event, flags);
powerpc/perf: Remove sched_task function defined for thread-imc Call trace observed while running perf-fuzzer: CPU: 43 PID: 9088 Comm: perf_fuzzer Not tainted 4.13.0-32-generic #35~lp1746225 task: c000003f776ac900 task.stack: c000003f77728000 NIP: c000000000299b70 LR: c0000000002a4534 CTR: c00000000029bb80 REGS: c000003f7772b760 TRAP: 0700 Not tainted (4.13.0-32-generic) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24008822 XER: 00000000 CFAR: c000000000299a70 SOFTE: 0 GPR00: c0000000002a4534 c000003f7772b9e0 c000000001606200 c000003fef858908 GPR04: c000003f776ac900 0000000000000001 ffffffffffffffff 0000003fee730000 GPR08: 0000000000000000 0000000000000000 c0000000011220d8 0000000000000002 GPR12: c00000000029bb80 c000000007a3d900 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 c000003f776ad090 c000000000c71354 GPR24: c000003fef716780 0000003fee730000 c000003fe69d4200 c000003f776ad330 GPR28: c0000000011220d8 0000000000000001 c0000000014c6108 c000003fef858900 NIP [c000000000299b70] perf_pmu_sched_task+0x170/0x180 LR [c0000000002a4534] __perf_event_task_sched_in+0xc4/0x230 Call Trace: perf_iterate_sb+0x158/0x2a0 (unreliable) __perf_event_task_sched_in+0xc4/0x230 finish_task_switch+0x21c/0x310 __schedule+0x304/0xb80 schedule+0x40/0xc0 do_wait+0x254/0x2e0 kernel_wait4+0xa0/0x1a0 SyS_wait4+0x64/0xc0 system_call+0x58/0x6c Instruction dump: 3beafea0 7faa4800 409eff18 e8010060 eb610028 ebc10040 7c0803a6 38210050 eb81ffe0 eba1ffe8 ebe1fff8 4e800020 <0fe00000> 4bffffbc 60000000 60420000 ---[ end trace 8c46856d314c1811 ]--- The context switch call-backs for thread-imc are defined in sched_task function. So when thread-imc events are grouped with software pmu events, perf_pmu_sched_task hits the WARN_ON_ONCE condition, since software PMUs are assumed not to have a sched_task defined. Patch to move the thread_imc enable/disable opal call back from sched_task to event_[add/del] function Fixes: f74c89bd80fb ("powerpc/perf: Add thread IMC PMU support") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Tested-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-18 13:05:25 +05:30
if (!is_core_imc_mem_inited(smp_processor_id()))
return -EINVAL;
core_id = smp_processor_id() / threads_per_core;
ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
mtspr(SPRN_LDBAR, ldbar_value);
powerpc/perf: Remove sched_task function defined for thread-imc Call trace observed while running perf-fuzzer: CPU: 43 PID: 9088 Comm: perf_fuzzer Not tainted 4.13.0-32-generic #35~lp1746225 task: c000003f776ac900 task.stack: c000003f77728000 NIP: c000000000299b70 LR: c0000000002a4534 CTR: c00000000029bb80 REGS: c000003f7772b760 TRAP: 0700 Not tainted (4.13.0-32-generic) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24008822 XER: 00000000 CFAR: c000000000299a70 SOFTE: 0 GPR00: c0000000002a4534 c000003f7772b9e0 c000000001606200 c000003fef858908 GPR04: c000003f776ac900 0000000000000001 ffffffffffffffff 0000003fee730000 GPR08: 0000000000000000 0000000000000000 c0000000011220d8 0000000000000002 GPR12: c00000000029bb80 c000000007a3d900 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 c000003f776ad090 c000000000c71354 GPR24: c000003fef716780 0000003fee730000 c000003fe69d4200 c000003f776ad330 GPR28: c0000000011220d8 0000000000000001 c0000000014c6108 c000003fef858900 NIP [c000000000299b70] perf_pmu_sched_task+0x170/0x180 LR [c0000000002a4534] __perf_event_task_sched_in+0xc4/0x230 Call Trace: perf_iterate_sb+0x158/0x2a0 (unreliable) __perf_event_task_sched_in+0xc4/0x230 finish_task_switch+0x21c/0x310 __schedule+0x304/0xb80 schedule+0x40/0xc0 do_wait+0x254/0x2e0 kernel_wait4+0xa0/0x1a0 SyS_wait4+0x64/0xc0 system_call+0x58/0x6c Instruction dump: 3beafea0 7faa4800 409eff18 e8010060 eb610028 ebc10040 7c0803a6 38210050 eb81ffe0 eba1ffe8 ebe1fff8 4e800020 <0fe00000> 4bffffbc 60000000 60420000 ---[ end trace 8c46856d314c1811 ]--- The context switch call-backs for thread-imc are defined in sched_task function. So when thread-imc events are grouped with software pmu events, perf_pmu_sched_task hits the WARN_ON_ONCE condition, since software PMUs are assumed not to have a sched_task defined. Patch to move the thread_imc enable/disable opal call back from sched_task to event_[add/del] function Fixes: f74c89bd80fb ("powerpc/perf: Add thread IMC PMU support") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Tested-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-18 13:05:25 +05:30
/*
* imc pmus are enabled only when it is used.
* See if this is triggered for the first time.
* If yes, take the mutex lock and enable the counters.
* If not, just increment the count in ref count struct.
*/
ref = &core_imc_refc[core_id];
if (!ref)
return -EINVAL;
mutex_lock(&ref->lock);
if (ref->refc == 0) {
if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
get_hard_smp_processor_id(smp_processor_id()))) {
mutex_unlock(&ref->lock);
pr_err("thread-imc: Unable to start the counter\
for core %d\n", core_id);
return -EINVAL;
}
}
++ref->refc;
mutex_unlock(&ref->lock);
return 0;
}
static void thread_imc_event_del(struct perf_event *event, int flags)
{
powerpc/perf: Remove sched_task function defined for thread-imc Call trace observed while running perf-fuzzer: CPU: 43 PID: 9088 Comm: perf_fuzzer Not tainted 4.13.0-32-generic #35~lp1746225 task: c000003f776ac900 task.stack: c000003f77728000 NIP: c000000000299b70 LR: c0000000002a4534 CTR: c00000000029bb80 REGS: c000003f7772b760 TRAP: 0700 Not tainted (4.13.0-32-generic) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24008822 XER: 00000000 CFAR: c000000000299a70 SOFTE: 0 GPR00: c0000000002a4534 c000003f7772b9e0 c000000001606200 c000003fef858908 GPR04: c000003f776ac900 0000000000000001 ffffffffffffffff 0000003fee730000 GPR08: 0000000000000000 0000000000000000 c0000000011220d8 0000000000000002 GPR12: c00000000029bb80 c000000007a3d900 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 c000003f776ad090 c000000000c71354 GPR24: c000003fef716780 0000003fee730000 c000003fe69d4200 c000003f776ad330 GPR28: c0000000011220d8 0000000000000001 c0000000014c6108 c000003fef858900 NIP [c000000000299b70] perf_pmu_sched_task+0x170/0x180 LR [c0000000002a4534] __perf_event_task_sched_in+0xc4/0x230 Call Trace: perf_iterate_sb+0x158/0x2a0 (unreliable) __perf_event_task_sched_in+0xc4/0x230 finish_task_switch+0x21c/0x310 __schedule+0x304/0xb80 schedule+0x40/0xc0 do_wait+0x254/0x2e0 kernel_wait4+0xa0/0x1a0 SyS_wait4+0x64/0xc0 system_call+0x58/0x6c Instruction dump: 3beafea0 7faa4800 409eff18 e8010060 eb610028 ebc10040 7c0803a6 38210050 eb81ffe0 eba1ffe8 ebe1fff8 4e800020 <0fe00000> 4bffffbc 60000000 60420000 ---[ end trace 8c46856d314c1811 ]--- The context switch call-backs for thread-imc are defined in sched_task function. So when thread-imc events are grouped with software pmu events, perf_pmu_sched_task hits the WARN_ON_ONCE condition, since software PMUs are assumed not to have a sched_task defined. Patch to move the thread_imc enable/disable opal call back from sched_task to event_[add/del] function Fixes: f74c89bd80fb ("powerpc/perf: Add thread IMC PMU support") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Tested-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-18 13:05:25 +05:30
int core_id;
struct imc_pmu_ref *ref;
core_id = smp_processor_id() / threads_per_core;
ref = &core_imc_refc[core_id];
if (!ref) {
pr_debug("imc: Failed to get event reference count\n");
return;
}
powerpc/perf: Remove sched_task function defined for thread-imc Call trace observed while running perf-fuzzer: CPU: 43 PID: 9088 Comm: perf_fuzzer Not tainted 4.13.0-32-generic #35~lp1746225 task: c000003f776ac900 task.stack: c000003f77728000 NIP: c000000000299b70 LR: c0000000002a4534 CTR: c00000000029bb80 REGS: c000003f7772b760 TRAP: 0700 Not tainted (4.13.0-32-generic) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24008822 XER: 00000000 CFAR: c000000000299a70 SOFTE: 0 GPR00: c0000000002a4534 c000003f7772b9e0 c000000001606200 c000003fef858908 GPR04: c000003f776ac900 0000000000000001 ffffffffffffffff 0000003fee730000 GPR08: 0000000000000000 0000000000000000 c0000000011220d8 0000000000000002 GPR12: c00000000029bb80 c000000007a3d900 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 c000003f776ad090 c000000000c71354 GPR24: c000003fef716780 0000003fee730000 c000003fe69d4200 c000003f776ad330 GPR28: c0000000011220d8 0000000000000001 c0000000014c6108 c000003fef858900 NIP [c000000000299b70] perf_pmu_sched_task+0x170/0x180 LR [c0000000002a4534] __perf_event_task_sched_in+0xc4/0x230 Call Trace: perf_iterate_sb+0x158/0x2a0 (unreliable) __perf_event_task_sched_in+0xc4/0x230 finish_task_switch+0x21c/0x310 __schedule+0x304/0xb80 schedule+0x40/0xc0 do_wait+0x254/0x2e0 kernel_wait4+0xa0/0x1a0 SyS_wait4+0x64/0xc0 system_call+0x58/0x6c Instruction dump: 3beafea0 7faa4800 409eff18 e8010060 eb610028 ebc10040 7c0803a6 38210050 eb81ffe0 eba1ffe8 ebe1fff8 4e800020 <0fe00000> 4bffffbc 60000000 60420000 ---[ end trace 8c46856d314c1811 ]--- The context switch call-backs for thread-imc are defined in sched_task function. So when thread-imc events are grouped with software pmu events, perf_pmu_sched_task hits the WARN_ON_ONCE condition, since software PMUs are assumed not to have a sched_task defined. Patch to move the thread_imc enable/disable opal call back from sched_task to event_[add/del] function Fixes: f74c89bd80fb ("powerpc/perf: Add thread IMC PMU support") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Tested-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-18 13:05:25 +05:30
mutex_lock(&ref->lock);
ref->refc--;
if (ref->refc == 0) {
if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
get_hard_smp_processor_id(smp_processor_id()))) {
mutex_unlock(&ref->lock);
pr_err("thread-imc: Unable to stop the counters\
for core %d\n", core_id);
return;
}
} else if (ref->refc < 0) {
ref->refc = 0;
}
mutex_unlock(&ref->lock);
/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
/*
* Take a snapshot and calculate the delta and update
* the event counter values.
*/
imc_event_update(event);
}
/*
* Allocate a page of memory for each cpu, and load LDBAR with 0.
*/
static int trace_imc_mem_alloc(int cpu_id, int size)
{
u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
int phys_id = cpu_to_node(cpu_id), rc = 0;
int core_id = (cpu_id / threads_per_core);
if (!local_mem) {
struct page *page;
page = alloc_pages_node(phys_id,
GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
__GFP_NOWARN, get_order(size));
if (!page)
return -ENOMEM;
local_mem = page_address(page);
per_cpu(trace_imc_mem, cpu_id) = local_mem;
/* Initialise the counters for trace mode */
rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
get_hard_smp_processor_id(cpu_id));
if (rc) {
pr_info("IMC:opal init failed for trace imc\n");
return rc;
}
}
/* Init the mutex, if not already */
trace_imc_refc[core_id].id = core_id;
mutex_init(&trace_imc_refc[core_id].lock);
mtspr(SPRN_LDBAR, 0);
return 0;
}
static int ppc_trace_imc_cpu_online(unsigned int cpu)
{
return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
}
static int ppc_trace_imc_cpu_offline(unsigned int cpu)
{
/*
* No need to set bit 0 of LDBAR to zero, as
* it is set to zero for imc trace-mode
*
* Reduce the refc if any trace-imc event running
* on this cpu.
*/
mutex_lock(&imc_global_refc.lock);
if (imc_global_refc.id == IMC_DOMAIN_TRACE)
imc_global_refc.refc--;
mutex_unlock(&imc_global_refc.lock);
return 0;
}
static int trace_imc_cpu_init(void)
{
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
"perf/powerpc/imc_trace:online",
ppc_trace_imc_cpu_online,
ppc_trace_imc_cpu_offline);
}
static u64 get_trace_imc_event_base_addr(void)
{
return (u64)per_cpu(trace_imc_mem, smp_processor_id());
}
/*
* Function to parse trace-imc data obtained
* and to prepare the perf sample.
*/
static int trace_imc_prepare_sample(struct trace_imc_data *mem,
struct perf_sample_data *data,
u64 *prev_tb,
struct perf_event_header *header,
struct perf_event *event)
{
/* Sanity checks for a valid record */
if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
else
return -EINVAL;
if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
be64_to_cpu(READ_ONCE(mem->tb2)))
return -EINVAL;
/* Prepare perf sample */
data->ip = be64_to_cpu(READ_ONCE(mem->ip));
data->period = event->hw.last_period;
header->type = PERF_RECORD_SAMPLE;
header->size = sizeof(*header) + event->header_size;
header->misc = 0;
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
case 0:/* when MSR HV and PR not set in the trace-record */
header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
break;
case 1: /* MSR HV is 0 and PR is 1 */
header->misc |= PERF_RECORD_MISC_GUEST_USER;
break;
case 2: /* MSR HV is 1 and PR is 0 */
header->misc |= PERF_RECORD_MISC_KERNEL;
break;
case 3: /* MSR HV is 1 and PR is 1 */
header->misc |= PERF_RECORD_MISC_USER;
break;
default:
pr_info("IMC: Unable to set the flag based on MSR bits\n");
break;
}
} else {
if (is_kernel_addr(data->ip))
header->misc |= PERF_RECORD_MISC_KERNEL;
else
header->misc |= PERF_RECORD_MISC_USER;
}
perf_event_header__init_id(header, data, event);
return 0;
}
static void dump_trace_imc_data(struct perf_event *event)
{
struct trace_imc_data *mem;
int i, ret;
u64 prev_tb = 0;
mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
i++, mem++) {
struct perf_sample_data data;
struct perf_event_header header;
ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
if (ret) /* Exit, if not a valid record */
break;
else {
/* If this is a valid record, create the sample */
struct perf_output_handle handle;
if (perf_output_begin(&handle, &data, event, header.size))
return;
perf_output_sample(&handle, &header, &data, event);
perf_output_end(&handle);
}
}
}
static int trace_imc_event_add(struct perf_event *event, int flags)
{
int core_id = smp_processor_id() / threads_per_core;
struct imc_pmu_ref *ref = NULL;
u64 local_mem, ldbar_value;
/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
local_mem = get_trace_imc_event_base_addr();
ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
/* trace-imc reference count */
if (trace_imc_refc)
ref = &trace_imc_refc[core_id];
if (!ref) {
pr_debug("imc: Failed to get the event reference count\n");
return -EINVAL;
}
mtspr(SPRN_LDBAR, ldbar_value);
mutex_lock(&ref->lock);
if (ref->refc == 0) {
if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
get_hard_smp_processor_id(smp_processor_id()))) {
mutex_unlock(&ref->lock);
pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
return -EINVAL;
}
}
++ref->refc;
mutex_unlock(&ref->lock);
return 0;
}
static void trace_imc_event_read(struct perf_event *event)
{
return;
}
static void trace_imc_event_stop(struct perf_event *event, int flags)
{
u64 local_mem = get_trace_imc_event_base_addr();
dump_trace_imc_data(event);
memset((void *)local_mem, 0, sizeof(u64));
}
static void trace_imc_event_start(struct perf_event *event, int flags)
{
return;
}
static void trace_imc_event_del(struct perf_event *event, int flags)
{
int core_id = smp_processor_id() / threads_per_core;
struct imc_pmu_ref *ref = NULL;
if (trace_imc_refc)
ref = &trace_imc_refc[core_id];
if (!ref) {
pr_debug("imc: Failed to get event reference count\n");
return;
}
mutex_lock(&ref->lock);
ref->refc--;
if (ref->refc == 0) {
if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
get_hard_smp_processor_id(smp_processor_id()))) {
mutex_unlock(&ref->lock);
pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
return;
}
} else if (ref->refc < 0) {
ref->refc = 0;
}
mutex_unlock(&ref->lock);
trace_imc_event_stop(event, flags);
}
static int trace_imc_event_init(struct perf_event *event)
{
if (event->attr.type != event->pmu->type)
return -ENOENT;
powerpc/perf: open access for CAP_PERFMON privileged process Open access to monitoring for CAP_PERFMON privileged process. Providing the access under CAP_PERFMON capability singly, without the rest of CAP_SYS_ADMIN credentials, excludes chances to misuse the credentials and makes operation more secure. CAP_PERFMON implements the principle of least privilege for performance monitoring and observability operations (POSIX IEEE 1003.1e 2.2.2.39 principle of least privilege: A security design principle that states that a process or program be granted only those privileges (e.g., capabilities) necessary to accomplish its legitimate function, and only for the time that such privileges are actually required) For backward compatibility reasons access to the monitoring remains open for CAP_SYS_ADMIN privileged processes but CAP_SYS_ADMIN usage for secure monitoring is discouraged with respect to CAP_PERFMON capability. Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com> Reviewed-by: James Morris <jamorris@linux.microsoft.com> Acked-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Igor Lubashev <ilubashe@akamai.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Serge Hallyn <serge@hallyn.com> Cc: Song Liu <songliubraving@fb.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: intel-gfx@lists.freedesktop.org Cc: linux-doc@vger.kernel.org Cc: linux-man@vger.kernel.org Cc: linux-security-module@vger.kernel.org Cc: selinux@vger.kernel.org Link: http://lore.kernel.org/lkml/ac98cd9f-b59e-673c-c70d-180b3e7695d2@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-02 11:49:36 +03:00
if (!perfmon_capable())
return -EACCES;
/* Return if this is a couting event */
if (event->attr.sample_period == 0)
return -ENOENT;
/*
* Take the global lock, and make sure
* no other thread is running any core/thread imc
* events
*/
mutex_lock(&imc_global_refc.lock);
if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
/*
* No core/thread imc events are running in the
* system, so set the refc.id to trace-imc.
*/
imc_global_refc.id = IMC_DOMAIN_TRACE;
imc_global_refc.refc++;
} else {
mutex_unlock(&imc_global_refc.lock);
return -EBUSY;
}
mutex_unlock(&imc_global_refc.lock);
event->hw.idx = -1;
event->pmu->task_ctx_nr = perf_hw_context;
event->destroy = reset_global_refc;
return 0;
}
/* update_pmu_ops : Populate the appropriate operations for "pmu" */
static int update_pmu_ops(struct imc_pmu *pmu)
{
pmu->pmu.task_ctx_nr = perf_invalid_context;
pmu->pmu.add = imc_event_add;
pmu->pmu.del = imc_event_stop;
pmu->pmu.start = imc_event_start;
pmu->pmu.stop = imc_event_stop;
pmu->pmu.read = imc_event_update;
pmu->pmu.attr_groups = pmu->attr_groups;
pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
switch (pmu->domain) {
case IMC_DOMAIN_NEST:
pmu->pmu.event_init = nest_imc_event_init;
pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
break;
case IMC_DOMAIN_CORE:
pmu->pmu.event_init = core_imc_event_init;
pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
break;
case IMC_DOMAIN_THREAD:
pmu->pmu.event_init = thread_imc_event_init;
pmu->pmu.add = thread_imc_event_add;
pmu->pmu.del = thread_imc_event_del;
pmu->pmu.start_txn = thread_imc_pmu_start_txn;
pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
break;
case IMC_DOMAIN_TRACE:
pmu->pmu.event_init = trace_imc_event_init;
pmu->pmu.add = trace_imc_event_add;
pmu->pmu.del = trace_imc_event_del;
pmu->pmu.start = trace_imc_event_start;
pmu->pmu.stop = trace_imc_event_stop;
pmu->pmu.read = trace_imc_event_read;
pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
break;
default:
break;
}
return 0;
}
/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
static int init_nest_pmu_ref(void)
{
int nid, i, cpu;
nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
GFP_KERNEL);
if (!nest_imc_refc)
return -ENOMEM;
i = 0;
for_each_node(nid) {
/*
* Mutex lock to avoid races while tracking the number of
* sessions using the chip's nest pmu units.
*/
mutex_init(&nest_imc_refc[i].lock);
/*
* Loop to init the "id" with the node_id. Variable "i" initialized to
* 0 and will be used as index to the array. "i" will not go off the
* end of the array since the "for_each_node" loops for "N_POSSIBLE"
* nodes only.
*/
nest_imc_refc[i++].id = nid;
}
/*
* Loop to init the per_cpu "local_nest_imc_refc" with the proper
* "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
*/
for_each_possible_cpu(cpu) {
nid = cpu_to_node(cpu);
for (i = 0; i < num_possible_nodes(); i++) {
if (nest_imc_refc[i].id == nid) {
per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
break;
}
}
}
return 0;
}
static void cleanup_all_core_imc_memory(void)
{
powerpc/perf: Fix memory allocation for core-imc based on num_possible_cpus() Currently memory is allocated for core-imc based on cpu_present_mask, which has bit 'cpu' set iff cpu is populated. We use (cpu number / threads per core) as the array index to access the memory. Under some circumstances firmware marks a CPU as GUARDed CPU and boot the system, until cleared of errors, these CPU's are unavailable for all subsequent boots. GUARDed CPUs are possible but not present from linux view, so it blows a hole when we assume the max length of our allocation is driven by our max present cpus, where as one of the cpus might be online and be beyond the max present cpus, due to the hole. So (cpu number / threads per core) value bounds the array index and leads to memory overflow. Call trace observed during a guard test: Faulting instruction address: 0xc000000000149f1c cpu 0x69: Vector: 380 (Data Access Out of Range) at [c000003fea303420] pc:c000000000149f1c: prefetch_freepointer+0x14/0x30 lr:c00000000014e0f8: __kmalloc+0x1a8/0x1ac sp:c000003fea3036a0 msr:9000000000009033 dar:c9c54b2c91dbf6b7 current = 0xc000003fea2c0000 paca = 0xc00000000fddd880 softe: 3 irq_happened: 0x01 pid = 1, comm = swapper/104 Linux version 4.16.7-openpower1 (smc@smc-desktop) (gcc version 6.4.0 (Buildroot 2018.02.1-00006-ga8d1126)) #2 SMP Fri May 4 16:44:54 PDT 2018 enter ? for help call trace: __kmalloc+0x1a8/0x1ac (unreliable) init_imc_pmu+0x7f4/0xbf0 opal_imc_counters_probe+0x3fc/0x43c platform_drv_probe+0x48/0x80 driver_probe_device+0x22c/0x308 __driver_attach+0xa0/0xd8 bus_for_each_dev+0x88/0xb4 driver_attach+0x2c/0x40 bus_add_driver+0x1e8/0x228 driver_register+0xd0/0x114 __platform_driver_register+0x50/0x64 opal_imc_driver_init+0x24/0x38 do_one_initcall+0x150/0x15c kernel_init_freeable+0x250/0x254 kernel_init+0x1c/0x150 ret_from_kernel_thread+0x5c/0xc8 Allocating memory for core-imc based on cpu_possible_mask, which has bit 'cpu' set iff cpu is populatable, will fix this issue. Reported-by: Pridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com> Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Balbir Singh <bsingharora@gmail.com> Tested-by: Pridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com> Fixes: 39a846db1d57 ("powerpc/perf: Add core IMC PMU support") Cc: stable@vger.kernel.org # v4.14+ Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-16 12:05:18 +05:30
int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
struct imc_mem_info *ptr = core_imc_pmu->mem_info;
int size = core_imc_pmu->counter_mem_size;
/* mem_info will never be NULL */
for (i = 0; i < nr_cores; i++) {
if (ptr[i].vbase)
free_pages((u64)ptr[i].vbase, get_order(size));
}
kfree(ptr);
kfree(core_imc_refc);
}
static void thread_imc_ldbar_disable(void *dummy)
{
/*
* By setting 0th bit of LDBAR to zero, we disable thread-imc
* updates to memory.
*/
mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
}
void thread_imc_disable(void)
{
on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
}
static void cleanup_all_thread_imc_memory(void)
{
int i, order = get_order(thread_imc_mem_size);
for_each_online_cpu(i) {
if (per_cpu(thread_imc_mem, i))
free_pages((u64)per_cpu(thread_imc_mem, i), order);
}
}
static void cleanup_all_trace_imc_memory(void)
{
int i, order = get_order(trace_imc_mem_size);
for_each_online_cpu(i) {
if (per_cpu(trace_imc_mem, i))
free_pages((u64)per_cpu(trace_imc_mem, i), order);
}
kfree(trace_imc_refc);
}
/* Function to free the attr_groups which are dynamically allocated */
static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
{
if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
}
/*
* Common function to unregister cpu hotplug callback and
* free the memory.
* TODO: Need to handle pmu unregistering, which will be
* done in followup series.
*/
static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
{
if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
mutex_lock(&nest_init_lock);
if (nest_pmus == 1) {
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
kfree(nest_imc_refc);
powerpc/perf: Fix kfree memory allocated for nest pmus imc_common_cpuhp_mem_free() is the common function for all IMC (In-memory Collection counters) domains to unregister cpuhotplug callback and free memory. Since kfree of memory allocated for nest-imc (per_nest_pmu_arr) is in the common code, all domains (core/nest/thread) can do the kfree in the failure case. This could potentially create a call trace as shown below, where core(/thread/nest) imc pmu initialization fails and in the failure path imc_common_cpuhp_mem_free() free the memory(per_nest_pmu_arr), which is allocated by successfully registered nest units. The call trace is generated in a scenario where core-imc initialization is made to fail and a cpuhotplug is performed in a p9 system. During cpuhotplug ppc_nest_imc_cpu_offline() tries to access per_nest_pmu_arr, which is already freed by core-imc. NIP [c000000000cb6a94] mutex_lock+0x34/0x90 LR [c000000000cb6a88] mutex_lock+0x28/0x90 Call Trace: mutex_lock+0x28/0x90 (unreliable) perf_pmu_migrate_context+0x90/0x3a0 ppc_nest_imc_cpu_offline+0x190/0x1f0 cpuhp_invoke_callback+0x160/0x820 cpuhp_thread_fun+0x1bc/0x270 smpboot_thread_fn+0x250/0x290 kthread+0x1a8/0x1b0 ret_from_kernel_thread+0x5c/0x74 To address this scenario do the kfree(per_nest_pmu_arr) only in case of nest-imc initialization failure, and when there is no other nest units registered. Fixes: 73ce9aec65b1 ("powerpc/perf: Fix IMC_MAX_PMU macro") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-07 22:53:27 +05:30
kfree(per_nest_pmu_arr);
per_nest_pmu_arr = NULL;
}
if (nest_pmus > 0)
nest_pmus--;
mutex_unlock(&nest_init_lock);
}
/* Free core_imc memory */
if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
cleanup_all_core_imc_memory();
}
/* Free thread_imc memory */
if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
cleanup_all_thread_imc_memory();
}
if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
cleanup_all_trace_imc_memory();
}
}
/*
* Function to unregister thread-imc if core-imc
* is not registered.
*/
void unregister_thread_imc(void)
{
imc_common_cpuhp_mem_free(thread_imc_pmu);
imc_common_mem_free(thread_imc_pmu);
perf_pmu_unregister(&thread_imc_pmu->pmu);
}
/*
* imc_mem_init : Function to support memory allocation for core imc.
*/
static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
int pmu_index)
{
const char *s;
int nr_cores, cpu, res = -ENOMEM;
if (of_property_read_string(parent, "name", &s))
return -ENODEV;
switch (pmu_ptr->domain) {
case IMC_DOMAIN_NEST:
/* Update the pmu name */
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
if (!pmu_ptr->pmu.name)
goto err;
/* Needed for hotplug/migration */
if (!per_nest_pmu_arr) {
per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
sizeof(struct imc_pmu *),
GFP_KERNEL);
if (!per_nest_pmu_arr)
goto err;
}
per_nest_pmu_arr[pmu_index] = pmu_ptr;
break;
case IMC_DOMAIN_CORE:
/* Update the pmu name */
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
if (!pmu_ptr->pmu.name)
goto err;
powerpc/perf: Fix memory allocation for core-imc based on num_possible_cpus() Currently memory is allocated for core-imc based on cpu_present_mask, which has bit 'cpu' set iff cpu is populated. We use (cpu number / threads per core) as the array index to access the memory. Under some circumstances firmware marks a CPU as GUARDed CPU and boot the system, until cleared of errors, these CPU's are unavailable for all subsequent boots. GUARDed CPUs are possible but not present from linux view, so it blows a hole when we assume the max length of our allocation is driven by our max present cpus, where as one of the cpus might be online and be beyond the max present cpus, due to the hole. So (cpu number / threads per core) value bounds the array index and leads to memory overflow. Call trace observed during a guard test: Faulting instruction address: 0xc000000000149f1c cpu 0x69: Vector: 380 (Data Access Out of Range) at [c000003fea303420] pc:c000000000149f1c: prefetch_freepointer+0x14/0x30 lr:c00000000014e0f8: __kmalloc+0x1a8/0x1ac sp:c000003fea3036a0 msr:9000000000009033 dar:c9c54b2c91dbf6b7 current = 0xc000003fea2c0000 paca = 0xc00000000fddd880 softe: 3 irq_happened: 0x01 pid = 1, comm = swapper/104 Linux version 4.16.7-openpower1 (smc@smc-desktop) (gcc version 6.4.0 (Buildroot 2018.02.1-00006-ga8d1126)) #2 SMP Fri May 4 16:44:54 PDT 2018 enter ? for help call trace: __kmalloc+0x1a8/0x1ac (unreliable) init_imc_pmu+0x7f4/0xbf0 opal_imc_counters_probe+0x3fc/0x43c platform_drv_probe+0x48/0x80 driver_probe_device+0x22c/0x308 __driver_attach+0xa0/0xd8 bus_for_each_dev+0x88/0xb4 driver_attach+0x2c/0x40 bus_add_driver+0x1e8/0x228 driver_register+0xd0/0x114 __platform_driver_register+0x50/0x64 opal_imc_driver_init+0x24/0x38 do_one_initcall+0x150/0x15c kernel_init_freeable+0x250/0x254 kernel_init+0x1c/0x150 ret_from_kernel_thread+0x5c/0xc8 Allocating memory for core-imc based on cpu_possible_mask, which has bit 'cpu' set iff cpu is populatable, will fix this issue. Reported-by: Pridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com> Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Balbir Singh <bsingharora@gmail.com> Tested-by: Pridhiviraj Paidipeddi <ppaidipe@linux.vnet.ibm.com> Fixes: 39a846db1d57 ("powerpc/perf: Add core IMC PMU support") Cc: stable@vger.kernel.org # v4.14+ Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-16 12:05:18 +05:30
nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
GFP_KERNEL);
if (!pmu_ptr->mem_info)
goto err;
core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
GFP_KERNEL);
if (!core_imc_refc) {
kfree(pmu_ptr->mem_info);
goto err;
}
core_imc_pmu = pmu_ptr;
break;
case IMC_DOMAIN_THREAD:
/* Update the pmu name */
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
if (!pmu_ptr->pmu.name)
goto err;
thread_imc_mem_size = pmu_ptr->counter_mem_size;
for_each_online_cpu(cpu) {
res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
if (res) {
cleanup_all_thread_imc_memory();
goto err;
}
}
thread_imc_pmu = pmu_ptr;
break;
case IMC_DOMAIN_TRACE:
/* Update the pmu name */
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
if (!pmu_ptr->pmu.name)
return -ENOMEM;
nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
GFP_KERNEL);
if (!trace_imc_refc)
return -ENOMEM;
trace_imc_mem_size = pmu_ptr->counter_mem_size;
for_each_online_cpu(cpu) {
res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
if (res) {
cleanup_all_trace_imc_memory();
goto err;
}
}
break;
default:
return -EINVAL;
}
return 0;
err:
return res;
}
/*
* init_imc_pmu : Setup and register the IMC pmu device.
*
* @parent: Device tree unit node
* @pmu_ptr: memory allocated for this pmu
* @pmu_idx: Count of nest pmc registered
*
* init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
* Handles failure cases and accordingly frees memory.
*/
int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
{
int ret;
ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
if (ret)
goto err_free_mem;
switch (pmu_ptr->domain) {
case IMC_DOMAIN_NEST:
/*
* Nest imc pmu need only one cpu per chip, we initialize the
* cpumask for the first nest imc pmu and use the same for the
* rest. To handle the cpuhotplug callback unregister, we track
* the number of nest pmus in "nest_pmus".
*/
mutex_lock(&nest_init_lock);
if (nest_pmus == 0) {
ret = init_nest_pmu_ref();
if (ret) {
mutex_unlock(&nest_init_lock);
kfree(per_nest_pmu_arr);
per_nest_pmu_arr = NULL;
goto err_free_mem;
}
/* Register for cpu hotplug notification. */
ret = nest_pmu_cpumask_init();
if (ret) {
mutex_unlock(&nest_init_lock);
powerpc/perf: Fix kfree memory allocated for nest pmus imc_common_cpuhp_mem_free() is the common function for all IMC (In-memory Collection counters) domains to unregister cpuhotplug callback and free memory. Since kfree of memory allocated for nest-imc (per_nest_pmu_arr) is in the common code, all domains (core/nest/thread) can do the kfree in the failure case. This could potentially create a call trace as shown below, where core(/thread/nest) imc pmu initialization fails and in the failure path imc_common_cpuhp_mem_free() free the memory(per_nest_pmu_arr), which is allocated by successfully registered nest units. The call trace is generated in a scenario where core-imc initialization is made to fail and a cpuhotplug is performed in a p9 system. During cpuhotplug ppc_nest_imc_cpu_offline() tries to access per_nest_pmu_arr, which is already freed by core-imc. NIP [c000000000cb6a94] mutex_lock+0x34/0x90 LR [c000000000cb6a88] mutex_lock+0x28/0x90 Call Trace: mutex_lock+0x28/0x90 (unreliable) perf_pmu_migrate_context+0x90/0x3a0 ppc_nest_imc_cpu_offline+0x190/0x1f0 cpuhp_invoke_callback+0x160/0x820 cpuhp_thread_fun+0x1bc/0x270 smpboot_thread_fn+0x250/0x290 kthread+0x1a8/0x1b0 ret_from_kernel_thread+0x5c/0x74 To address this scenario do the kfree(per_nest_pmu_arr) only in case of nest-imc initialization failure, and when there is no other nest units registered. Fixes: 73ce9aec65b1 ("powerpc/perf: Fix IMC_MAX_PMU macro") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-12-07 22:53:27 +05:30
kfree(nest_imc_refc);
kfree(per_nest_pmu_arr);
per_nest_pmu_arr = NULL;
goto err_free_mem;
}
}
nest_pmus++;
mutex_unlock(&nest_init_lock);
break;
case IMC_DOMAIN_CORE:
ret = core_imc_pmu_cpumask_init();
if (ret) {
cleanup_all_core_imc_memory();
goto err_free_mem;
}
break;
case IMC_DOMAIN_THREAD:
ret = thread_imc_cpu_init();
if (ret) {
cleanup_all_thread_imc_memory();
goto err_free_mem;
}
break;
case IMC_DOMAIN_TRACE:
ret = trace_imc_cpu_init();
if (ret) {
cleanup_all_trace_imc_memory();
goto err_free_mem;
}
break;
default:
return -EINVAL; /* Unknown domain */
}
ret = update_events_in_group(parent, pmu_ptr);
if (ret)
goto err_free_cpuhp_mem;
ret = update_pmu_ops(pmu_ptr);
if (ret)
goto err_free_cpuhp_mem;
ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
if (ret)
goto err_free_cpuhp_mem;
pr_debug("%s performance monitor hardware support registered\n",
pmu_ptr->pmu.name);
return 0;
err_free_cpuhp_mem:
imc_common_cpuhp_mem_free(pmu_ptr);
err_free_mem:
imc_common_mem_free(pmu_ptr);
return ret;
}