linux/mm/damon/core.c

1083 lines
26 KiB
C
Raw Normal View History

mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* Data Access Monitor
*
* Author: SeongJae Park <sjpark@amazon.de>
*/
#define pr_fmt(fmt) "damon: " fmt
#include <linux/damon.h>
#include <linux/delay.h>
#include <linux/kthread.h>
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
#include <linux/mm.h>
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
#include <linux/slab.h>
2021-11-05 23:47:33 +03:00
#include <linux/string.h>
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
mm/damon: add a tracepoint This commit adds a tracepoint for DAMON. It traces the monitoring results of each region for each aggregation interval. Using this, DAMON can easily integrated with tracepoints supporting tools such as perf. Link: https://lkml.kernel.org/r/20210716081449.22187-7-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:48 +03:00
#define CREATE_TRACE_POINTS
#include <trace/events/damon.h>
mm/damon: add kunit tests This commit adds kunit based unit tests for the core and the virtual address spaces monitoring primitives of DAMON. Link: https://lkml.kernel.org/r/20210716081449.22187-12-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Brendan Higgins <brendanhiggins@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:57:09 +03:00
#ifdef CONFIG_DAMON_KUNIT_TEST
#undef DAMON_MIN_REGION
#define DAMON_MIN_REGION 1
#endif
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
static DEFINE_MUTEX(damon_lock);
static int nr_running_ctxs;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
/*
* Construct a damon_region struct
*
* Returns the pointer to the new struct if success, or NULL otherwise
*/
struct damon_region *damon_new_region(unsigned long start, unsigned long end)
{
struct damon_region *region;
region = kmalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return NULL;
region->ar.start = start;
region->ar.end = end;
region->nr_accesses = 0;
INIT_LIST_HEAD(&region->list);
mm/damon/core: account age of target regions Patch series "Implement Data Access Monitoring-based Memory Operation Schemes". Introduction ============ DAMON[1] can be used as a primitive for data access aware memory management optimizations. For that, users who want such optimizations should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. Such efforts will be inevitable for some complicated optimizations. However, in many other cases, the users would simply want the system to apply a memory management action to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB keeping only rare accesses more than 2 minutes", or "Do not use THP for a memory region larger than 2 MiB rarely accessed for more than 1 seconds". To make the works easier and non-redundant, this patchset implements a new feature of DAMON, which is called Data Access Monitoring-based Operation Schemes (DAMOS). Using the feature, users can describe the normal schemes in a simple way and ask DAMON to execute those on its own. [1] https://damonitor.github.io Evaluations =========== DAMOS is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the showcase web site's evaluation document[1] for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y - For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y Sequence Of Patches =================== The 1st patch accounts age of each region. The 2nd patch implements the core of the DAMON-based operation schemes feature. The 3rd patch makes the default monitoring primitives for virtual address spaces to support the schemes. From this point, the kernel space users can use DAMOS. The 4th patch exports the feature to the user space via the debugfs interface. The 5th patch implements schemes statistics feature for easier tuning of the schemes and runtime access pattern analysis, and the 6th patch adds selftests for these changes. Finally, the 7th patch documents this new feature. This patch (of 7): DAMON can be used for data access pattern aware memory management optimizations. For that, users should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. It would not be too hard, but still require some level of effort. For complicated cases, this effort is inevitable. That said, in many cases, users would simply want to apply an actions to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". For such optimizations, users will need to first account the age of each region themselves. To reduce such efforts, this implements a simple age account of each region in DAMON. For each aggregation step, DAMON compares the access frequency with that from last aggregation and reset the age of the region if the change is significant. Else, the age is incremented. Also, in case of the merge of regions, the region size-weighted average of the ages is set as the age of merged new region. Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Greg Thelen <gthelen@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: David Rienjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:18 +03:00
region->age = 0;
region->last_nr_accesses = 0;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
return region;
}
/*
* Add a region between two other regions
*/
inline void damon_insert_region(struct damon_region *r,
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
struct damon_region *prev, struct damon_region *next,
struct damon_target *t)
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
{
__list_add(&r->list, &prev->list, &next->list);
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
t->nr_regions++;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
}
void damon_add_region(struct damon_region *r, struct damon_target *t)
{
list_add_tail(&r->list, &t->regions_list);
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
t->nr_regions++;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
}
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
static void damon_del_region(struct damon_region *r, struct damon_target *t)
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
{
list_del(&r->list);
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
t->nr_regions--;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
}
static void damon_free_region(struct damon_region *r)
{
kfree(r);
}
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
void damon_destroy_region(struct damon_region *r, struct damon_target *t)
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
{
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
damon_del_region(r, t);
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
damon_free_region(r);
}
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
struct damos *damon_new_scheme(
unsigned long min_sz_region, unsigned long max_sz_region,
unsigned int min_nr_accesses, unsigned int max_nr_accesses,
unsigned int min_age_region, unsigned int max_age_region,
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
enum damos_action action, struct damos_quota *quota,
struct damos_watermarks *wmarks)
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
{
struct damos *scheme;
scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
if (!scheme)
return NULL;
scheme->min_sz_region = min_sz_region;
scheme->max_sz_region = max_sz_region;
scheme->min_nr_accesses = min_nr_accesses;
scheme->max_nr_accesses = max_nr_accesses;
scheme->min_age_region = min_age_region;
scheme->max_age_region = max_age_region;
scheme->action = action;
mm/damon/schemes: account scheme actions that successfully applied Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning". To help online access pattern analysis and tuning of DAMON-based Operation Schemes (DAMOS), DAMOS provides simple statistics for each scheme. Introduction of DAMOS time/space quota further made the tuning easier by making the risk management easier. However, that also made understanding of the working schemes a little bit more difficult. For an example, progress of a given scheme can now be throttled by not only the aggressiveness of the target access pattern, but also the time/space quotas. So, when a scheme is showing unexpectedly slow progress, it's difficult to know by what the progress of the scheme is throttled, with currently provided statistics. This patchset extends the statistics to contain some metrics that can be helpful for such online schemes analysis and tuning (patches 1-2), exports those to users (patches 3 and 5), and add documents (patches 4 and 6). This patch (of 6): DAMON-based operation schemes (DAMOS) stats provide only the number and the amount of regions that the action of the scheme has tried to be applied. Because the action could be failed for some reasons, the currently provided information is sometimes not useful or convenient enough for schemes profiling and tuning. To improve this situation, this commit extends the DAMOS stats to provide the number and the amount of regions that the action has successfully applied. Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:10:17 +03:00
scheme->stat = (struct damos_stat){};
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
INIT_LIST_HEAD(&scheme->list);
scheme->quota.ms = quota->ms;
scheme->quota.sz = quota->sz;
scheme->quota.reset_interval = quota->reset_interval;
2021-11-05 23:47:33 +03:00
scheme->quota.weight_sz = quota->weight_sz;
scheme->quota.weight_nr_accesses = quota->weight_nr_accesses;
scheme->quota.weight_age = quota->weight_age;
scheme->quota.total_charged_sz = 0;
scheme->quota.total_charged_ns = 0;
scheme->quota.esz = 0;
scheme->quota.charged_sz = 0;
scheme->quota.charged_from = 0;
scheme->quota.charge_target_from = NULL;
scheme->quota.charge_addr_from = 0;
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
scheme->wmarks.metric = wmarks->metric;
scheme->wmarks.interval = wmarks->interval;
scheme->wmarks.high = wmarks->high;
scheme->wmarks.mid = wmarks->mid;
scheme->wmarks.low = wmarks->low;
scheme->wmarks.activated = true;
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
return scheme;
}
void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
{
list_add_tail(&s->list, &ctx->schemes);
}
static void damon_del_scheme(struct damos *s)
{
list_del(&s->list);
}
static void damon_free_scheme(struct damos *s)
{
kfree(s);
}
void damon_destroy_scheme(struct damos *s)
{
damon_del_scheme(s);
damon_free_scheme(s);
}
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
/*
* Construct a damon_target struct
*
* Returns the pointer to the new struct if success, or NULL otherwise
*/
struct damon_target *damon_new_target(unsigned long id)
{
struct damon_target *t;
t = kmalloc(sizeof(*t), GFP_KERNEL);
if (!t)
return NULL;
t->id = id;
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
t->nr_regions = 0;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
INIT_LIST_HEAD(&t->regions_list);
return t;
}
void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
{
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
list_add_tail(&t->list, &ctx->adaptive_targets);
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
}
bool damon_targets_empty(struct damon_ctx *ctx)
{
return list_empty(&ctx->adaptive_targets);
}
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
static void damon_del_target(struct damon_target *t)
{
list_del(&t->list);
}
void damon_free_target(struct damon_target *t)
{
struct damon_region *r, *next;
damon_for_each_region_safe(r, next, t)
damon_free_region(r);
kfree(t);
}
void damon_destroy_target(struct damon_target *t)
{
damon_del_target(t);
damon_free_target(t);
}
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
unsigned int damon_nr_regions(struct damon_target *t)
{
return t->nr_regions;
}
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
struct damon_ctx *damon_new_ctx(void)
{
struct damon_ctx *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
ctx->sample_interval = 5 * 1000;
ctx->aggr_interval = 100 * 1000;
ctx->primitive_update_interval = 60 * 1000 * 1000;
ktime_get_coarse_ts64(&ctx->last_aggregation);
ctx->last_primitive_update = ctx->last_aggregation;
mutex_init(&ctx->kdamond_lock);
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
ctx->min_nr_regions = 10;
ctx->max_nr_regions = 1000;
INIT_LIST_HEAD(&ctx->adaptive_targets);
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
INIT_LIST_HEAD(&ctx->schemes);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
return ctx;
}
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
static void damon_destroy_targets(struct damon_ctx *ctx)
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
{
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
struct damon_target *t, *next_t;
if (ctx->primitive.cleanup) {
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
ctx->primitive.cleanup(ctx);
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
return;
}
damon_for_each_target_safe(t, next_t, ctx)
damon_destroy_target(t);
}
void damon_destroy_ctx(struct damon_ctx *ctx)
{
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
struct damos *s, *next_s;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
damon_destroy_targets(ctx);
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
damon_for_each_scheme_safe(s, next_s, ctx)
damon_destroy_scheme(s);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
kfree(ctx);
}
mm/damon: implement a debugfs-based user space interface DAMON is designed to be used by kernel space code such as the memory management subsystems, and therefore it provides only kernel space API. That said, letting the user space control DAMON could provide some benefits to them. For example, it will allow user space to analyze their specific workloads and make their own special optimizations. For such cases, this commit implements a simple DAMON application kernel module, namely 'damon-dbgfs', which merely wraps the DAMON api and exports those to the user space via the debugfs. 'damon-dbgfs' exports three files, ``attrs``, ``target_ids``, and ``monitor_on`` under its debugfs directory, ``<debugfs>/damon/``. Attributes ---------- Users can read and write the ``sampling interval``, ``aggregation interval``, ``regions update interval``, and min/max number of monitoring target regions by reading from and writing to the ``attrs`` file. For example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10, 1000 and check it again:: # cd <debugfs>/damon # echo 5000 100000 1000000 10 1000 > attrs # cat attrs 5000 100000 1000000 10 1000 Target IDs ---------- Some types of address spaces supports multiple monitoring target. For example, the virtual memory address spaces monitoring can have multiple processes as the monitoring targets. Users can set the targets by writing relevant id values of the targets to, and get the ids of the current targets by reading from the ``target_ids`` file. In case of the virtual address spaces monitoring, the values should be pids of the monitoring target processes. For example, below commands set processes having pids 42 and 4242 as the monitoring targets and check it again:: # cd <debugfs>/damon # echo 42 4242 > target_ids # cat target_ids 42 4242 Note that setting the target ids doesn't start the monitoring. Turning On/Off -------------- Setting the files as described above doesn't incur effect unless you explicitly start the monitoring. You can start, stop, and check the current status of the monitoring by writing to and reading from the ``monitor_on`` file. Writing ``on`` to the file starts the monitoring of the targets with the attributes. Writing ``off`` to the file stops those. DAMON also stops if every targets are invalidated (in case of the virtual memory monitoring, target processes are invalidated when terminated). Below example commands turn on, off, and check the status of DAMON:: # cd <debugfs>/damon # echo on > monitor_on # echo off > monitor_on # cat monitor_on off Please note that you cannot write to the above-mentioned debugfs files while the monitoring is turned on. If you write to the files while DAMON is running, an error code such as ``-EBUSY`` will be returned. [akpm@linux-foundation.org: remove unneeded "alloc failed" printks] [akpm@linux-foundation.org: replace macro with static inline] Link: https://lkml.kernel.org/r/20210716081449.22187-8-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:53 +03:00
/**
* damon_set_targets() - Set monitoring targets.
* @ctx: monitoring context
* @ids: array of target ids
* @nr_ids: number of entries in @ids
*
* This function should not be called while the kdamond is running.
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_set_targets(struct damon_ctx *ctx,
unsigned long *ids, ssize_t nr_ids)
{
ssize_t i;
struct damon_target *t, *next;
damon_destroy_targets(ctx);
for (i = 0; i < nr_ids; i++) {
t = damon_new_target(ids[i]);
if (!t) {
/* The caller should do cleanup of the ids itself */
damon_for_each_target_safe(t, next, ctx)
damon_destroy_target(t);
return -ENOMEM;
}
damon_add_target(ctx, t);
}
return 0;
}
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
/**
* damon_set_attrs() - Set attributes for the monitoring.
* @ctx: monitoring context
* @sample_int: time interval between samplings
* @aggr_int: time interval between aggregations
* @primitive_upd_int: time interval between monitoring primitive updates
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
* @min_nr_reg: minimal number of regions
* @max_nr_reg: maximum number of regions
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
*
* This function should not be called while the kdamond is running.
* Every time interval is in micro-seconds.
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
unsigned long aggr_int, unsigned long primitive_upd_int,
unsigned long min_nr_reg, unsigned long max_nr_reg)
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
{
if (min_nr_reg < 3)
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
return -EINVAL;
if (min_nr_reg > max_nr_reg)
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
return -EINVAL;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
ctx->sample_interval = sample_int;
ctx->aggr_interval = aggr_int;
ctx->primitive_update_interval = primitive_upd_int;
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
ctx->min_nr_regions = min_nr_reg;
ctx->max_nr_regions = max_nr_reg;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
return 0;
}
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
/**
* damon_set_schemes() - Set data access monitoring based operation schemes.
* @ctx: monitoring context
* @schemes: array of the schemes
* @nr_schemes: number of entries in @schemes
*
* This function should not be called while the kdamond of the context is
* running.
*
* Return: 0 if success, or negative error code otherwise.
*/
int damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
ssize_t nr_schemes)
{
struct damos *s, *next;
ssize_t i;
damon_for_each_scheme_safe(s, next, ctx)
damon_destroy_scheme(s);
for (i = 0; i < nr_schemes; i++)
damon_add_scheme(ctx, schemes[i]);
return 0;
}
mm/damon: implement a debugfs-based user space interface DAMON is designed to be used by kernel space code such as the memory management subsystems, and therefore it provides only kernel space API. That said, letting the user space control DAMON could provide some benefits to them. For example, it will allow user space to analyze their specific workloads and make their own special optimizations. For such cases, this commit implements a simple DAMON application kernel module, namely 'damon-dbgfs', which merely wraps the DAMON api and exports those to the user space via the debugfs. 'damon-dbgfs' exports three files, ``attrs``, ``target_ids``, and ``monitor_on`` under its debugfs directory, ``<debugfs>/damon/``. Attributes ---------- Users can read and write the ``sampling interval``, ``aggregation interval``, ``regions update interval``, and min/max number of monitoring target regions by reading from and writing to the ``attrs`` file. For example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10, 1000 and check it again:: # cd <debugfs>/damon # echo 5000 100000 1000000 10 1000 > attrs # cat attrs 5000 100000 1000000 10 1000 Target IDs ---------- Some types of address spaces supports multiple monitoring target. For example, the virtual memory address spaces monitoring can have multiple processes as the monitoring targets. Users can set the targets by writing relevant id values of the targets to, and get the ids of the current targets by reading from the ``target_ids`` file. In case of the virtual address spaces monitoring, the values should be pids of the monitoring target processes. For example, below commands set processes having pids 42 and 4242 as the monitoring targets and check it again:: # cd <debugfs>/damon # echo 42 4242 > target_ids # cat target_ids 42 4242 Note that setting the target ids doesn't start the monitoring. Turning On/Off -------------- Setting the files as described above doesn't incur effect unless you explicitly start the monitoring. You can start, stop, and check the current status of the monitoring by writing to and reading from the ``monitor_on`` file. Writing ``on`` to the file starts the monitoring of the targets with the attributes. Writing ``off`` to the file stops those. DAMON also stops if every targets are invalidated (in case of the virtual memory monitoring, target processes are invalidated when terminated). Below example commands turn on, off, and check the status of DAMON:: # cd <debugfs>/damon # echo on > monitor_on # echo off > monitor_on # cat monitor_on off Please note that you cannot write to the above-mentioned debugfs files while the monitoring is turned on. If you write to the files while DAMON is running, an error code such as ``-EBUSY`` will be returned. [akpm@linux-foundation.org: remove unneeded "alloc failed" printks] [akpm@linux-foundation.org: replace macro with static inline] Link: https://lkml.kernel.org/r/20210716081449.22187-8-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:53 +03:00
/**
* damon_nr_running_ctxs() - Return number of currently running contexts.
*/
int damon_nr_running_ctxs(void)
{
int nr_ctxs;
mutex_lock(&damon_lock);
nr_ctxs = nr_running_ctxs;
mutex_unlock(&damon_lock);
return nr_ctxs;
}
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
/* Returns the size upper limit for each monitoring region */
static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
{
struct damon_target *t;
struct damon_region *r;
unsigned long sz = 0;
damon_for_each_target(t, ctx) {
damon_for_each_region(r, t)
sz += r->ar.end - r->ar.start;
}
if (ctx->min_nr_regions)
sz /= ctx->min_nr_regions;
if (sz < DAMON_MIN_REGION)
sz = DAMON_MIN_REGION;
return sz;
}
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
static int kdamond_fn(void *data);
/*
* __damon_start() - Starts monitoring with given context.
* @ctx: monitoring context
*
* This function should be called while damon_lock is hold.
*
* Return: 0 on success, negative error code otherwise.
*/
static int __damon_start(struct damon_ctx *ctx)
{
int err = -EBUSY;
mutex_lock(&ctx->kdamond_lock);
if (!ctx->kdamond) {
err = 0;
ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
nr_running_ctxs);
if (IS_ERR(ctx->kdamond)) {
err = PTR_ERR(ctx->kdamond);
ctx->kdamond = NULL;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
}
}
mutex_unlock(&ctx->kdamond_lock);
return err;
}
/**
* damon_start() - Starts the monitorings for a given group of contexts.
* @ctxs: an array of the pointers for contexts to start monitoring
* @nr_ctxs: size of @ctxs
*
* This function starts a group of monitoring threads for a group of monitoring
* contexts. One thread per each context is created and run in parallel. The
* caller should handle synchronization between the threads by itself. If a
* group of threads that created by other 'damon_start()' call is currently
* running, this function does nothing but returns -EBUSY.
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_start(struct damon_ctx **ctxs, int nr_ctxs)
{
int i;
int err = 0;
mutex_lock(&damon_lock);
if (nr_running_ctxs) {
mutex_unlock(&damon_lock);
return -EBUSY;
}
for (i = 0; i < nr_ctxs; i++) {
err = __damon_start(ctxs[i]);
if (err)
break;
nr_running_ctxs++;
}
mutex_unlock(&damon_lock);
return err;
}
/*
* __damon_stop() - Stops monitoring of given context.
* @ctx: monitoring context
*
* Return: 0 on success, negative error code otherwise.
*/
static int __damon_stop(struct damon_ctx *ctx)
{
struct task_struct *tsk;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
mutex_lock(&ctx->kdamond_lock);
tsk = ctx->kdamond;
if (tsk) {
get_task_struct(tsk);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
mutex_unlock(&ctx->kdamond_lock);
kthread_stop(tsk);
put_task_struct(tsk);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
return 0;
}
mutex_unlock(&ctx->kdamond_lock);
return -EPERM;
}
/**
* damon_stop() - Stops the monitorings for a given group of contexts.
* @ctxs: an array of the pointers for contexts to stop monitoring
* @nr_ctxs: size of @ctxs
*
* Return: 0 on success, negative error code otherwise.
*/
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
{
int i, err = 0;
for (i = 0; i < nr_ctxs; i++) {
/* nr_running_ctxs is decremented in kdamond_fn */
err = __damon_stop(ctxs[i]);
if (err)
return err;
}
return err;
}
/*
* damon_check_reset_time_interval() - Check if a time interval is elapsed.
* @baseline: the time to check whether the interval has elapsed since
* @interval: the time interval (microseconds)
*
* See whether the given time interval has passed since the given baseline
* time. If so, it also updates the baseline to current time for next check.
*
* Return: true if the time interval has passed, or false otherwise.
*/
static bool damon_check_reset_time_interval(struct timespec64 *baseline,
unsigned long interval)
{
struct timespec64 now;
ktime_get_coarse_ts64(&now);
if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
interval * 1000)
return false;
*baseline = now;
return true;
}
/*
* Check whether it is time to flush the aggregated information
*/
static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
{
return damon_check_reset_time_interval(&ctx->last_aggregation,
ctx->aggr_interval);
}
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
/*
* Reset the aggregated monitoring results ('nr_accesses' of each region).
*/
static void kdamond_reset_aggregated(struct damon_ctx *c)
{
struct damon_target *t;
damon_for_each_target(t, c) {
struct damon_region *r;
mm/damon: add a tracepoint This commit adds a tracepoint for DAMON. It traces the monitoring results of each region for each aggregation interval. Using this, DAMON can easily integrated with tracepoints supporting tools such as perf. Link: https://lkml.kernel.org/r/20210716081449.22187-7-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:48 +03:00
damon_for_each_region(r, t) {
trace_damon_aggregated(t, r, damon_nr_regions(t));
mm/damon/core: account age of target regions Patch series "Implement Data Access Monitoring-based Memory Operation Schemes". Introduction ============ DAMON[1] can be used as a primitive for data access aware memory management optimizations. For that, users who want such optimizations should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. Such efforts will be inevitable for some complicated optimizations. However, in many other cases, the users would simply want the system to apply a memory management action to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB keeping only rare accesses more than 2 minutes", or "Do not use THP for a memory region larger than 2 MiB rarely accessed for more than 1 seconds". To make the works easier and non-redundant, this patchset implements a new feature of DAMON, which is called Data Access Monitoring-based Operation Schemes (DAMOS). Using the feature, users can describe the normal schemes in a simple way and ask DAMON to execute those on its own. [1] https://damonitor.github.io Evaluations =========== DAMOS is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the showcase web site's evaluation document[1] for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y - For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y Sequence Of Patches =================== The 1st patch accounts age of each region. The 2nd patch implements the core of the DAMON-based operation schemes feature. The 3rd patch makes the default monitoring primitives for virtual address spaces to support the schemes. From this point, the kernel space users can use DAMOS. The 4th patch exports the feature to the user space via the debugfs interface. The 5th patch implements schemes statistics feature for easier tuning of the schemes and runtime access pattern analysis, and the 6th patch adds selftests for these changes. Finally, the 7th patch documents this new feature. This patch (of 7): DAMON can be used for data access pattern aware memory management optimizations. For that, users should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. It would not be too hard, but still require some level of effort. For complicated cases, this effort is inevitable. That said, in many cases, users would simply want to apply an actions to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". For such optimizations, users will need to first account the age of each region themselves. To reduce such efforts, this implements a simple age account of each region in DAMON. For each aggregation step, DAMON compares the access frequency with that from last aggregation and reset the age of the region if the change is significant. Else, the age is incremented. Also, in case of the merge of regions, the region size-weighted average of the ages is set as the age of merged new region. Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Greg Thelen <gthelen@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: David Rienjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:18 +03:00
r->last_nr_accesses = r->nr_accesses;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
r->nr_accesses = 0;
mm/damon: add a tracepoint This commit adds a tracepoint for DAMON. It traces the monitoring results of each region for each aggregation interval. Using this, DAMON can easily integrated with tracepoints supporting tools such as perf. Link: https://lkml.kernel.org/r/20210716081449.22187-7-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:48 +03:00
}
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
}
}
static void damon_split_region_at(struct damon_ctx *ctx,
struct damon_target *t, struct damon_region *r,
unsigned long sz_r);
2021-11-05 23:47:33 +03:00
static bool __damos_valid_target(struct damon_region *r, struct damos *s)
{
unsigned long sz;
sz = r->ar.end - r->ar.start;
return s->min_sz_region <= sz && sz <= s->max_sz_region &&
s->min_nr_accesses <= r->nr_accesses &&
r->nr_accesses <= s->max_nr_accesses &&
s->min_age_region <= r->age && r->age <= s->max_age_region;
}
static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
struct damon_region *r, struct damos *s)
{
bool ret = __damos_valid_target(r, s);
if (!ret || !s->quota.esz || !c->primitive.get_scheme_score)
return ret;
return c->primitive.get_scheme_score(c, t, r, s) >= s->quota.min_score;
}
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
static void damon_do_apply_schemes(struct damon_ctx *c,
struct damon_target *t,
struct damon_region *r)
{
struct damos *s;
damon_for_each_scheme(s, c) {
struct damos_quota *quota = &s->quota;
unsigned long sz = r->ar.end - r->ar.start;
struct timespec64 begin, end;
mm/damon/schemes: account scheme actions that successfully applied Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning". To help online access pattern analysis and tuning of DAMON-based Operation Schemes (DAMOS), DAMOS provides simple statistics for each scheme. Introduction of DAMOS time/space quota further made the tuning easier by making the risk management easier. However, that also made understanding of the working schemes a little bit more difficult. For an example, progress of a given scheme can now be throttled by not only the aggressiveness of the target access pattern, but also the time/space quotas. So, when a scheme is showing unexpectedly slow progress, it's difficult to know by what the progress of the scheme is throttled, with currently provided statistics. This patchset extends the statistics to contain some metrics that can be helpful for such online schemes analysis and tuning (patches 1-2), exports those to users (patches 3 and 5), and add documents (patches 4 and 6). This patch (of 6): DAMON-based operation schemes (DAMOS) stats provide only the number and the amount of regions that the action of the scheme has tried to be applied. Because the action could be failed for some reasons, the currently provided information is sometimes not useful or convenient enough for schemes profiling and tuning. To improve this situation, this commit extends the DAMOS stats to provide the number and the amount of regions that the action has successfully applied. Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:10:17 +03:00
unsigned long sz_applied = 0;
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
if (!s->wmarks.activated)
continue;
/* Check the quota */
if (quota->esz && quota->charged_sz >= quota->esz)
continue;
/* Skip previously charged regions */
if (quota->charge_target_from) {
if (t != quota->charge_target_from)
continue;
if (r == damon_last_region(t)) {
quota->charge_target_from = NULL;
quota->charge_addr_from = 0;
continue;
}
if (quota->charge_addr_from &&
r->ar.end <= quota->charge_addr_from)
continue;
if (quota->charge_addr_from && r->ar.start <
quota->charge_addr_from) {
sz = ALIGN_DOWN(quota->charge_addr_from -
r->ar.start, DAMON_MIN_REGION);
if (!sz) {
if (r->ar.end - r->ar.start <=
DAMON_MIN_REGION)
continue;
sz = DAMON_MIN_REGION;
}
damon_split_region_at(c, t, r, sz);
r = damon_next_region(r);
sz = r->ar.end - r->ar.start;
}
quota->charge_target_from = NULL;
quota->charge_addr_from = 0;
}
2021-11-05 23:47:33 +03:00
if (!damos_valid_target(c, t, r, s))
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
continue;
/* Apply the scheme */
if (c->primitive.apply_scheme) {
if (quota->esz &&
quota->charged_sz + sz > quota->esz) {
sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
DAMON_MIN_REGION);
if (!sz)
goto update_stat;
damon_split_region_at(c, t, r, sz);
}
ktime_get_coarse_ts64(&begin);
mm/damon/schemes: account scheme actions that successfully applied Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning". To help online access pattern analysis and tuning of DAMON-based Operation Schemes (DAMOS), DAMOS provides simple statistics for each scheme. Introduction of DAMOS time/space quota further made the tuning easier by making the risk management easier. However, that also made understanding of the working schemes a little bit more difficult. For an example, progress of a given scheme can now be throttled by not only the aggressiveness of the target access pattern, but also the time/space quotas. So, when a scheme is showing unexpectedly slow progress, it's difficult to know by what the progress of the scheme is throttled, with currently provided statistics. This patchset extends the statistics to contain some metrics that can be helpful for such online schemes analysis and tuning (patches 1-2), exports those to users (patches 3 and 5), and add documents (patches 4 and 6). This patch (of 6): DAMON-based operation schemes (DAMOS) stats provide only the number and the amount of regions that the action of the scheme has tried to be applied. Because the action could be failed for some reasons, the currently provided information is sometimes not useful or convenient enough for schemes profiling and tuning. To improve this situation, this commit extends the DAMOS stats to provide the number and the amount of regions that the action has successfully applied. Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:10:17 +03:00
sz_applied = c->primitive.apply_scheme(c, t, r, s);
ktime_get_coarse_ts64(&end);
quota->total_charged_ns += timespec64_to_ns(&end) -
timespec64_to_ns(&begin);
quota->charged_sz += sz;
if (quota->esz && quota->charged_sz >= quota->esz) {
quota->charge_target_from = t;
quota->charge_addr_from = r->ar.end + 1;
}
}
mm/damon/schemes: implement statistics feature To tune the DAMON-based operation schemes, knowing how many and how large regions are affected by each of the schemes will be helful. Those stats could be used for not only the tuning, but also monitoring of the working set size and the number of regions, if the scheme does not change the program behavior too much. For the reason, this implements the statistics for the schemes. The total number and size of the regions that each scheme is applied are exported to users via '->stat_count' and '->stat_sz' of 'struct damos'. Admins can also check the number by reading 'schemes' debugfs file. The last two integers now represents the stats. To allow collecting the stats without changing the program behavior, this also adds new scheme action, 'DAMOS_STAT'. Note that 'DAMOS_STAT' is not only making no memory operation actions, but also does not reset the age of regions. Link: https://lkml.kernel.org/r/20211001125604.29660-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:32 +03:00
if (s->action != DAMOS_STAT)
r->age = 0;
update_stat:
mm/damon/schemes: account scheme actions that successfully applied Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning". To help online access pattern analysis and tuning of DAMON-based Operation Schemes (DAMOS), DAMOS provides simple statistics for each scheme. Introduction of DAMOS time/space quota further made the tuning easier by making the risk management easier. However, that also made understanding of the working schemes a little bit more difficult. For an example, progress of a given scheme can now be throttled by not only the aggressiveness of the target access pattern, but also the time/space quotas. So, when a scheme is showing unexpectedly slow progress, it's difficult to know by what the progress of the scheme is throttled, with currently provided statistics. This patchset extends the statistics to contain some metrics that can be helpful for such online schemes analysis and tuning (patches 1-2), exports those to users (patches 3 and 5), and add documents (patches 4 and 6). This patch (of 6): DAMON-based operation schemes (DAMOS) stats provide only the number and the amount of regions that the action of the scheme has tried to be applied. Because the action could be failed for some reasons, the currently provided information is sometimes not useful or convenient enough for schemes profiling and tuning. To improve this situation, this commit extends the DAMOS stats to provide the number and the amount of regions that the action has successfully applied. Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 01:10:17 +03:00
s->stat.nr_tried++;
s->stat.sz_tried += sz;
if (sz_applied)
s->stat.nr_applied++;
s->stat.sz_applied += sz_applied;
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
}
}
/* Shouldn't be called if quota->ms and quota->sz are zero */
static void damos_set_effective_quota(struct damos_quota *quota)
{
unsigned long throughput;
unsigned long esz;
if (!quota->ms) {
quota->esz = quota->sz;
return;
}
if (quota->total_charged_ns)
throughput = quota->total_charged_sz * 1000000 /
quota->total_charged_ns;
else
throughput = PAGE_SIZE * 1024;
esz = throughput * quota->ms;
if (quota->sz && quota->sz < esz)
esz = quota->sz;
quota->esz = esz;
}
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
static void kdamond_apply_schemes(struct damon_ctx *c)
{
struct damon_target *t;
struct damon_region *r, *next_r;
struct damos *s;
damon_for_each_scheme(s, c) {
struct damos_quota *quota = &s->quota;
2021-11-05 23:47:33 +03:00
unsigned long cumulated_sz;
unsigned int score, max_score = 0;
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
if (!s->wmarks.activated)
continue;
if (!quota->ms && !quota->sz)
continue;
/* New charge window starts */
if (time_after_eq(jiffies, quota->charged_from +
msecs_to_jiffies(
quota->reset_interval))) {
quota->total_charged_sz += quota->charged_sz;
quota->charged_from = jiffies;
quota->charged_sz = 0;
damos_set_effective_quota(quota);
}
2021-11-05 23:47:33 +03:00
if (!c->primitive.get_scheme_score)
continue;
/* Fill up the score histogram */
memset(quota->histogram, 0, sizeof(quota->histogram));
damon_for_each_target(t, c) {
damon_for_each_region(r, t) {
if (!__damos_valid_target(r, s))
continue;
score = c->primitive.get_scheme_score(
c, t, r, s);
quota->histogram[score] +=
r->ar.end - r->ar.start;
if (score > max_score)
max_score = score;
}
}
/* Set the min score limit */
for (cumulated_sz = 0, score = max_score; ; score--) {
cumulated_sz += quota->histogram[score];
if (cumulated_sz >= quota->esz || !score)
break;
}
quota->min_score = score;
}
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
damon_for_each_target(t, c) {
damon_for_each_region_safe(r, next_r, t)
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
damon_do_apply_schemes(c, t, r);
}
}
static inline unsigned long sz_damon_region(struct damon_region *r)
{
return r->ar.end - r->ar.start;
}
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
/*
* Merge two adjacent regions into one region
*/
static void damon_merge_two_regions(struct damon_target *t,
struct damon_region *l, struct damon_region *r)
{
unsigned long sz_l = sz_damon_region(l), sz_r = sz_damon_region(r);
l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
(sz_l + sz_r);
mm/damon/core: account age of target regions Patch series "Implement Data Access Monitoring-based Memory Operation Schemes". Introduction ============ DAMON[1] can be used as a primitive for data access aware memory management optimizations. For that, users who want such optimizations should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. Such efforts will be inevitable for some complicated optimizations. However, in many other cases, the users would simply want the system to apply a memory management action to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB keeping only rare accesses more than 2 minutes", or "Do not use THP for a memory region larger than 2 MiB rarely accessed for more than 1 seconds". To make the works easier and non-redundant, this patchset implements a new feature of DAMON, which is called Data Access Monitoring-based Operation Schemes (DAMOS). Using the feature, users can describe the normal schemes in a simple way and ask DAMON to execute those on its own. [1] https://damonitor.github.io Evaluations =========== DAMOS is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the showcase web site's evaluation document[1] for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y - For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y Sequence Of Patches =================== The 1st patch accounts age of each region. The 2nd patch implements the core of the DAMON-based operation schemes feature. The 3rd patch makes the default monitoring primitives for virtual address spaces to support the schemes. From this point, the kernel space users can use DAMOS. The 4th patch exports the feature to the user space via the debugfs interface. The 5th patch implements schemes statistics feature for easier tuning of the schemes and runtime access pattern analysis, and the 6th patch adds selftests for these changes. Finally, the 7th patch documents this new feature. This patch (of 7): DAMON can be used for data access pattern aware memory management optimizations. For that, users should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. It would not be too hard, but still require some level of effort. For complicated cases, this effort is inevitable. That said, in many cases, users would simply want to apply an actions to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". For such optimizations, users will need to first account the age of each region themselves. To reduce such efforts, this implements a simple age account of each region in DAMON. For each aggregation step, DAMON compares the access frequency with that from last aggregation and reset the age of the region if the change is significant. Else, the age is incremented. Also, in case of the merge of regions, the region size-weighted average of the ages is set as the age of merged new region. Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Greg Thelen <gthelen@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: David Rienjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:18 +03:00
l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
l->ar.end = r->ar.end;
damon_destroy_region(r, t);
}
/*
* Merge adjacent regions having similar access frequencies
*
* t target affected by this merge operation
* thres '->nr_accesses' diff threshold for the merge
* sz_limit size upper limit of each region
*/
static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
unsigned long sz_limit)
{
struct damon_region *r, *prev = NULL, *next;
damon_for_each_region_safe(r, next, t) {
if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
mm/damon/core: account age of target regions Patch series "Implement Data Access Monitoring-based Memory Operation Schemes". Introduction ============ DAMON[1] can be used as a primitive for data access aware memory management optimizations. For that, users who want such optimizations should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. Such efforts will be inevitable for some complicated optimizations. However, in many other cases, the users would simply want the system to apply a memory management action to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB keeping only rare accesses more than 2 minutes", or "Do not use THP for a memory region larger than 2 MiB rarely accessed for more than 1 seconds". To make the works easier and non-redundant, this patchset implements a new feature of DAMON, which is called Data Access Monitoring-based Operation Schemes (DAMOS). Using the feature, users can describe the normal schemes in a simple way and ask DAMON to execute those on its own. [1] https://damonitor.github.io Evaluations =========== DAMOS is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the showcase web site's evaluation document[1] for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y - For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y Sequence Of Patches =================== The 1st patch accounts age of each region. The 2nd patch implements the core of the DAMON-based operation schemes feature. The 3rd patch makes the default monitoring primitives for virtual address spaces to support the schemes. From this point, the kernel space users can use DAMOS. The 4th patch exports the feature to the user space via the debugfs interface. The 5th patch implements schemes statistics feature for easier tuning of the schemes and runtime access pattern analysis, and the 6th patch adds selftests for these changes. Finally, the 7th patch documents this new feature. This patch (of 7): DAMON can be used for data access pattern aware memory management optimizations. For that, users should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. It would not be too hard, but still require some level of effort. For complicated cases, this effort is inevitable. That said, in many cases, users would simply want to apply an actions to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". For such optimizations, users will need to first account the age of each region themselves. To reduce such efforts, this implements a simple age account of each region in DAMON. For each aggregation step, DAMON compares the access frequency with that from last aggregation and reset the age of the region if the change is significant. Else, the age is incremented. Also, in case of the merge of regions, the region size-weighted average of the ages is set as the age of merged new region. Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Greg Thelen <gthelen@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: David Rienjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:18 +03:00
r->age = 0;
else
r->age++;
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
if (prev && prev->ar.end == r->ar.start &&
abs(prev->nr_accesses - r->nr_accesses) <= thres &&
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
sz_damon_region(prev) + sz_damon_region(r) <= sz_limit)
damon_merge_two_regions(t, prev, r);
else
prev = r;
}
}
/*
* Merge adjacent regions having similar access frequencies
*
* threshold '->nr_accesses' diff threshold for the merge
* sz_limit size upper limit of each region
*
* This function merges monitoring target regions which are adjacent and their
* access frequencies are similar. This is for minimizing the monitoring
* overhead under the dynamically changeable access pattern. If a merge was
* unnecessarily made, later 'kdamond_split_regions()' will revert it.
*/
static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
unsigned long sz_limit)
{
struct damon_target *t;
damon_for_each_target(t, c)
damon_merge_regions_of(t, threshold, sz_limit);
}
/*
* Split a region in two
*
* r the region to be split
* sz_r size of the first sub-region that will be made
*/
static void damon_split_region_at(struct damon_ctx *ctx,
struct damon_target *t, struct damon_region *r,
unsigned long sz_r)
{
struct damon_region *new;
new = damon_new_region(r->ar.start + sz_r, r->ar.end);
if (!new)
return;
r->ar.end = new->ar.start;
mm/damon/core: account age of target regions Patch series "Implement Data Access Monitoring-based Memory Operation Schemes". Introduction ============ DAMON[1] can be used as a primitive for data access aware memory management optimizations. For that, users who want such optimizations should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. Such efforts will be inevitable for some complicated optimizations. However, in many other cases, the users would simply want the system to apply a memory management action to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB keeping only rare accesses more than 2 minutes", or "Do not use THP for a memory region larger than 2 MiB rarely accessed for more than 1 seconds". To make the works easier and non-redundant, this patchset implements a new feature of DAMON, which is called Data Access Monitoring-based Operation Schemes (DAMOS). Using the feature, users can describe the normal schemes in a simple way and ask DAMON to execute those on its own. [1] https://damonitor.github.io Evaluations =========== DAMOS is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the showcase web site's evaluation document[1] for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y - For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y Sequence Of Patches =================== The 1st patch accounts age of each region. The 2nd patch implements the core of the DAMON-based operation schemes feature. The 3rd patch makes the default monitoring primitives for virtual address spaces to support the schemes. From this point, the kernel space users can use DAMOS. The 4th patch exports the feature to the user space via the debugfs interface. The 5th patch implements schemes statistics feature for easier tuning of the schemes and runtime access pattern analysis, and the 6th patch adds selftests for these changes. Finally, the 7th patch documents this new feature. This patch (of 7): DAMON can be used for data access pattern aware memory management optimizations. For that, users should run DAMON, read the monitoring results, analyze it, plan a new memory management scheme, and apply the new scheme by themselves. It would not be too hard, but still require some level of effort. For complicated cases, this effort is inevitable. That said, in many cases, users would simply want to apply an actions to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". For such optimizations, users will need to first account the age of each region themselves. To reduce such efforts, this implements a simple age account of each region in DAMON. For each aggregation step, DAMON compares the access frequency with that from last aggregation and reset the age of the region if the change is significant. Else, the age is incremented. Also, in case of the merge of regions, the region size-weighted average of the ages is set as the age of merged new region. Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Greg Thelen <gthelen@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: David Rienjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:18 +03:00
new->age = r->age;
new->last_nr_accesses = r->last_nr_accesses;
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
damon_insert_region(new, r, damon_next_region(r), t);
}
/* Split every region in the given target into 'nr_subs' regions */
static void damon_split_regions_of(struct damon_ctx *ctx,
struct damon_target *t, int nr_subs)
{
struct damon_region *r, *next;
unsigned long sz_region, sz_sub = 0;
int i;
damon_for_each_region_safe(r, next, t) {
sz_region = r->ar.end - r->ar.start;
for (i = 0; i < nr_subs - 1 &&
sz_region > 2 * DAMON_MIN_REGION; i++) {
/*
* Randomly select size of left sub-region to be at
* least 10 percent and at most 90% of original region
*/
sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
sz_region / 10, DAMON_MIN_REGION);
/* Do not allow blank region */
if (sz_sub == 0 || sz_sub >= sz_region)
continue;
damon_split_region_at(ctx, t, r, sz_sub);
sz_region = sz_sub;
}
}
}
/*
* Split every target region into randomly-sized small regions
*
* This function splits every target region into random-sized small regions if
* current total number of the regions is equal or smaller than half of the
* user-specified maximum number of regions. This is for maximizing the
* monitoring accuracy under the dynamically changeable access patterns. If a
* split was unnecessarily made, later 'kdamond_merge_regions()' will revert
* it.
*/
static void kdamond_split_regions(struct damon_ctx *ctx)
{
struct damon_target *t;
unsigned int nr_regions = 0;
static unsigned int last_nr_regions;
int nr_subregions = 2;
damon_for_each_target(t, ctx)
nr_regions += damon_nr_regions(t);
if (nr_regions > ctx->max_nr_regions / 2)
return;
/* Maybe the middle of the region has different access frequency */
if (last_nr_regions == nr_regions &&
nr_regions < ctx->max_nr_regions / 3)
nr_subregions = 3;
damon_for_each_target(t, ctx)
damon_split_regions_of(ctx, t, nr_subregions);
last_nr_regions = nr_regions;
}
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
/*
* Check whether it is time to check and apply the target monitoring regions
*
* Returns true if it is.
*/
static bool kdamond_need_update_primitive(struct damon_ctx *ctx)
{
return damon_check_reset_time_interval(&ctx->last_primitive_update,
ctx->primitive_update_interval);
}
/*
* Check whether current monitoring should be stopped
*
* The monitoring is stopped when either the user requested to stop, or all
* monitoring targets are invalid.
*
* Returns true if need to stop current monitoring.
*/
static bool kdamond_need_stop(struct damon_ctx *ctx)
{
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
struct damon_target *t;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (kthread_should_stop())
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
return true;
if (!ctx->primitive.target_valid)
return false;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
damon_for_each_target(t, ctx) {
if (ctx->primitive.target_valid(t))
return false;
}
return true;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
}
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
{
struct sysinfo i;
switch (metric) {
case DAMOS_WMARK_FREE_MEM_RATE:
si_meminfo(&i);
return i.freeram * 1000 / i.totalram;
default:
break;
}
return -EINVAL;
}
/*
* Returns zero if the scheme is active. Else, returns time to wait for next
* watermark check in micro-seconds.
*/
static unsigned long damos_wmark_wait_us(struct damos *scheme)
{
unsigned long metric;
if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
return 0;
metric = damos_wmark_metric_value(scheme->wmarks.metric);
/* higher than high watermark or lower than low watermark */
if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
if (scheme->wmarks.activated)
pr_debug("deactivate a scheme (%d) for %s wmark\n",
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
scheme->action,
metric > scheme->wmarks.high ?
"high" : "low");
scheme->wmarks.activated = false;
return scheme->wmarks.interval;
}
/* inactive and higher than middle watermark */
if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
!scheme->wmarks.activated)
return scheme->wmarks.interval;
if (!scheme->wmarks.activated)
pr_debug("activate a scheme (%d)\n", scheme->action);
scheme->wmarks.activated = true;
return 0;
}
static void kdamond_usleep(unsigned long usecs)
{
/* See Documentation/timers/timers-howto.rst for the thresholds */
if (usecs > 20 * USEC_PER_MSEC)
schedule_timeout_idle(usecs_to_jiffies(usecs));
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
else
usleep_idle_range(usecs, usecs + 1);
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
}
/* Returns negative error code if it's not activated but should return */
static int kdamond_wait_activation(struct damon_ctx *ctx)
{
struct damos *s;
unsigned long wait_time;
unsigned long min_wait_time = 0;
while (!kdamond_need_stop(ctx)) {
damon_for_each_scheme(s, ctx) {
wait_time = damos_wmark_wait_us(s);
if (!min_wait_time || wait_time < min_wait_time)
min_wait_time = wait_time;
}
if (!min_wait_time)
return 0;
kdamond_usleep(min_wait_time);
}
return -EBUSY;
}
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
/*
* The monitoring daemon that runs as a kernel thread
*/
static int kdamond_fn(void *data)
{
struct damon_ctx *ctx = (struct damon_ctx *)data;
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
struct damon_target *t;
struct damon_region *r, *next;
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
unsigned int max_nr_accesses = 0;
unsigned long sz_limit = 0;
bool done = false;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
pr_debug("kdamond (%d) starts\n", current->pid);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (ctx->primitive.init)
ctx->primitive.init(ctx);
if (ctx->callback.before_start && ctx->callback.before_start(ctx))
done = true;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
sz_limit = damon_region_sz_limit(ctx);
while (!kdamond_need_stop(ctx) && !done) {
mm/damon/schemes: activate schemes based on a watermarks mechanism DAMON-based operation schemes need to be manually turned on and off. In some use cases, however, the condition for turning a scheme on and off would depend on the system's situation. For example, schemes for proactive pages reclamation would need to be turned on when some memory pressure is detected, and turned off when the system has enough free memory. For easier control of schemes activation based on the system situation, this introduces a watermarks-based mechanism. The client can describe the watermark metric (e.g., amount of free memory in the system), watermark check interval, and three watermarks, namely high, mid, and low. If the scheme is deactivated, it only gets the metric and compare that to the three watermarks for every check interval. If the metric is higher than the high watermark, the scheme is deactivated. If the metric is between the mid watermark and the low watermark, the scheme is activated. If the metric is lower than the low watermark, the scheme is deactivated again. This is to allow users fall back to traditional page-granularity mechanisms. Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:47:47 +03:00
if (kdamond_wait_activation(ctx))
continue;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (ctx->primitive.prepare_access_checks)
ctx->primitive.prepare_access_checks(ctx);
if (ctx->callback.after_sampling &&
ctx->callback.after_sampling(ctx))
done = true;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
kdamond_usleep(ctx->sample_interval);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (ctx->primitive.check_accesses)
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
max_nr_accesses = ctx->primitive.check_accesses(ctx);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (kdamond_aggregate_interval_passed(ctx)) {
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
kdamond_merge_regions(ctx,
max_nr_accesses / 10,
sz_limit);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (ctx->callback.after_aggregation &&
ctx->callback.after_aggregation(ctx))
done = true;
mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) In many cases, users might use DAMON for simple data access aware memory management optimizations such as applying an operation scheme to a memory region of a specific size having a specific access frequency for a specific time. For example, "page out a memory region larger than 100 MiB but having a low access frequency more than 10 minutes", or "Use THP for a memory region larger than 2 MiB having a high access frequency for more than 2 seconds". Most simple form of the solution would be doing offline data access pattern profiling using DAMON and modifying the application source code or system configuration based on the profiling results. Or, developing a daemon constructed with two modules (one for access monitoring and the other for applying memory management actions via mlock(), madvise(), sysctl, etc) is imaginable. To avoid users spending their time for implementation of such simple data access monitoring-based operation schemes, this makes DAMON to handle such schemes directly. With this change, users can simply specify their desired schemes to DAMON. Then, DAMON will automatically apply the schemes to the user-specified target processes. Each of the schemes is composed with conditions for filtering of the target memory regions and desired memory management action for the target. Specifically, the format is:: <min/max size> <min/max access frequency> <min/max age> <action> The filtering conditions are size of memory region, number of accesses to the region monitored by DAMON, and the age of the region. The age of region is incremented periodically but reset when its addresses or access frequency has significantly changed or the action of a scheme was applied. For the action, current implementation supports a few of madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``, and ``NOHUGEPAGE``. Because DAMON supports various address spaces and application of the actions to a monitoring target region is dependent to the type of the target address space, the application code should be implemented by each primitives and registered to the framework. Note that this only implements the framework part. Following commit will implement the action applications for virtual address spaces primitives. Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rienjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Greg Thelen <gthelen@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 23:46:22 +03:00
kdamond_apply_schemes(ctx);
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
kdamond_reset_aggregated(ctx);
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
kdamond_split_regions(ctx);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (ctx->primitive.reset_aggregated)
ctx->primitive.reset_aggregated(ctx);
}
if (kdamond_need_update_primitive(ctx)) {
if (ctx->primitive.update)
ctx->primitive.update(ctx);
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
sz_limit = damon_region_sz_limit(ctx);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
}
}
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
damon_for_each_target(t, ctx) {
damon_for_each_region_safe(r, next, t)
mm/damon: adaptively adjust regions Even somehow the initial monitoring target regions are well constructed to fulfill the assumption (pages in same region have similar access frequencies), the data access pattern can be dynamically changed. This will result in low monitoring quality. To keep the assumption as much as possible, DAMON adaptively merges and splits each region based on their access frequency. For each ``aggregation interval``, it compares the access frequencies of adjacent regions and merges those if the frequency difference is small. Then, after it reports and clears the aggregated access frequency of each region, it splits each region into two or three regions if the total number of regions will not exceed the user-specified maximum number of regions after the split. In this way, DAMON provides its best-effort quality and minimal overhead while keeping the upper-bound overhead that users set. Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:36 +03:00
damon_destroy_region(r, t);
mm/damon/core: implement region-based sampling To avoid the unbounded increase of the overhead, DAMON groups adjacent pages that are assumed to have the same access frequencies into a region. As long as the assumption (pages in a region have the same access frequencies) is kept, only one page in the region is required to be checked. Thus, for each ``sampling interval``, 1. the 'prepare_access_checks' primitive picks one page in each region, 2. waits for one ``sampling interval``, 3. checks whether the page is accessed meanwhile, and 4. increases the access count of the region if so. Therefore, the monitoring overhead is controllable by adjusting the number of regions. DAMON allows both the underlying primitives and user callbacks to adjust regions for the trade-off. In other words, this commit makes DAMON to use not only time-based sampling but also space-based sampling. This scheme, however, cannot preserve the quality of the output if the assumption is not guaranteed. Next commit will address this problem. Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:32 +03:00
}
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (ctx->callback.before_terminate)
ctx->callback.before_terminate(ctx);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
if (ctx->primitive.cleanup)
ctx->primitive.cleanup(ctx);
pr_debug("kdamond (%d) finishes\n", current->pid);
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
mutex_lock(&ctx->kdamond_lock);
ctx->kdamond = NULL;
mutex_unlock(&ctx->kdamond_lock);
mutex_lock(&damon_lock);
nr_running_ctxs--;
mutex_unlock(&damon_lock);
return 0;
mm: introduce Data Access MONitor (DAMON) Patch series "Introduce Data Access MONitor (DAMON)", v34. Introduction ============ DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON called 'region based sampling' and 'adaptive regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this patchset for the detail) make it - accurate (The monitored information is useful for DRAM level memory management. It might not appropriate for Cache-level accuracy, though.), - light-weight (The monitoring overhead is low enough to be applied online while making no impact on the performance of the target workloads.), and - scalable (the upper-bound of the instrumentation overhead is controllable regardless of the size of target workloads.). Using this framework, therefore, several memory management mechanisms such as reclamation and THP can be optimized to aware real data access patterns. Experimental access pattern aware memory management optimization works that incurring high instrumentation overhead will be able to have another try. Though DAMON is for kernel subsystems, it can be easily exposed to the user space by writing a DAMON-wrapper kernel subsystem. Then, user space users who have some special workloads will be able to write personalized tools or applications for deeper understanding and specialized optimizations of their systems. DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon The userspace tool[1] is available, released under GPLv2, and actively being maintained. I am also planning to implement another basic user interface in perf[2]. Also, the basic test suite for DAMON is available under GPLv2[3]. [1] https://github.com/awslabs/damo [2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/ [3] https://github.com/awslabs/damon-tests Long-term Plan -------------- DAMON is a part of a project called Data Access-aware Operating System (DAOS). As the name implies, I want to improve the performance and efficiency of systems using fine-grained data access patterns. The optimizations are for both kernel and user spaces. I will therefore modify or create kernel subsystems, export some of those to user space and implement user space library / tools. Below shows the layers and components for the project. --------------------------------------------------------------------------- Primitives: PTE Accessed bit, PG_idle, rmap, (Intel CMT), ... Framework: DAMON Features: DAMOS, virtual addr, physical addr, ... Applications: DAMON-debugfs, (DARC), ... ^^^^^^^^^^^^^^^^^^^^^^^ KERNEL SPACE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Raw Interface: debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ... vvvvvvvvvvvvvvvvvvvvvvv USER SPACE vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Library: (libdamon), ... Tools: DAMO, (perf), ... --------------------------------------------------------------------------- The components in parentheses or marked as '...' are not implemented yet but in the future plan. IOW, those are the TODO tasks of DAOS project. For more detail, please refer to the plans: https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/ Evaluations =========== We evaluated DAMON's overhead, monitoring quality and usefulness using 24 realistic workloads on my QEMU/KVM based virtual machine running a kernel that v24 DAMON patchset is applied. DAMON is lightweight. It increases system memory usage by 0.39% and slows target workloads down by 1.16%. DAMON is accurate and useful for memory management optimizations. An experimental DAMON-based operation scheme for THP, namely 'ethp', removes 76.15% of THP memory overheads while preserving 51.25% of THP speedup. Another experimental DAMON-based 'proactive reclamation' implementation, 'prcl', reduces 93.38% of residential sets and 23.63% of system memory footprint while incurring only 1.22% runtime overhead in the best case (parsec3/freqmine). NOTE that the experimental THP optimization and proactive reclamation are not for production but only for proof of concepts. Please refer to the official document[1] or "Documentation/admin-guide/mm: Add a document for DAMON" patch in this patchset for detailed evaluation setup and results. [1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html Real-world User Story ===================== In summary, DAMON has used on production systems and proved its usefulness. DAMON as a profiler ------------------- We analyzed characteristics of a large scale production systems of our customers using DAMON. The systems utilize 70GB DRAM and 36 CPUs. From this, we were able to find interesting things below. There were obviously different access pattern under idle workload and active workload. Under the idle workload, it accessed large memory regions with low frequency, while the active workload accessed small memory regions with high freuqnecy. DAMON found a 7GB memory region that showing obviously high access frequency under the active workload. We believe this is the performance-effective working set and need to be protected. There was a 4KB memory region that showing highest access frequency under not only active but also idle workloads. We think this must be a hottest code section like thing that should never be paged out. For this analysis, DAMON used only 0.3-1% of single CPU time. Because we used recording-based analysis, it consumed about 3-12 MB of disk space per 20 minutes. This is only small amount of disk space, but we can further reduce the disk usage by using non-recording-based DAMON features. I'd like to argue that only DAMON can do such detailed analysis (finding 4KB highest region in 70GB memory) with the light overhead. DAMON as a system optimization tool ----------------------------------- We also found below potential performance problems on the systems and made DAMON-based solutions. The system doesn't want to make the workload suffer from the page reclamation and thus it utilizes enough DRAM but no swap device. However, we found the system is actively reclaiming file-backed pages, because the system has intensive file IO. The file IO turned out to be not performance critical for the workload, but the customer wanted to ensure performance critical file-backed pages like code section to not mistakenly be evicted. Using direct IO should or `mlock()` would be a straightforward solution, but modifying the user space code is not easy for the customer. Alternatively, we could use DAMON-based operation scheme[1]. By using it, we can ask DAMON to track access frequency of each region and make 'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size and access frequency for a time interval. We also found the system is having high number of TLB misses. We tried 'always' THP enabled policy and it greatly reduced TLB misses, but the page reclamation also been more frequent due to the THP internal fragmentation caused memory bloat. We could try another DAMON-based operation scheme that applies 'MADV_HUGEPAGE' to memory regions having >=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to regions having <2MB size and low access frequency. We do not own the systems so we only reported the analysis results and possible optimization solutions to the customers. The customers satisfied about the analysis results and promised to try the optimization guides. [1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/ [2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/ Comparison with Idle Page Tracking ================================== Idle Page Tracking allows users to set and read idleness of pages using a bitmap file which represents each page with each bit of the file. One recommended usage of it is working set size detection. Users can do that by 1. find PFN of each page for workloads in interest, 2. set all the pages as idle by doing writes to the bitmap file, 3. wait until the workload accesses its working set, and 4. read the idleness of the pages again and count pages became not idle. NOTE: While Idle Page Tracking is for user space users, DAMON is primarily designed for kernel subsystems though it can easily exposed to the user space. Hence, this section only assumes such user space use of DAMON. For what use cases Idle Page Tracking would be better? ------------------------------------------------------ 1. Flexible usecases other than hotness monitoring. Because Idle Page Tracking allows users to control the primitive (Page idleness) by themselves, Idle Page Tracking users can do anything they want. Meanwhile, DAMON is primarily designed to monitor the hotness of each memory region. For this, DAMON asks users to provide sampling interval and aggregation interval. For the reason, there could be some use case that using Idle Page Tracking is simpler. 2. Physical memory monitoring. Idle Page Tracking receives PFN range as input, so natively supports physical memory monitoring. DAMON is designed to be extensible for multiple address spaces and use cases by implementing and using primitives for the given use case. Therefore, by theory, DAMON has no limitation in the type of target address space as long as primitives for the given address space exists. However, the default primitives introduced by this patchset supports only virtual address spaces. Therefore, for physical memory monitoring, you should implement your own primitives and use it, or simply use Idle Page Tracking. Nonetheless, RFC patchsets[1] for the physical memory address space primitives is already available. It also supports user memory same to Idle Page Tracking. [1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/ For what use cases DAMON is better? ----------------------------------- 1. Hotness Monitoring. Idle Page Tracking let users know only if a page frame is accessed or not. For hotness check, the user should write more code and use more memory. DAMON do that by itself. 2. Low Monitoring Overhead DAMON receives user's monitoring request with one step and then provide the results. So, roughly speaking, DAMON require only O(1) user/kernel context switches. In case of Idle Page Tracking, however, because the interface receives contiguous page frames, the number of user/kernel context switches increases as the monitoring target becomes complex and huge. As a result, the context switch overhead could be not negligible. Moreover, DAMON is born to handle with the monitoring overhead. Because the core mechanism is pure logical, Idle Page Tracking users might be able to implement the mechanism on their own, but it would be time consuming and the user/kernel context switching will still more frequent than that of DAMON. Also, the kernel subsystems cannot use the logic in this case. 3. Page granularity working set size detection. Until v22 of this patchset, this was categorized as the thing Idle Page Tracking could do better, because DAMON basically maintains additional metadata for each of the monitoring target regions. So, in the page granularity working set size detection use case, DAMON would incur (number of monitoring target pages * size of metadata) memory overhead. Size of the single metadata item is about 54 bytes, so assuming 4KB pages, about 1.3% of monitoring target pages will be additionally used. All essential metadata for Idle Page Tracking are embedded in 'struct page' and page table entries. Therefore, in this use case, only one counter variable for working set size accounting is required if Idle Page Tracking is used. There are more details to consider, but roughly speaking, this is true in most cases. However, the situation changed from v23. Now DAMON supports arbitrary types of monitoring targets, which don't use the metadata. Using that, DAMON can do the working set size detection with no additional space overhead but less user-kernel context switch. A first draft for the implementation of monitoring primitives for this usage is available in a DAMON development tree[1]. An RFC patchset for it based on this patchset will also be available soon. Since v24, the arbitrary type support is dropped from this patchset because this patchset doesn't introduce real use of the type. You can still get it from the DAMON development tree[2], though. [1] https://github.com/sjp38/linux/tree/damon/pgidle_hack [2] https://github.com/sjp38/linux/tree/damon/master 4. More future usecases While Idle Page Tracking has tight coupling with base primitives (PG_Idle and page table Accessed bits), DAMON is designed to be extensible for many use cases and address spaces. If you need some special address type or want to use special h/w access check primitives, you can write your own primitives for that and configure DAMON to use those. Therefore, if your use case could be changed a lot in future, using DAMON could be better. Can I use both Idle Page Tracking and DAMON? -------------------------------------------- Yes, though using them concurrently for overlapping memory regions could result in interference to each other. Nevertheless, such use case would be rare or makes no sense at all. Even in the case, the noise would bot be really significant. So, you can choose whatever you want depending on the characteristics of your use cases. More Information ================ We prepared a showcase web site[1] that you can get more information. There are - the official documentations[2], - the heatmap format dynamic access pattern of various realistic workloads for heap area[3], mmap()-ed area[4], and stack[5] area, - the dynamic working set size distribution[6] and chronological working set size changes[7], and - the latest performance test results[8]. [1] https://damonitor.github.io/_index [2] https://damonitor.github.io/doc/html/latest-damon [3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html [4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html [5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html [6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html [7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html [8] https://damonitor.github.io/test/result/perf/latest/html/index.html Baseline and Complete Git Trees =============================== The patches are based on the latest -mm tree, specifically v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm. You can also clone the complete git tree: $ git clone git://github.com/sjp38/linux -b damon/patches/v34 The web is also available: https://github.com/sjp38/linux/releases/tag/damon/patches/v34 Development Trees ----------------- There are a couple of trees for entire DAMON patchset series and features for future release. - For latest release: https://github.com/sjp38/linux/tree/damon/master - For next release: https://github.com/sjp38/linux/tree/damon/next Long-term Support Trees ----------------------- For people who want to test DAMON but using LTS kernels, there are another couple of trees based on two latest LTS kernels respectively and containing the 'damon/master' backports. - For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y - For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y Amazon Linux Kernel Trees ------------------------- DAMON is also merged in two public Amazon Linux kernel trees that based on v5.4.y[1] and v5.10.y[2]. [1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon [2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon Git Tree for Diff of Patches ============================ For easy review of diff between different versions of each patch, I prepared a git tree containing all versions of the DAMON patchset series: https://github.com/sjp38/damon-patches You can clone it and use 'diff' for easy review of changes between different versions of the patchset. For example: $ git clone https://github.com/sjp38/damon-patches && cd damon-patches $ diff -u damon/v33 damon/v34 Sequence Of Patches =================== First three patches implement the core logics of DAMON. The 1st patch introduces basic sampling based hotness monitoring for arbitrary types of targets. Following two patches implement the core mechanisms for control of overhead and accuracy, namely regions based sampling (patch 2) and adaptive regions adjustment (patch 3). Now the essential parts of DAMON is complete, but it cannot work unless someone provides monitoring primitives for a specific use case. The following two patches make it just work for virtual address spaces monitoring. The 4th patch makes 'PG_idle' can be used by DAMON and the 5th patch implements the virtual memory address space specific monitoring primitives using page table Accessed bits and the 'PG_idle' page flag. Now DAMON just works for virtual address space monitoring via the kernel space api. To let the user space users can use DAMON, following four patches add interfaces for them. The 6th patch adds a tracepoint for monitoring results. The 7th patch implements a DAMON application kernel module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON interface to the user space via the debugfs interface. The 8th patch further exports pid of monitoring thread (kdamond) to user space for easier cpu usage accounting, and the 9th patch makes the debugfs interface to support multiple contexts. Three patches for maintainability follows. The 10th patch adds documentations for both the user space and the kernel space. The 11th patch provides unit tests (based on the kunit) while the 12th patch adds user space tests (based on the kselftest). Finally, the last patch (13th) updates the MAINTAINERS file. This patch (of 13): DAMON is a data access monitoring framework for the Linux kernel. The core mechanisms of DAMON make it - accurate (the monitoring output is useful enough for DRAM level performance-centric memory management; It might be inappropriate for CPU cache levels, though), - light-weight (the monitoring overhead is normally low enough to be applied online), and - scalable (the upper-bound of the overhead is in constant range regardless of the size of target workloads). Using this framework, hence, we can easily write efficient kernel space data access monitoring applications. For example, the kernel's memory management mechanisms can make advanced decisions using this. Experimental data access aware optimization works that incurring high access monitoring overhead could again be implemented on top of this. Due to its simple and flexible interface, providing user space interface would be also easy. Then, user space users who have some special workloads can write personalized applications for better understanding and optimizations of their workloads and systems. === Nevertheless, this commit is defining and implementing only basic access check part without the overhead-accuracy handling core logic. The basic access check is as below. The output of DAMON says what memory regions are how frequently accessed for a given duration. The resolution of the access frequency is controlled by setting ``sampling interval`` and ``aggregation interval``. In detail, DAMON checks access to each page per ``sampling interval`` and aggregates the results. In other words, counts the number of the accesses to each region. After each ``aggregation interval`` passes, DAMON calls callback functions that previously registered by users so that users can read the aggregated results and then clears the results. This can be described in below simple pseudo-code:: init() while monitoring_on: for page in monitoring_target: if accessed(page): nr_accesses[page] += 1 if time() % aggregation_interval == 0: for callback in user_registered_callbacks: callback(monitoring_target, nr_accesses) for page in monitoring_target: nr_accesses[page] = 0 if time() % update_interval == 0: update() sleep(sampling interval) The target regions constructed at the beginning of the monitoring and updated after each ``regions_update_interval``, because the target regions could be dynamically changed (e.g., mmap() or memory hotplug). The monitoring overhead of this mechanism will arbitrarily increase as the size of the target workload grows. The basic monitoring primitives for actual access check and dynamic target regions construction aren't in the core part of DAMON. Instead, it allows users to implement their own primitives that are optimized for their use case and configure DAMON to use those. In other words, users cannot use current version of DAMON without some additional works. Following commits will implement the core mechanisms for the overhead-accuracy control and default primitives implementations. Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: David Hildenbrand <david@redhat.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Marco Elver <elver@google.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joe Perches <joe@perches.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Markus Boehme <markubo@amazon.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:56:28 +03:00
}
mm/damon: add kunit tests This commit adds kunit based unit tests for the core and the virtual address spaces monitoring primitives of DAMON. Link: https://lkml.kernel.org/r/20210716081449.22187-12-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Brendan Higgins <brendanhiggins@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Fernand Sieber <sieberf@amazon.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 05:57:09 +03:00
#include "core-test.h"