2005-04-16 15:20:36 -07:00
/*
* Linux / PA - RISC Project ( http : //www.parisc-linux.org/)
*
* Floating - point emulation code
* Copyright ( C ) 2001 Hewlett - Packard ( Paul Bame ) < bame @ debian . org >
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 , or ( at your option )
* any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
/*
* BEGIN_DESC
*
* File :
* @ ( # ) pa / spmath / fmpyfadd . c $ Revision : 1.1 $
*
* Purpose :
* Double Floating - point Multiply Fused Add
* Double Floating - point Multiply Negate Fused Add
* Single Floating - point Multiply Fused Add
* Single Floating - point Multiply Negate Fused Add
*
* External Interfaces :
* dbl_fmpyfadd ( src1ptr , src2ptr , src3ptr , status , dstptr )
* dbl_fmpynfadd ( src1ptr , src2ptr , src3ptr , status , dstptr )
* sgl_fmpyfadd ( src1ptr , src2ptr , src3ptr , status , dstptr )
* sgl_fmpynfadd ( src1ptr , src2ptr , src3ptr , status , dstptr )
*
* Internal Interfaces :
*
* Theory :
* < < please update with a overview of the operation of this file > >
*
* END_DESC
*/
# include "float.h"
# include "sgl_float.h"
# include "dbl_float.h"
/*
* Double Floating - point Multiply Fused Add
*/
int
dbl_fmpyfadd (
dbl_floating_point * src1ptr ,
dbl_floating_point * src2ptr ,
dbl_floating_point * src3ptr ,
unsigned int * status ,
dbl_floating_point * dstptr )
{
unsigned int opnd1p1 , opnd1p2 , opnd2p1 , opnd2p2 , opnd3p1 , opnd3p2 ;
register unsigned int tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ;
unsigned int rightp1 , rightp2 , rightp3 , rightp4 ;
unsigned int resultp1 , resultp2 = 0 , resultp3 = 0 , resultp4 = 0 ;
register int mpy_exponent , add_exponent , count ;
boolean inexact = FALSE , is_tiny = FALSE ;
unsigned int signlessleft1 , signlessright1 , save ;
register int result_exponent , diff_exponent ;
int sign_save , jumpsize ;
Dbl_copyfromptr ( src1ptr , opnd1p1 , opnd1p2 ) ;
Dbl_copyfromptr ( src2ptr , opnd2p1 , opnd2p2 ) ;
Dbl_copyfromptr ( src3ptr , opnd3p1 , opnd3p2 ) ;
/*
* set sign bit of result of multiply
*/
if ( Dbl_sign ( opnd1p1 ) ^ Dbl_sign ( opnd2p1 ) )
Dbl_setnegativezerop1 ( resultp1 ) ;
else Dbl_setzerop1 ( resultp1 ) ;
/*
* Generate multiply exponent
*/
mpy_exponent = Dbl_exponent ( opnd1p1 ) + Dbl_exponent ( opnd2p1 ) - DBL_BIAS ;
/*
* check first operand for NaN ' s or infinity
*/
if ( Dbl_isinfinity_exponent ( opnd1p1 ) ) {
if ( Dbl_iszero_mantissa ( opnd1p1 , opnd1p2 ) ) {
if ( Dbl_isnotnan ( opnd2p1 , opnd2p2 ) & &
Dbl_isnotnan ( opnd3p1 , opnd3p2 ) ) {
if ( Dbl_iszero_exponentmantissa ( opnd2p1 , opnd2p2 ) ) {
/*
* invalid since operands are infinity
* and zero
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Dbl_makequietnan ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* Check third operand for infinity with a
* sign opposite of the multiply result
*/
if ( Dbl_isinfinity ( opnd3p1 , opnd3p2 ) & &
( Dbl_sign ( resultp1 ) ^ Dbl_sign ( opnd3p1 ) ) ) {
/*
* invalid since attempting a magnitude
* subtraction of infinities
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Dbl_makequietnan ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return infinity
*/
Dbl_setinfinity_exponentmantissa ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Dbl_isone_signaling ( opnd1p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd1p1 ) ;
}
/*
* is second operand a signaling NaN ?
*/
else if ( Dbl_is_signalingnan ( opnd2p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd2p1 ) ;
Dbl_copytoptr ( opnd2p1 , opnd2p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* is third operand a signaling NaN ?
*/
else if ( Dbl_is_signalingnan ( opnd3p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd3p1 ) ;
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return quiet NaN
*/
Dbl_copytoptr ( opnd1p1 , opnd1p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* check second operand for NaN ' s or infinity
*/
if ( Dbl_isinfinity_exponent ( opnd2p1 ) ) {
if ( Dbl_iszero_mantissa ( opnd2p1 , opnd2p2 ) ) {
if ( Dbl_isnotnan ( opnd3p1 , opnd3p2 ) ) {
if ( Dbl_iszero_exponentmantissa ( opnd1p1 , opnd1p2 ) ) {
/*
* invalid since multiply operands are
* zero & infinity
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Dbl_makequietnan ( opnd2p1 , opnd2p2 ) ;
Dbl_copytoptr ( opnd2p1 , opnd2p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* Check third operand for infinity with a
* sign opposite of the multiply result
*/
if ( Dbl_isinfinity ( opnd3p1 , opnd3p2 ) & &
( Dbl_sign ( resultp1 ) ^ Dbl_sign ( opnd3p1 ) ) ) {
/*
* invalid since attempting a magnitude
* subtraction of infinities
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Dbl_makequietnan ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return infinity
*/
Dbl_setinfinity_exponentmantissa ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Dbl_isone_signaling ( opnd2p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd2p1 ) ;
}
/*
* is third operand a signaling NaN ?
*/
else if ( Dbl_is_signalingnan ( opnd3p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd3p1 ) ;
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return quiet NaN
*/
Dbl_copytoptr ( opnd2p1 , opnd2p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* check third operand for NaN ' s or infinity
*/
if ( Dbl_isinfinity_exponent ( opnd3p1 ) ) {
if ( Dbl_iszero_mantissa ( opnd3p1 , opnd3p2 ) ) {
/* return infinity */
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
} else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Dbl_isone_signaling ( opnd3p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd3p1 ) ;
}
/*
* return quiet NaN
*/
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* Generate multiply mantissa
*/
if ( Dbl_isnotzero_exponent ( opnd1p1 ) ) {
/* set hidden bit */
Dbl_clear_signexponent_set_hidden ( opnd1p1 ) ;
}
else {
/* check for zero */
if ( Dbl_iszero_mantissa ( opnd1p1 , opnd1p2 ) ) {
/*
* Perform the add opnd3 with zero here .
*/
if ( Dbl_iszero_exponentmantissa ( opnd3p1 , opnd3p2 ) ) {
if ( Is_rounding_mode ( ROUNDMINUS ) ) {
Dbl_or_signs ( opnd3p1 , resultp1 ) ;
} else {
Dbl_and_signs ( opnd3p1 , resultp1 ) ;
}
}
/*
* Now let ' s check for trapped underflow case .
*/
else if ( Dbl_iszero_exponent ( opnd3p1 ) & &
Is_underflowtrap_enabled ( ) ) {
/* need to normalize results mantissa */
sign_save = Dbl_signextendedsign ( opnd3p1 ) ;
result_exponent = 0 ;
Dbl_leftshiftby1 ( opnd3p1 , opnd3p2 ) ;
Dbl_normalize ( opnd3p1 , opnd3p2 , result_exponent ) ;
Dbl_set_sign ( opnd3p1 , /*using*/ sign_save ) ;
Dbl_setwrapped_exponent ( opnd3p1 , result_exponent ,
unfl ) ;
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
/* inexact = FALSE */
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/* is denormalized, adjust exponent */
Dbl_clear_signexponent ( opnd1p1 ) ;
Dbl_leftshiftby1 ( opnd1p1 , opnd1p2 ) ;
Dbl_normalize ( opnd1p1 , opnd1p2 , mpy_exponent ) ;
}
/* opnd2 needs to have hidden bit set with msb in hidden bit */
if ( Dbl_isnotzero_exponent ( opnd2p1 ) ) {
Dbl_clear_signexponent_set_hidden ( opnd2p1 ) ;
}
else {
/* check for zero */
if ( Dbl_iszero_mantissa ( opnd2p1 , opnd2p2 ) ) {
/*
* Perform the add opnd3 with zero here .
*/
if ( Dbl_iszero_exponentmantissa ( opnd3p1 , opnd3p2 ) ) {
if ( Is_rounding_mode ( ROUNDMINUS ) ) {
Dbl_or_signs ( opnd3p1 , resultp1 ) ;
} else {
Dbl_and_signs ( opnd3p1 , resultp1 ) ;
}
}
/*
* Now let ' s check for trapped underflow case .
*/
else if ( Dbl_iszero_exponent ( opnd3p1 ) & &
Is_underflowtrap_enabled ( ) ) {
/* need to normalize results mantissa */
sign_save = Dbl_signextendedsign ( opnd3p1 ) ;
result_exponent = 0 ;
Dbl_leftshiftby1 ( opnd3p1 , opnd3p2 ) ;
Dbl_normalize ( opnd3p1 , opnd3p2 , result_exponent ) ;
Dbl_set_sign ( opnd3p1 , /*using*/ sign_save ) ;
Dbl_setwrapped_exponent ( opnd3p1 , result_exponent ,
unfl ) ;
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
/* inexact = FALSE */
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/* is denormalized; want to normalize */
Dbl_clear_signexponent ( opnd2p1 ) ;
Dbl_leftshiftby1 ( opnd2p1 , opnd2p2 ) ;
Dbl_normalize ( opnd2p1 , opnd2p2 , mpy_exponent ) ;
}
/* Multiply the first two source mantissas together */
/*
* The intermediate result will be kept in tmpres ,
* which needs enough room for 106 bits of mantissa ,
* so lets call it a Double extended .
*/
Dblext_setzero ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ) ;
/*
* Four bits at a time are inspected in each loop , and a
* simple shift and add multiply algorithm is used .
*/
for ( count = DBL_P - 1 ; count > = 0 ; count - = 4 ) {
Dblext_rightshiftby4 ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ) ;
if ( Dbit28p2 ( opnd1p2 ) ) {
/* Fourword_add should be an ADD followed by 3 ADDC's */
Fourword_add ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
opnd2p1 < < 3 | opnd2p2 > > 29 , opnd2p2 < < 3 , 0 , 0 ) ;
}
if ( Dbit29p2 ( opnd1p2 ) ) {
Fourword_add ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
opnd2p1 < < 2 | opnd2p2 > > 30 , opnd2p2 < < 2 , 0 , 0 ) ;
}
if ( Dbit30p2 ( opnd1p2 ) ) {
Fourword_add ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
opnd2p1 < < 1 | opnd2p2 > > 31 , opnd2p2 < < 1 , 0 , 0 ) ;
}
if ( Dbit31p2 ( opnd1p2 ) ) {
Fourword_add ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
opnd2p1 , opnd2p2 , 0 , 0 ) ;
}
Dbl_rightshiftby4 ( opnd1p1 , opnd1p2 ) ;
}
if ( Is_dexthiddenoverflow ( tmpresp1 ) ) {
/* result mantissa >= 2 (mantissa overflow) */
mpy_exponent + + ;
Dblext_rightshiftby1 ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ) ;
}
/*
* Restore the sign of the mpy result which was saved in resultp1 .
* The exponent will continue to be kept in mpy_exponent .
*/
Dblext_set_sign ( tmpresp1 , Dbl_sign ( resultp1 ) ) ;
/*
* No rounding is required , since the result of the multiply
* is exact in the extended format .
*/
/*
* Now we are ready to perform the add portion of the operation .
*
* The exponents need to be kept as integers for now , since the
* multiply result might not fit into the exponent field . We
* can ' t overflow or underflow because of this yet , since the
* add could bring the final result back into range .
*/
add_exponent = Dbl_exponent ( opnd3p1 ) ;
/*
* Check for denormalized or zero add operand .
*/
if ( add_exponent = = 0 ) {
/* check for zero */
if ( Dbl_iszero_mantissa ( opnd3p1 , opnd3p2 ) ) {
/* right is zero */
/* Left can't be zero and must be result.
*
* The final result is now in tmpres and mpy_exponent ,
* and needs to be rounded and squeezed back into
* double precision format from double extended .
*/
result_exponent = mpy_exponent ;
Dblext_copy ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
resultp1 , resultp2 , resultp3 , resultp4 ) ;
sign_save = Dbl_signextendedsign ( resultp1 ) ; /*save sign*/
goto round ;
}
/*
* Neither are zeroes .
* Adjust exponent and normalize add operand .
*/
sign_save = Dbl_signextendedsign ( opnd3p1 ) ; /* save sign */
Dbl_clear_signexponent ( opnd3p1 ) ;
Dbl_leftshiftby1 ( opnd3p1 , opnd3p2 ) ;
Dbl_normalize ( opnd3p1 , opnd3p2 , add_exponent ) ;
Dbl_set_sign ( opnd3p1 , sign_save ) ; /* restore sign */
} else {
Dbl_clear_exponent_set_hidden ( opnd3p1 ) ;
}
/*
* Copy opnd3 to the double extended variable called right .
*/
Dbl_copyto_dblext ( opnd3p1 , opnd3p2 , rightp1 , rightp2 , rightp3 , rightp4 ) ;
/*
* A zero " save " helps discover equal operands ( for later ) ,
* and is used in swapping operands ( if needed ) .
*/
Dblext_xortointp1 ( tmpresp1 , rightp1 , /*to*/ save ) ;
/*
* Compare magnitude of operands .
*/
Dblext_copytoint_exponentmantissap1 ( tmpresp1 , signlessleft1 ) ;
Dblext_copytoint_exponentmantissap1 ( rightp1 , signlessright1 ) ;
if ( mpy_exponent < add_exponent | | mpy_exponent = = add_exponent & &
Dblext_ismagnitudeless ( tmpresp2 , rightp2 , signlessleft1 , signlessright1 ) ) {
/*
* Set the left operand to the larger one by XOR swap .
* First finish the first word " save " .
*/
Dblext_xorfromintp1 ( save , rightp1 , /*to*/ rightp1 ) ;
Dblext_xorfromintp1 ( save , tmpresp1 , /*to*/ tmpresp1 ) ;
Dblext_swap_lower ( tmpresp2 , tmpresp3 , tmpresp4 ,
rightp2 , rightp3 , rightp4 ) ;
/* also setup exponents used in rest of routine */
diff_exponent = add_exponent - mpy_exponent ;
result_exponent = add_exponent ;
} else {
/* also setup exponents used in rest of routine */
diff_exponent = mpy_exponent - add_exponent ;
result_exponent = mpy_exponent ;
}
/* Invariant: left is not smaller than right. */
/*
* Special case alignment of operands that would force alignment
* beyond the extent of the extension . A further optimization
* could special case this but only reduces the path length for
* this infrequent case .
*/
if ( diff_exponent > DBLEXT_THRESHOLD ) {
diff_exponent = DBLEXT_THRESHOLD ;
}
/* Align right operand by shifting it to the right */
Dblext_clear_sign ( rightp1 ) ;
Dblext_right_align ( rightp1 , rightp2 , rightp3 , rightp4 ,
/*shifted by*/ diff_exponent ) ;
/* Treat sum and difference of the operands separately. */
if ( ( int ) save < 0 ) {
/*
* Difference of the two operands . Overflow can occur if the
* multiply overflowed . A borrow can occur out of the hidden
* bit and force a post normalization phase .
*/
Dblext_subtract ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
rightp1 , rightp2 , rightp3 , rightp4 ,
resultp1 , resultp2 , resultp3 , resultp4 ) ;
sign_save = Dbl_signextendedsign ( resultp1 ) ;
if ( Dbl_iszero_hidden ( resultp1 ) ) {
/* Handle normalization */
2011-03-30 22:57:33 -03:00
/* A straightforward algorithm would now shift the
2005-04-16 15:20:36 -07:00
* result and extension left until the hidden bit
* becomes one . Not all of the extension bits need
* participate in the shift . Only the two most
* significant bits ( round and guard ) are needed .
* If only a single shift is needed then the guard
* bit becomes a significant low order bit and the
* extension must participate in the rounding .
* If more than a single shift is needed , then all
* bits to the right of the guard bit are zeros ,
* and the guard bit may or may not be zero . */
Dblext_leftshiftby1 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
/* Need to check for a zero result. The sign and
* exponent fields have already been zeroed . The more
* efficient test of the full object can be used .
*/
if ( Dblext_iszero ( resultp1 , resultp2 , resultp3 , resultp4 ) ) {
/* Must have been "x-x" or "x+(-x)". */
if ( Is_rounding_mode ( ROUNDMINUS ) )
Dbl_setone_sign ( resultp1 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
result_exponent - - ;
/* Look to see if normalization is finished. */
if ( Dbl_isone_hidden ( resultp1 ) ) {
/* No further normalization is needed */
goto round ;
}
/* Discover first one bit to determine shift amount.
* Use a modified binary search . We have already
* shifted the result one position right and still
* not found a one so the remainder of the extension
* must be zero and simplifies rounding . */
/* Scan bytes */
while ( Dbl_iszero_hiddenhigh7mantissa ( resultp1 ) ) {
Dblext_leftshiftby8 ( resultp1 , resultp2 , resultp3 , resultp4 ) ;
result_exponent - = 8 ;
}
/* Now narrow it down to the nibble */
if ( Dbl_iszero_hiddenhigh3mantissa ( resultp1 ) ) {
/* The lower nibble contains the
* normalizing one */
Dblext_leftshiftby4 ( resultp1 , resultp2 , resultp3 , resultp4 ) ;
result_exponent - = 4 ;
}
/* Select case where first bit is set (already
* normalized ) otherwise select the proper shift . */
jumpsize = Dbl_hiddenhigh3mantissa ( resultp1 ) ;
if ( jumpsize < = 7 ) switch ( jumpsize ) {
case 1 :
Dblext_leftshiftby3 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
result_exponent - = 3 ;
break ;
case 2 :
case 3 :
Dblext_leftshiftby2 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
result_exponent - = 2 ;
break ;
case 4 :
case 5 :
case 6 :
case 7 :
Dblext_leftshiftby1 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
result_exponent - = 1 ;
break ;
}
} /* end if (hidden...)... */
/* Fall through and round */
} /* end if (save < 0)... */
else {
/* Add magnitudes */
Dblext_addition ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
rightp1 , rightp2 , rightp3 , rightp4 ,
/*to*/ resultp1 , resultp2 , resultp3 , resultp4 ) ;
sign_save = Dbl_signextendedsign ( resultp1 ) ;
if ( Dbl_isone_hiddenoverflow ( resultp1 ) ) {
/* Prenormalization required. */
Dblext_arithrightshiftby1 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
result_exponent + + ;
} /* end if hiddenoverflow... */
} /* end else ...add magnitudes... */
/* Round the result. If the extension and lower two words are
* all zeros , then the result is exact . Otherwise round in the
* correct direction . Underflow is possible . If a postnormalization
* is necessary , then the mantissa is all zeros so no shift is needed .
*/
round :
if ( result_exponent < = 0 & & ! Is_underflowtrap_enabled ( ) ) {
Dblext_denormalize ( resultp1 , resultp2 , resultp3 , resultp4 ,
result_exponent , is_tiny ) ;
}
Dbl_set_sign ( resultp1 , /*using*/ sign_save ) ;
if ( Dblext_isnotzero_mantissap3 ( resultp3 ) | |
Dblext_isnotzero_mantissap4 ( resultp4 ) ) {
inexact = TRUE ;
switch ( Rounding_mode ( ) ) {
case ROUNDNEAREST : /* The default. */
if ( Dblext_isone_highp3 ( resultp3 ) ) {
/* at least 1/2 ulp */
if ( Dblext_isnotzero_low31p3 ( resultp3 ) | |
Dblext_isnotzero_mantissap4 ( resultp4 ) | |
Dblext_isone_lowp2 ( resultp2 ) ) {
/* either exactly half way and odd or
* more than 1 / 2ul p */
Dbl_increment ( resultp1 , resultp2 ) ;
}
}
break ;
case ROUNDPLUS :
if ( Dbl_iszero_sign ( resultp1 ) ) {
/* Round up positive results */
Dbl_increment ( resultp1 , resultp2 ) ;
}
break ;
case ROUNDMINUS :
if ( Dbl_isone_sign ( resultp1 ) ) {
/* Round down negative results */
Dbl_increment ( resultp1 , resultp2 ) ;
}
case ROUNDZERO : ;
/* truncate is simple */
} /* end switch... */
if ( Dbl_isone_hiddenoverflow ( resultp1 ) ) result_exponent + + ;
}
if ( result_exponent > = DBL_INFINITY_EXPONENT ) {
/* trap if OVERFLOWTRAP enabled */
if ( Is_overflowtrap_enabled ( ) ) {
/*
* Adjust bias of result
*/
Dbl_setwrapped_exponent ( resultp1 , result_exponent , ovfl ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) )
return ( OPC_2E_OVERFLOWEXCEPTION |
OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( OPC_2E_OVERFLOWEXCEPTION ) ;
}
inexact = TRUE ;
Set_overflowflag ( ) ;
/* set result to infinity or largest number */
Dbl_setoverflow ( resultp1 , resultp2 ) ;
} else if ( result_exponent < = 0 ) { /* underflow case */
if ( Is_underflowtrap_enabled ( ) ) {
/*
* Adjust bias of result
*/
Dbl_setwrapped_exponent ( resultp1 , result_exponent , unfl ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) )
return ( OPC_2E_UNDERFLOWEXCEPTION |
OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
else if ( inexact & & is_tiny ) Set_underflowflag ( ) ;
}
else Dbl_set_exponent ( resultp1 , result_exponent ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) ) return ( OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( NOEXCEPTION ) ;
}
/*
* Double Floating - point Multiply Negate Fused Add
*/
dbl_fmpynfadd ( src1ptr , src2ptr , src3ptr , status , dstptr )
dbl_floating_point * src1ptr , * src2ptr , * src3ptr , * dstptr ;
unsigned int * status ;
{
unsigned int opnd1p1 , opnd1p2 , opnd2p1 , opnd2p2 , opnd3p1 , opnd3p2 ;
register unsigned int tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ;
unsigned int rightp1 , rightp2 , rightp3 , rightp4 ;
unsigned int resultp1 , resultp2 = 0 , resultp3 = 0 , resultp4 = 0 ;
register int mpy_exponent , add_exponent , count ;
boolean inexact = FALSE , is_tiny = FALSE ;
unsigned int signlessleft1 , signlessright1 , save ;
register int result_exponent , diff_exponent ;
int sign_save , jumpsize ;
Dbl_copyfromptr ( src1ptr , opnd1p1 , opnd1p2 ) ;
Dbl_copyfromptr ( src2ptr , opnd2p1 , opnd2p2 ) ;
Dbl_copyfromptr ( src3ptr , opnd3p1 , opnd3p2 ) ;
/*
* set sign bit of result of multiply
*/
if ( Dbl_sign ( opnd1p1 ) ^ Dbl_sign ( opnd2p1 ) )
Dbl_setzerop1 ( resultp1 ) ;
else
Dbl_setnegativezerop1 ( resultp1 ) ;
/*
* Generate multiply exponent
*/
mpy_exponent = Dbl_exponent ( opnd1p1 ) + Dbl_exponent ( opnd2p1 ) - DBL_BIAS ;
/*
* check first operand for NaN ' s or infinity
*/
if ( Dbl_isinfinity_exponent ( opnd1p1 ) ) {
if ( Dbl_iszero_mantissa ( opnd1p1 , opnd1p2 ) ) {
if ( Dbl_isnotnan ( opnd2p1 , opnd2p2 ) & &
Dbl_isnotnan ( opnd3p1 , opnd3p2 ) ) {
if ( Dbl_iszero_exponentmantissa ( opnd2p1 , opnd2p2 ) ) {
/*
* invalid since operands are infinity
* and zero
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Dbl_makequietnan ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* Check third operand for infinity with a
* sign opposite of the multiply result
*/
if ( Dbl_isinfinity ( opnd3p1 , opnd3p2 ) & &
( Dbl_sign ( resultp1 ) ^ Dbl_sign ( opnd3p1 ) ) ) {
/*
* invalid since attempting a magnitude
* subtraction of infinities
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Dbl_makequietnan ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return infinity
*/
Dbl_setinfinity_exponentmantissa ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Dbl_isone_signaling ( opnd1p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd1p1 ) ;
}
/*
* is second operand a signaling NaN ?
*/
else if ( Dbl_is_signalingnan ( opnd2p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd2p1 ) ;
Dbl_copytoptr ( opnd2p1 , opnd2p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* is third operand a signaling NaN ?
*/
else if ( Dbl_is_signalingnan ( opnd3p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd3p1 ) ;
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return quiet NaN
*/
Dbl_copytoptr ( opnd1p1 , opnd1p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* check second operand for NaN ' s or infinity
*/
if ( Dbl_isinfinity_exponent ( opnd2p1 ) ) {
if ( Dbl_iszero_mantissa ( opnd2p1 , opnd2p2 ) ) {
if ( Dbl_isnotnan ( opnd3p1 , opnd3p2 ) ) {
if ( Dbl_iszero_exponentmantissa ( opnd1p1 , opnd1p2 ) ) {
/*
* invalid since multiply operands are
* zero & infinity
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Dbl_makequietnan ( opnd2p1 , opnd2p2 ) ;
Dbl_copytoptr ( opnd2p1 , opnd2p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* Check third operand for infinity with a
* sign opposite of the multiply result
*/
if ( Dbl_isinfinity ( opnd3p1 , opnd3p2 ) & &
( Dbl_sign ( resultp1 ) ^ Dbl_sign ( opnd3p1 ) ) ) {
/*
* invalid since attempting a magnitude
* subtraction of infinities
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Dbl_makequietnan ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return infinity
*/
Dbl_setinfinity_exponentmantissa ( resultp1 , resultp2 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Dbl_isone_signaling ( opnd2p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd2p1 ) ;
}
/*
* is third operand a signaling NaN ?
*/
else if ( Dbl_is_signalingnan ( opnd3p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd3p1 ) ;
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return quiet NaN
*/
Dbl_copytoptr ( opnd2p1 , opnd2p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* check third operand for NaN ' s or infinity
*/
if ( Dbl_isinfinity_exponent ( opnd3p1 ) ) {
if ( Dbl_iszero_mantissa ( opnd3p1 , opnd3p2 ) ) {
/* return infinity */
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
} else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Dbl_isone_signaling ( opnd3p1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Dbl_set_quiet ( opnd3p1 ) ;
}
/*
* return quiet NaN
*/
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* Generate multiply mantissa
*/
if ( Dbl_isnotzero_exponent ( opnd1p1 ) ) {
/* set hidden bit */
Dbl_clear_signexponent_set_hidden ( opnd1p1 ) ;
}
else {
/* check for zero */
if ( Dbl_iszero_mantissa ( opnd1p1 , opnd1p2 ) ) {
/*
* Perform the add opnd3 with zero here .
*/
if ( Dbl_iszero_exponentmantissa ( opnd3p1 , opnd3p2 ) ) {
if ( Is_rounding_mode ( ROUNDMINUS ) ) {
Dbl_or_signs ( opnd3p1 , resultp1 ) ;
} else {
Dbl_and_signs ( opnd3p1 , resultp1 ) ;
}
}
/*
* Now let ' s check for trapped underflow case .
*/
else if ( Dbl_iszero_exponent ( opnd3p1 ) & &
Is_underflowtrap_enabled ( ) ) {
/* need to normalize results mantissa */
sign_save = Dbl_signextendedsign ( opnd3p1 ) ;
result_exponent = 0 ;
Dbl_leftshiftby1 ( opnd3p1 , opnd3p2 ) ;
Dbl_normalize ( opnd3p1 , opnd3p2 , result_exponent ) ;
Dbl_set_sign ( opnd3p1 , /*using*/ sign_save ) ;
Dbl_setwrapped_exponent ( opnd3p1 , result_exponent ,
unfl ) ;
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
/* inexact = FALSE */
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/* is denormalized, adjust exponent */
Dbl_clear_signexponent ( opnd1p1 ) ;
Dbl_leftshiftby1 ( opnd1p1 , opnd1p2 ) ;
Dbl_normalize ( opnd1p1 , opnd1p2 , mpy_exponent ) ;
}
/* opnd2 needs to have hidden bit set with msb in hidden bit */
if ( Dbl_isnotzero_exponent ( opnd2p1 ) ) {
Dbl_clear_signexponent_set_hidden ( opnd2p1 ) ;
}
else {
/* check for zero */
if ( Dbl_iszero_mantissa ( opnd2p1 , opnd2p2 ) ) {
/*
* Perform the add opnd3 with zero here .
*/
if ( Dbl_iszero_exponentmantissa ( opnd3p1 , opnd3p2 ) ) {
if ( Is_rounding_mode ( ROUNDMINUS ) ) {
Dbl_or_signs ( opnd3p1 , resultp1 ) ;
} else {
Dbl_and_signs ( opnd3p1 , resultp1 ) ;
}
}
/*
* Now let ' s check for trapped underflow case .
*/
else if ( Dbl_iszero_exponent ( opnd3p1 ) & &
Is_underflowtrap_enabled ( ) ) {
/* need to normalize results mantissa */
sign_save = Dbl_signextendedsign ( opnd3p1 ) ;
result_exponent = 0 ;
Dbl_leftshiftby1 ( opnd3p1 , opnd3p2 ) ;
Dbl_normalize ( opnd3p1 , opnd3p2 , result_exponent ) ;
Dbl_set_sign ( opnd3p1 , /*using*/ sign_save ) ;
Dbl_setwrapped_exponent ( opnd3p1 , result_exponent ,
unfl ) ;
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
/* inexact = FALSE */
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
Dbl_copytoptr ( opnd3p1 , opnd3p2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/* is denormalized; want to normalize */
Dbl_clear_signexponent ( opnd2p1 ) ;
Dbl_leftshiftby1 ( opnd2p1 , opnd2p2 ) ;
Dbl_normalize ( opnd2p1 , opnd2p2 , mpy_exponent ) ;
}
/* Multiply the first two source mantissas together */
/*
* The intermediate result will be kept in tmpres ,
* which needs enough room for 106 bits of mantissa ,
* so lets call it a Double extended .
*/
Dblext_setzero ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ) ;
/*
* Four bits at a time are inspected in each loop , and a
* simple shift and add multiply algorithm is used .
*/
for ( count = DBL_P - 1 ; count > = 0 ; count - = 4 ) {
Dblext_rightshiftby4 ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ) ;
if ( Dbit28p2 ( opnd1p2 ) ) {
/* Fourword_add should be an ADD followed by 3 ADDC's */
Fourword_add ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
opnd2p1 < < 3 | opnd2p2 > > 29 , opnd2p2 < < 3 , 0 , 0 ) ;
}
if ( Dbit29p2 ( opnd1p2 ) ) {
Fourword_add ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
opnd2p1 < < 2 | opnd2p2 > > 30 , opnd2p2 < < 2 , 0 , 0 ) ;
}
if ( Dbit30p2 ( opnd1p2 ) ) {
Fourword_add ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
opnd2p1 < < 1 | opnd2p2 > > 31 , opnd2p2 < < 1 , 0 , 0 ) ;
}
if ( Dbit31p2 ( opnd1p2 ) ) {
Fourword_add ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
opnd2p1 , opnd2p2 , 0 , 0 ) ;
}
Dbl_rightshiftby4 ( opnd1p1 , opnd1p2 ) ;
}
if ( Is_dexthiddenoverflow ( tmpresp1 ) ) {
/* result mantissa >= 2 (mantissa overflow) */
mpy_exponent + + ;
Dblext_rightshiftby1 ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ) ;
}
/*
* Restore the sign of the mpy result which was saved in resultp1 .
* The exponent will continue to be kept in mpy_exponent .
*/
Dblext_set_sign ( tmpresp1 , Dbl_sign ( resultp1 ) ) ;
/*
* No rounding is required , since the result of the multiply
* is exact in the extended format .
*/
/*
* Now we are ready to perform the add portion of the operation .
*
* The exponents need to be kept as integers for now , since the
* multiply result might not fit into the exponent field . We
* can ' t overflow or underflow because of this yet , since the
* add could bring the final result back into range .
*/
add_exponent = Dbl_exponent ( opnd3p1 ) ;
/*
* Check for denormalized or zero add operand .
*/
if ( add_exponent = = 0 ) {
/* check for zero */
if ( Dbl_iszero_mantissa ( opnd3p1 , opnd3p2 ) ) {
/* right is zero */
/* Left can't be zero and must be result.
*
* The final result is now in tmpres and mpy_exponent ,
* and needs to be rounded and squeezed back into
* double precision format from double extended .
*/
result_exponent = mpy_exponent ;
Dblext_copy ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
resultp1 , resultp2 , resultp3 , resultp4 ) ;
sign_save = Dbl_signextendedsign ( resultp1 ) ; /*save sign*/
goto round ;
}
/*
* Neither are zeroes .
* Adjust exponent and normalize add operand .
*/
sign_save = Dbl_signextendedsign ( opnd3p1 ) ; /* save sign */
Dbl_clear_signexponent ( opnd3p1 ) ;
Dbl_leftshiftby1 ( opnd3p1 , opnd3p2 ) ;
Dbl_normalize ( opnd3p1 , opnd3p2 , add_exponent ) ;
Dbl_set_sign ( opnd3p1 , sign_save ) ; /* restore sign */
} else {
Dbl_clear_exponent_set_hidden ( opnd3p1 ) ;
}
/*
* Copy opnd3 to the double extended variable called right .
*/
Dbl_copyto_dblext ( opnd3p1 , opnd3p2 , rightp1 , rightp2 , rightp3 , rightp4 ) ;
/*
* A zero " save " helps discover equal operands ( for later ) ,
* and is used in swapping operands ( if needed ) .
*/
Dblext_xortointp1 ( tmpresp1 , rightp1 , /*to*/ save ) ;
/*
* Compare magnitude of operands .
*/
Dblext_copytoint_exponentmantissap1 ( tmpresp1 , signlessleft1 ) ;
Dblext_copytoint_exponentmantissap1 ( rightp1 , signlessright1 ) ;
if ( mpy_exponent < add_exponent | | mpy_exponent = = add_exponent & &
Dblext_ismagnitudeless ( tmpresp2 , rightp2 , signlessleft1 , signlessright1 ) ) {
/*
* Set the left operand to the larger one by XOR swap .
* First finish the first word " save " .
*/
Dblext_xorfromintp1 ( save , rightp1 , /*to*/ rightp1 ) ;
Dblext_xorfromintp1 ( save , tmpresp1 , /*to*/ tmpresp1 ) ;
Dblext_swap_lower ( tmpresp2 , tmpresp3 , tmpresp4 ,
rightp2 , rightp3 , rightp4 ) ;
/* also setup exponents used in rest of routine */
diff_exponent = add_exponent - mpy_exponent ;
result_exponent = add_exponent ;
} else {
/* also setup exponents used in rest of routine */
diff_exponent = mpy_exponent - add_exponent ;
result_exponent = mpy_exponent ;
}
/* Invariant: left is not smaller than right. */
/*
* Special case alignment of operands that would force alignment
* beyond the extent of the extension . A further optimization
* could special case this but only reduces the path length for
* this infrequent case .
*/
if ( diff_exponent > DBLEXT_THRESHOLD ) {
diff_exponent = DBLEXT_THRESHOLD ;
}
/* Align right operand by shifting it to the right */
Dblext_clear_sign ( rightp1 ) ;
Dblext_right_align ( rightp1 , rightp2 , rightp3 , rightp4 ,
/*shifted by*/ diff_exponent ) ;
/* Treat sum and difference of the operands separately. */
if ( ( int ) save < 0 ) {
/*
* Difference of the two operands . Overflow can occur if the
* multiply overflowed . A borrow can occur out of the hidden
* bit and force a post normalization phase .
*/
Dblext_subtract ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
rightp1 , rightp2 , rightp3 , rightp4 ,
resultp1 , resultp2 , resultp3 , resultp4 ) ;
sign_save = Dbl_signextendedsign ( resultp1 ) ;
if ( Dbl_iszero_hidden ( resultp1 ) ) {
/* Handle normalization */
2011-03-30 22:57:33 -03:00
/* A straightforward algorithm would now shift the
2005-04-16 15:20:36 -07:00
* result and extension left until the hidden bit
* becomes one . Not all of the extension bits need
* participate in the shift . Only the two most
* significant bits ( round and guard ) are needed .
* If only a single shift is needed then the guard
* bit becomes a significant low order bit and the
* extension must participate in the rounding .
* If more than a single shift is needed , then all
* bits to the right of the guard bit are zeros ,
* and the guard bit may or may not be zero . */
Dblext_leftshiftby1 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
/* Need to check for a zero result. The sign and
* exponent fields have already been zeroed . The more
* efficient test of the full object can be used .
*/
if ( Dblext_iszero ( resultp1 , resultp2 , resultp3 , resultp4 ) ) {
/* Must have been "x-x" or "x+(-x)". */
if ( Is_rounding_mode ( ROUNDMINUS ) )
Dbl_setone_sign ( resultp1 ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
result_exponent - - ;
/* Look to see if normalization is finished. */
if ( Dbl_isone_hidden ( resultp1 ) ) {
/* No further normalization is needed */
goto round ;
}
/* Discover first one bit to determine shift amount.
* Use a modified binary search . We have already
* shifted the result one position right and still
* not found a one so the remainder of the extension
* must be zero and simplifies rounding . */
/* Scan bytes */
while ( Dbl_iszero_hiddenhigh7mantissa ( resultp1 ) ) {
Dblext_leftshiftby8 ( resultp1 , resultp2 , resultp3 , resultp4 ) ;
result_exponent - = 8 ;
}
/* Now narrow it down to the nibble */
if ( Dbl_iszero_hiddenhigh3mantissa ( resultp1 ) ) {
/* The lower nibble contains the
* normalizing one */
Dblext_leftshiftby4 ( resultp1 , resultp2 , resultp3 , resultp4 ) ;
result_exponent - = 4 ;
}
/* Select case where first bit is set (already
* normalized ) otherwise select the proper shift . */
jumpsize = Dbl_hiddenhigh3mantissa ( resultp1 ) ;
if ( jumpsize < = 7 ) switch ( jumpsize ) {
case 1 :
Dblext_leftshiftby3 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
result_exponent - = 3 ;
break ;
case 2 :
case 3 :
Dblext_leftshiftby2 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
result_exponent - = 2 ;
break ;
case 4 :
case 5 :
case 6 :
case 7 :
Dblext_leftshiftby1 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
result_exponent - = 1 ;
break ;
}
} /* end if (hidden...)... */
/* Fall through and round */
} /* end if (save < 0)... */
else {
/* Add magnitudes */
Dblext_addition ( tmpresp1 , tmpresp2 , tmpresp3 , tmpresp4 ,
rightp1 , rightp2 , rightp3 , rightp4 ,
/*to*/ resultp1 , resultp2 , resultp3 , resultp4 ) ;
sign_save = Dbl_signextendedsign ( resultp1 ) ;
if ( Dbl_isone_hiddenoverflow ( resultp1 ) ) {
/* Prenormalization required. */
Dblext_arithrightshiftby1 ( resultp1 , resultp2 , resultp3 ,
resultp4 ) ;
result_exponent + + ;
} /* end if hiddenoverflow... */
} /* end else ...add magnitudes... */
/* Round the result. If the extension and lower two words are
* all zeros , then the result is exact . Otherwise round in the
* correct direction . Underflow is possible . If a postnormalization
* is necessary , then the mantissa is all zeros so no shift is needed .
*/
round :
if ( result_exponent < = 0 & & ! Is_underflowtrap_enabled ( ) ) {
Dblext_denormalize ( resultp1 , resultp2 , resultp3 , resultp4 ,
result_exponent , is_tiny ) ;
}
Dbl_set_sign ( resultp1 , /*using*/ sign_save ) ;
if ( Dblext_isnotzero_mantissap3 ( resultp3 ) | |
Dblext_isnotzero_mantissap4 ( resultp4 ) ) {
inexact = TRUE ;
switch ( Rounding_mode ( ) ) {
case ROUNDNEAREST : /* The default. */
if ( Dblext_isone_highp3 ( resultp3 ) ) {
/* at least 1/2 ulp */
if ( Dblext_isnotzero_low31p3 ( resultp3 ) | |
Dblext_isnotzero_mantissap4 ( resultp4 ) | |
Dblext_isone_lowp2 ( resultp2 ) ) {
/* either exactly half way and odd or
* more than 1 / 2ul p */
Dbl_increment ( resultp1 , resultp2 ) ;
}
}
break ;
case ROUNDPLUS :
if ( Dbl_iszero_sign ( resultp1 ) ) {
/* Round up positive results */
Dbl_increment ( resultp1 , resultp2 ) ;
}
break ;
case ROUNDMINUS :
if ( Dbl_isone_sign ( resultp1 ) ) {
/* Round down negative results */
Dbl_increment ( resultp1 , resultp2 ) ;
}
case ROUNDZERO : ;
/* truncate is simple */
} /* end switch... */
if ( Dbl_isone_hiddenoverflow ( resultp1 ) ) result_exponent + + ;
}
if ( result_exponent > = DBL_INFINITY_EXPONENT ) {
/* Overflow */
if ( Is_overflowtrap_enabled ( ) ) {
/*
* Adjust bias of result
*/
Dbl_setwrapped_exponent ( resultp1 , result_exponent , ovfl ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) )
return ( OPC_2E_OVERFLOWEXCEPTION |
OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( OPC_2E_OVERFLOWEXCEPTION ) ;
}
inexact = TRUE ;
Set_overflowflag ( ) ;
Dbl_setoverflow ( resultp1 , resultp2 ) ;
} else if ( result_exponent < = 0 ) { /* underflow case */
if ( Is_underflowtrap_enabled ( ) ) {
/*
* Adjust bias of result
*/
Dbl_setwrapped_exponent ( resultp1 , result_exponent , unfl ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) )
return ( OPC_2E_UNDERFLOWEXCEPTION |
OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
else if ( inexact & & is_tiny ) Set_underflowflag ( ) ;
}
else Dbl_set_exponent ( resultp1 , result_exponent ) ;
Dbl_copytoptr ( resultp1 , resultp2 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) ) return ( OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( NOEXCEPTION ) ;
}
/*
* Single Floating - point Multiply Fused Add
*/
sgl_fmpyfadd ( src1ptr , src2ptr , src3ptr , status , dstptr )
sgl_floating_point * src1ptr , * src2ptr , * src3ptr , * dstptr ;
unsigned int * status ;
{
unsigned int opnd1 , opnd2 , opnd3 ;
register unsigned int tmpresp1 , tmpresp2 ;
unsigned int rightp1 , rightp2 ;
unsigned int resultp1 , resultp2 = 0 ;
register int mpy_exponent , add_exponent , count ;
boolean inexact = FALSE , is_tiny = FALSE ;
unsigned int signlessleft1 , signlessright1 , save ;
register int result_exponent , diff_exponent ;
int sign_save , jumpsize ;
Sgl_copyfromptr ( src1ptr , opnd1 ) ;
Sgl_copyfromptr ( src2ptr , opnd2 ) ;
Sgl_copyfromptr ( src3ptr , opnd3 ) ;
/*
* set sign bit of result of multiply
*/
if ( Sgl_sign ( opnd1 ) ^ Sgl_sign ( opnd2 ) )
Sgl_setnegativezero ( resultp1 ) ;
else Sgl_setzero ( resultp1 ) ;
/*
* Generate multiply exponent
*/
mpy_exponent = Sgl_exponent ( opnd1 ) + Sgl_exponent ( opnd2 ) - SGL_BIAS ;
/*
* check first operand for NaN ' s or infinity
*/
if ( Sgl_isinfinity_exponent ( opnd1 ) ) {
if ( Sgl_iszero_mantissa ( opnd1 ) ) {
if ( Sgl_isnotnan ( opnd2 ) & & Sgl_isnotnan ( opnd3 ) ) {
if ( Sgl_iszero_exponentmantissa ( opnd2 ) ) {
/*
* invalid since operands are infinity
* and zero
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Sgl_makequietnan ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* Check third operand for infinity with a
* sign opposite of the multiply result
*/
if ( Sgl_isinfinity ( opnd3 ) & &
( Sgl_sign ( resultp1 ) ^ Sgl_sign ( opnd3 ) ) ) {
/*
* invalid since attempting a magnitude
* subtraction of infinities
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Sgl_makequietnan ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return infinity
*/
Sgl_setinfinity_exponentmantissa ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Sgl_isone_signaling ( opnd1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd1 ) ;
}
/*
* is second operand a signaling NaN ?
*/
else if ( Sgl_is_signalingnan ( opnd2 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd2 ) ;
Sgl_copytoptr ( opnd2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* is third operand a signaling NaN ?
*/
else if ( Sgl_is_signalingnan ( opnd3 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd3 ) ;
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return quiet NaN
*/
Sgl_copytoptr ( opnd1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* check second operand for NaN ' s or infinity
*/
if ( Sgl_isinfinity_exponent ( opnd2 ) ) {
if ( Sgl_iszero_mantissa ( opnd2 ) ) {
if ( Sgl_isnotnan ( opnd3 ) ) {
if ( Sgl_iszero_exponentmantissa ( opnd1 ) ) {
/*
* invalid since multiply operands are
* zero & infinity
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Sgl_makequietnan ( opnd2 ) ;
Sgl_copytoptr ( opnd2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* Check third operand for infinity with a
* sign opposite of the multiply result
*/
if ( Sgl_isinfinity ( opnd3 ) & &
( Sgl_sign ( resultp1 ) ^ Sgl_sign ( opnd3 ) ) ) {
/*
* invalid since attempting a magnitude
* subtraction of infinities
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Sgl_makequietnan ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return infinity
*/
Sgl_setinfinity_exponentmantissa ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Sgl_isone_signaling ( opnd2 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd2 ) ;
}
/*
* is third operand a signaling NaN ?
*/
else if ( Sgl_is_signalingnan ( opnd3 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd3 ) ;
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return quiet NaN
*/
Sgl_copytoptr ( opnd2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* check third operand for NaN ' s or infinity
*/
if ( Sgl_isinfinity_exponent ( opnd3 ) ) {
if ( Sgl_iszero_mantissa ( opnd3 ) ) {
/* return infinity */
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
} else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Sgl_isone_signaling ( opnd3 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd3 ) ;
}
/*
* return quiet NaN
*/
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* Generate multiply mantissa
*/
if ( Sgl_isnotzero_exponent ( opnd1 ) ) {
/* set hidden bit */
Sgl_clear_signexponent_set_hidden ( opnd1 ) ;
}
else {
/* check for zero */
if ( Sgl_iszero_mantissa ( opnd1 ) ) {
/*
* Perform the add opnd3 with zero here .
*/
if ( Sgl_iszero_exponentmantissa ( opnd3 ) ) {
if ( Is_rounding_mode ( ROUNDMINUS ) ) {
Sgl_or_signs ( opnd3 , resultp1 ) ;
} else {
Sgl_and_signs ( opnd3 , resultp1 ) ;
}
}
/*
* Now let ' s check for trapped underflow case .
*/
else if ( Sgl_iszero_exponent ( opnd3 ) & &
Is_underflowtrap_enabled ( ) ) {
/* need to normalize results mantissa */
sign_save = Sgl_signextendedsign ( opnd3 ) ;
result_exponent = 0 ;
Sgl_leftshiftby1 ( opnd3 ) ;
Sgl_normalize ( opnd3 , result_exponent ) ;
Sgl_set_sign ( opnd3 , /*using*/ sign_save ) ;
Sgl_setwrapped_exponent ( opnd3 , result_exponent ,
unfl ) ;
Sgl_copytoptr ( opnd3 , dstptr ) ;
/* inexact = FALSE */
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/* is denormalized, adjust exponent */
Sgl_clear_signexponent ( opnd1 ) ;
Sgl_leftshiftby1 ( opnd1 ) ;
Sgl_normalize ( opnd1 , mpy_exponent ) ;
}
/* opnd2 needs to have hidden bit set with msb in hidden bit */
if ( Sgl_isnotzero_exponent ( opnd2 ) ) {
Sgl_clear_signexponent_set_hidden ( opnd2 ) ;
}
else {
/* check for zero */
if ( Sgl_iszero_mantissa ( opnd2 ) ) {
/*
* Perform the add opnd3 with zero here .
*/
if ( Sgl_iszero_exponentmantissa ( opnd3 ) ) {
if ( Is_rounding_mode ( ROUNDMINUS ) ) {
Sgl_or_signs ( opnd3 , resultp1 ) ;
} else {
Sgl_and_signs ( opnd3 , resultp1 ) ;
}
}
/*
* Now let ' s check for trapped underflow case .
*/
else if ( Sgl_iszero_exponent ( opnd3 ) & &
Is_underflowtrap_enabled ( ) ) {
/* need to normalize results mantissa */
sign_save = Sgl_signextendedsign ( opnd3 ) ;
result_exponent = 0 ;
Sgl_leftshiftby1 ( opnd3 ) ;
Sgl_normalize ( opnd3 , result_exponent ) ;
Sgl_set_sign ( opnd3 , /*using*/ sign_save ) ;
Sgl_setwrapped_exponent ( opnd3 , result_exponent ,
unfl ) ;
Sgl_copytoptr ( opnd3 , dstptr ) ;
/* inexact = FALSE */
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/* is denormalized; want to normalize */
Sgl_clear_signexponent ( opnd2 ) ;
Sgl_leftshiftby1 ( opnd2 ) ;
Sgl_normalize ( opnd2 , mpy_exponent ) ;
}
/* Multiply the first two source mantissas together */
/*
* The intermediate result will be kept in tmpres ,
* which needs enough room for 106 bits of mantissa ,
* so lets call it a Double extended .
*/
Sglext_setzero ( tmpresp1 , tmpresp2 ) ;
/*
* Four bits at a time are inspected in each loop , and a
* simple shift and add multiply algorithm is used .
*/
for ( count = SGL_P - 1 ; count > = 0 ; count - = 4 ) {
Sglext_rightshiftby4 ( tmpresp1 , tmpresp2 ) ;
if ( Sbit28 ( opnd1 ) ) {
/* Twoword_add should be an ADD followed by 2 ADDC's */
Twoword_add ( tmpresp1 , tmpresp2 , opnd2 < < 3 , 0 ) ;
}
if ( Sbit29 ( opnd1 ) ) {
Twoword_add ( tmpresp1 , tmpresp2 , opnd2 < < 2 , 0 ) ;
}
if ( Sbit30 ( opnd1 ) ) {
Twoword_add ( tmpresp1 , tmpresp2 , opnd2 < < 1 , 0 ) ;
}
if ( Sbit31 ( opnd1 ) ) {
Twoword_add ( tmpresp1 , tmpresp2 , opnd2 , 0 ) ;
}
Sgl_rightshiftby4 ( opnd1 ) ;
}
if ( Is_sexthiddenoverflow ( tmpresp1 ) ) {
/* result mantissa >= 2 (mantissa overflow) */
mpy_exponent + + ;
Sglext_rightshiftby4 ( tmpresp1 , tmpresp2 ) ;
} else {
Sglext_rightshiftby3 ( tmpresp1 , tmpresp2 ) ;
}
/*
* Restore the sign of the mpy result which was saved in resultp1 .
* The exponent will continue to be kept in mpy_exponent .
*/
Sglext_set_sign ( tmpresp1 , Sgl_sign ( resultp1 ) ) ;
/*
* No rounding is required , since the result of the multiply
* is exact in the extended format .
*/
/*
* Now we are ready to perform the add portion of the operation .
*
* The exponents need to be kept as integers for now , since the
* multiply result might not fit into the exponent field . We
* can ' t overflow or underflow because of this yet , since the
* add could bring the final result back into range .
*/
add_exponent = Sgl_exponent ( opnd3 ) ;
/*
* Check for denormalized or zero add operand .
*/
if ( add_exponent = = 0 ) {
/* check for zero */
if ( Sgl_iszero_mantissa ( opnd3 ) ) {
/* right is zero */
/* Left can't be zero and must be result.
*
* The final result is now in tmpres and mpy_exponent ,
* and needs to be rounded and squeezed back into
* double precision format from double extended .
*/
result_exponent = mpy_exponent ;
Sglext_copy ( tmpresp1 , tmpresp2 , resultp1 , resultp2 ) ;
sign_save = Sgl_signextendedsign ( resultp1 ) ; /*save sign*/
goto round ;
}
/*
* Neither are zeroes .
* Adjust exponent and normalize add operand .
*/
sign_save = Sgl_signextendedsign ( opnd3 ) ; /* save sign */
Sgl_clear_signexponent ( opnd3 ) ;
Sgl_leftshiftby1 ( opnd3 ) ;
Sgl_normalize ( opnd3 , add_exponent ) ;
Sgl_set_sign ( opnd3 , sign_save ) ; /* restore sign */
} else {
Sgl_clear_exponent_set_hidden ( opnd3 ) ;
}
/*
* Copy opnd3 to the double extended variable called right .
*/
Sgl_copyto_sglext ( opnd3 , rightp1 , rightp2 ) ;
/*
* A zero " save " helps discover equal operands ( for later ) ,
* and is used in swapping operands ( if needed ) .
*/
Sglext_xortointp1 ( tmpresp1 , rightp1 , /*to*/ save ) ;
/*
* Compare magnitude of operands .
*/
Sglext_copytoint_exponentmantissa ( tmpresp1 , signlessleft1 ) ;
Sglext_copytoint_exponentmantissa ( rightp1 , signlessright1 ) ;
if ( mpy_exponent < add_exponent | | mpy_exponent = = add_exponent & &
Sglext_ismagnitudeless ( signlessleft1 , signlessright1 ) ) {
/*
* Set the left operand to the larger one by XOR swap .
* First finish the first word " save " .
*/
Sglext_xorfromintp1 ( save , rightp1 , /*to*/ rightp1 ) ;
Sglext_xorfromintp1 ( save , tmpresp1 , /*to*/ tmpresp1 ) ;
Sglext_swap_lower ( tmpresp2 , rightp2 ) ;
/* also setup exponents used in rest of routine */
diff_exponent = add_exponent - mpy_exponent ;
result_exponent = add_exponent ;
} else {
/* also setup exponents used in rest of routine */
diff_exponent = mpy_exponent - add_exponent ;
result_exponent = mpy_exponent ;
}
/* Invariant: left is not smaller than right. */
/*
* Special case alignment of operands that would force alignment
* beyond the extent of the extension . A further optimization
* could special case this but only reduces the path length for
* this infrequent case .
*/
if ( diff_exponent > SGLEXT_THRESHOLD ) {
diff_exponent = SGLEXT_THRESHOLD ;
}
/* Align right operand by shifting it to the right */
Sglext_clear_sign ( rightp1 ) ;
Sglext_right_align ( rightp1 , rightp2 , /*shifted by*/ diff_exponent ) ;
/* Treat sum and difference of the operands separately. */
if ( ( int ) save < 0 ) {
/*
* Difference of the two operands . Overflow can occur if the
* multiply overflowed . A borrow can occur out of the hidden
* bit and force a post normalization phase .
*/
Sglext_subtract ( tmpresp1 , tmpresp2 , rightp1 , rightp2 ,
resultp1 , resultp2 ) ;
sign_save = Sgl_signextendedsign ( resultp1 ) ;
if ( Sgl_iszero_hidden ( resultp1 ) ) {
/* Handle normalization */
2011-03-30 22:57:33 -03:00
/* A straightforward algorithm would now shift the
2005-04-16 15:20:36 -07:00
* result and extension left until the hidden bit
* becomes one . Not all of the extension bits need
* participate in the shift . Only the two most
* significant bits ( round and guard ) are needed .
* If only a single shift is needed then the guard
* bit becomes a significant low order bit and the
* extension must participate in the rounding .
* If more than a single shift is needed , then all
* bits to the right of the guard bit are zeros ,
* and the guard bit may or may not be zero . */
Sglext_leftshiftby1 ( resultp1 , resultp2 ) ;
/* Need to check for a zero result. The sign and
* exponent fields have already been zeroed . The more
* efficient test of the full object can be used .
*/
if ( Sglext_iszero ( resultp1 , resultp2 ) ) {
/* Must have been "x-x" or "x+(-x)". */
if ( Is_rounding_mode ( ROUNDMINUS ) )
Sgl_setone_sign ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
result_exponent - - ;
/* Look to see if normalization is finished. */
if ( Sgl_isone_hidden ( resultp1 ) ) {
/* No further normalization is needed */
goto round ;
}
/* Discover first one bit to determine shift amount.
* Use a modified binary search . We have already
* shifted the result one position right and still
* not found a one so the remainder of the extension
* must be zero and simplifies rounding . */
/* Scan bytes */
while ( Sgl_iszero_hiddenhigh7mantissa ( resultp1 ) ) {
Sglext_leftshiftby8 ( resultp1 , resultp2 ) ;
result_exponent - = 8 ;
}
/* Now narrow it down to the nibble */
if ( Sgl_iszero_hiddenhigh3mantissa ( resultp1 ) ) {
/* The lower nibble contains the
* normalizing one */
Sglext_leftshiftby4 ( resultp1 , resultp2 ) ;
result_exponent - = 4 ;
}
/* Select case where first bit is set (already
* normalized ) otherwise select the proper shift . */
jumpsize = Sgl_hiddenhigh3mantissa ( resultp1 ) ;
if ( jumpsize < = 7 ) switch ( jumpsize ) {
case 1 :
Sglext_leftshiftby3 ( resultp1 , resultp2 ) ;
result_exponent - = 3 ;
break ;
case 2 :
case 3 :
Sglext_leftshiftby2 ( resultp1 , resultp2 ) ;
result_exponent - = 2 ;
break ;
case 4 :
case 5 :
case 6 :
case 7 :
Sglext_leftshiftby1 ( resultp1 , resultp2 ) ;
result_exponent - = 1 ;
break ;
}
} /* end if (hidden...)... */
/* Fall through and round */
} /* end if (save < 0)... */
else {
/* Add magnitudes */
Sglext_addition ( tmpresp1 , tmpresp2 ,
rightp1 , rightp2 , /*to*/ resultp1 , resultp2 ) ;
sign_save = Sgl_signextendedsign ( resultp1 ) ;
if ( Sgl_isone_hiddenoverflow ( resultp1 ) ) {
/* Prenormalization required. */
Sglext_arithrightshiftby1 ( resultp1 , resultp2 ) ;
result_exponent + + ;
} /* end if hiddenoverflow... */
} /* end else ...add magnitudes... */
/* Round the result. If the extension and lower two words are
* all zeros , then the result is exact . Otherwise round in the
* correct direction . Underflow is possible . If a postnormalization
* is necessary , then the mantissa is all zeros so no shift is needed .
*/
round :
if ( result_exponent < = 0 & & ! Is_underflowtrap_enabled ( ) ) {
Sglext_denormalize ( resultp1 , resultp2 , result_exponent , is_tiny ) ;
}
Sgl_set_sign ( resultp1 , /*using*/ sign_save ) ;
if ( Sglext_isnotzero_mantissap2 ( resultp2 ) ) {
inexact = TRUE ;
switch ( Rounding_mode ( ) ) {
case ROUNDNEAREST : /* The default. */
if ( Sglext_isone_highp2 ( resultp2 ) ) {
/* at least 1/2 ulp */
if ( Sglext_isnotzero_low31p2 ( resultp2 ) | |
Sglext_isone_lowp1 ( resultp1 ) ) {
/* either exactly half way and odd or
* more than 1 / 2ul p */
Sgl_increment ( resultp1 ) ;
}
}
break ;
case ROUNDPLUS :
if ( Sgl_iszero_sign ( resultp1 ) ) {
/* Round up positive results */
Sgl_increment ( resultp1 ) ;
}
break ;
case ROUNDMINUS :
if ( Sgl_isone_sign ( resultp1 ) ) {
/* Round down negative results */
Sgl_increment ( resultp1 ) ;
}
case ROUNDZERO : ;
/* truncate is simple */
} /* end switch... */
if ( Sgl_isone_hiddenoverflow ( resultp1 ) ) result_exponent + + ;
}
if ( result_exponent > = SGL_INFINITY_EXPONENT ) {
/* Overflow */
if ( Is_overflowtrap_enabled ( ) ) {
/*
* Adjust bias of result
*/
Sgl_setwrapped_exponent ( resultp1 , result_exponent , ovfl ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) )
return ( OPC_2E_OVERFLOWEXCEPTION |
OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( OPC_2E_OVERFLOWEXCEPTION ) ;
}
inexact = TRUE ;
Set_overflowflag ( ) ;
Sgl_setoverflow ( resultp1 ) ;
} else if ( result_exponent < = 0 ) { /* underflow case */
if ( Is_underflowtrap_enabled ( ) ) {
/*
* Adjust bias of result
*/
Sgl_setwrapped_exponent ( resultp1 , result_exponent , unfl ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) )
return ( OPC_2E_UNDERFLOWEXCEPTION |
OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
else if ( inexact & & is_tiny ) Set_underflowflag ( ) ;
}
else Sgl_set_exponent ( resultp1 , result_exponent ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) ) return ( OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( NOEXCEPTION ) ;
}
/*
* Single Floating - point Multiply Negate Fused Add
*/
sgl_fmpynfadd ( src1ptr , src2ptr , src3ptr , status , dstptr )
sgl_floating_point * src1ptr , * src2ptr , * src3ptr , * dstptr ;
unsigned int * status ;
{
unsigned int opnd1 , opnd2 , opnd3 ;
register unsigned int tmpresp1 , tmpresp2 ;
unsigned int rightp1 , rightp2 ;
unsigned int resultp1 , resultp2 = 0 ;
register int mpy_exponent , add_exponent , count ;
boolean inexact = FALSE , is_tiny = FALSE ;
unsigned int signlessleft1 , signlessright1 , save ;
register int result_exponent , diff_exponent ;
int sign_save , jumpsize ;
Sgl_copyfromptr ( src1ptr , opnd1 ) ;
Sgl_copyfromptr ( src2ptr , opnd2 ) ;
Sgl_copyfromptr ( src3ptr , opnd3 ) ;
/*
* set sign bit of result of multiply
*/
if ( Sgl_sign ( opnd1 ) ^ Sgl_sign ( opnd2 ) )
Sgl_setzero ( resultp1 ) ;
else
Sgl_setnegativezero ( resultp1 ) ;
/*
* Generate multiply exponent
*/
mpy_exponent = Sgl_exponent ( opnd1 ) + Sgl_exponent ( opnd2 ) - SGL_BIAS ;
/*
* check first operand for NaN ' s or infinity
*/
if ( Sgl_isinfinity_exponent ( opnd1 ) ) {
if ( Sgl_iszero_mantissa ( opnd1 ) ) {
if ( Sgl_isnotnan ( opnd2 ) & & Sgl_isnotnan ( opnd3 ) ) {
if ( Sgl_iszero_exponentmantissa ( opnd2 ) ) {
/*
* invalid since operands are infinity
* and zero
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Sgl_makequietnan ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* Check third operand for infinity with a
* sign opposite of the multiply result
*/
if ( Sgl_isinfinity ( opnd3 ) & &
( Sgl_sign ( resultp1 ) ^ Sgl_sign ( opnd3 ) ) ) {
/*
* invalid since attempting a magnitude
* subtraction of infinities
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Sgl_makequietnan ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return infinity
*/
Sgl_setinfinity_exponentmantissa ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Sgl_isone_signaling ( opnd1 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd1 ) ;
}
/*
* is second operand a signaling NaN ?
*/
else if ( Sgl_is_signalingnan ( opnd2 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd2 ) ;
Sgl_copytoptr ( opnd2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* is third operand a signaling NaN ?
*/
else if ( Sgl_is_signalingnan ( opnd3 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd3 ) ;
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return quiet NaN
*/
Sgl_copytoptr ( opnd1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* check second operand for NaN ' s or infinity
*/
if ( Sgl_isinfinity_exponent ( opnd2 ) ) {
if ( Sgl_iszero_mantissa ( opnd2 ) ) {
if ( Sgl_isnotnan ( opnd3 ) ) {
if ( Sgl_iszero_exponentmantissa ( opnd1 ) ) {
/*
* invalid since multiply operands are
* zero & infinity
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Sgl_makequietnan ( opnd2 ) ;
Sgl_copytoptr ( opnd2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* Check third operand for infinity with a
* sign opposite of the multiply result
*/
if ( Sgl_isinfinity ( opnd3 ) & &
( Sgl_sign ( resultp1 ) ^ Sgl_sign ( opnd3 ) ) ) {
/*
* invalid since attempting a magnitude
* subtraction of infinities
*/
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
Set_invalidflag ( ) ;
Sgl_makequietnan ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return infinity
*/
Sgl_setinfinity_exponentmantissa ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Sgl_isone_signaling ( opnd2 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd2 ) ;
}
/*
* is third operand a signaling NaN ?
*/
else if ( Sgl_is_signalingnan ( opnd3 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd3 ) ;
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/*
* return quiet NaN
*/
Sgl_copytoptr ( opnd2 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* check third operand for NaN ' s or infinity
*/
if ( Sgl_isinfinity_exponent ( opnd3 ) ) {
if ( Sgl_iszero_mantissa ( opnd3 ) ) {
/* return infinity */
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
} else {
/*
* is NaN ; signaling or quiet ?
*/
if ( Sgl_isone_signaling ( opnd3 ) ) {
/* trap if INVALIDTRAP enabled */
if ( Is_invalidtrap_enabled ( ) )
return ( OPC_2E_INVALIDEXCEPTION ) ;
/* make NaN quiet */
Set_invalidflag ( ) ;
Sgl_set_quiet ( opnd3 ) ;
}
/*
* return quiet NaN
*/
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
}
/*
* Generate multiply mantissa
*/
if ( Sgl_isnotzero_exponent ( opnd1 ) ) {
/* set hidden bit */
Sgl_clear_signexponent_set_hidden ( opnd1 ) ;
}
else {
/* check for zero */
if ( Sgl_iszero_mantissa ( opnd1 ) ) {
/*
* Perform the add opnd3 with zero here .
*/
if ( Sgl_iszero_exponentmantissa ( opnd3 ) ) {
if ( Is_rounding_mode ( ROUNDMINUS ) ) {
Sgl_or_signs ( opnd3 , resultp1 ) ;
} else {
Sgl_and_signs ( opnd3 , resultp1 ) ;
}
}
/*
* Now let ' s check for trapped underflow case .
*/
else if ( Sgl_iszero_exponent ( opnd3 ) & &
Is_underflowtrap_enabled ( ) ) {
/* need to normalize results mantissa */
sign_save = Sgl_signextendedsign ( opnd3 ) ;
result_exponent = 0 ;
Sgl_leftshiftby1 ( opnd3 ) ;
Sgl_normalize ( opnd3 , result_exponent ) ;
Sgl_set_sign ( opnd3 , /*using*/ sign_save ) ;
Sgl_setwrapped_exponent ( opnd3 , result_exponent ,
unfl ) ;
Sgl_copytoptr ( opnd3 , dstptr ) ;
/* inexact = FALSE */
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/* is denormalized, adjust exponent */
Sgl_clear_signexponent ( opnd1 ) ;
Sgl_leftshiftby1 ( opnd1 ) ;
Sgl_normalize ( opnd1 , mpy_exponent ) ;
}
/* opnd2 needs to have hidden bit set with msb in hidden bit */
if ( Sgl_isnotzero_exponent ( opnd2 ) ) {
Sgl_clear_signexponent_set_hidden ( opnd2 ) ;
}
else {
/* check for zero */
if ( Sgl_iszero_mantissa ( opnd2 ) ) {
/*
* Perform the add opnd3 with zero here .
*/
if ( Sgl_iszero_exponentmantissa ( opnd3 ) ) {
if ( Is_rounding_mode ( ROUNDMINUS ) ) {
Sgl_or_signs ( opnd3 , resultp1 ) ;
} else {
Sgl_and_signs ( opnd3 , resultp1 ) ;
}
}
/*
* Now let ' s check for trapped underflow case .
*/
else if ( Sgl_iszero_exponent ( opnd3 ) & &
Is_underflowtrap_enabled ( ) ) {
/* need to normalize results mantissa */
sign_save = Sgl_signextendedsign ( opnd3 ) ;
result_exponent = 0 ;
Sgl_leftshiftby1 ( opnd3 ) ;
Sgl_normalize ( opnd3 , result_exponent ) ;
Sgl_set_sign ( opnd3 , /*using*/ sign_save ) ;
Sgl_setwrapped_exponent ( opnd3 , result_exponent ,
unfl ) ;
Sgl_copytoptr ( opnd3 , dstptr ) ;
/* inexact = FALSE */
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
Sgl_copytoptr ( opnd3 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
/* is denormalized; want to normalize */
Sgl_clear_signexponent ( opnd2 ) ;
Sgl_leftshiftby1 ( opnd2 ) ;
Sgl_normalize ( opnd2 , mpy_exponent ) ;
}
/* Multiply the first two source mantissas together */
/*
* The intermediate result will be kept in tmpres ,
* which needs enough room for 106 bits of mantissa ,
* so lets call it a Double extended .
*/
Sglext_setzero ( tmpresp1 , tmpresp2 ) ;
/*
* Four bits at a time are inspected in each loop , and a
* simple shift and add multiply algorithm is used .
*/
for ( count = SGL_P - 1 ; count > = 0 ; count - = 4 ) {
Sglext_rightshiftby4 ( tmpresp1 , tmpresp2 ) ;
if ( Sbit28 ( opnd1 ) ) {
/* Twoword_add should be an ADD followed by 2 ADDC's */
Twoword_add ( tmpresp1 , tmpresp2 , opnd2 < < 3 , 0 ) ;
}
if ( Sbit29 ( opnd1 ) ) {
Twoword_add ( tmpresp1 , tmpresp2 , opnd2 < < 2 , 0 ) ;
}
if ( Sbit30 ( opnd1 ) ) {
Twoword_add ( tmpresp1 , tmpresp2 , opnd2 < < 1 , 0 ) ;
}
if ( Sbit31 ( opnd1 ) ) {
Twoword_add ( tmpresp1 , tmpresp2 , opnd2 , 0 ) ;
}
Sgl_rightshiftby4 ( opnd1 ) ;
}
if ( Is_sexthiddenoverflow ( tmpresp1 ) ) {
/* result mantissa >= 2 (mantissa overflow) */
mpy_exponent + + ;
Sglext_rightshiftby4 ( tmpresp1 , tmpresp2 ) ;
} else {
Sglext_rightshiftby3 ( tmpresp1 , tmpresp2 ) ;
}
/*
* Restore the sign of the mpy result which was saved in resultp1 .
* The exponent will continue to be kept in mpy_exponent .
*/
Sglext_set_sign ( tmpresp1 , Sgl_sign ( resultp1 ) ) ;
/*
* No rounding is required , since the result of the multiply
* is exact in the extended format .
*/
/*
* Now we are ready to perform the add portion of the operation .
*
* The exponents need to be kept as integers for now , since the
* multiply result might not fit into the exponent field . We
* can ' t overflow or underflow because of this yet , since the
* add could bring the final result back into range .
*/
add_exponent = Sgl_exponent ( opnd3 ) ;
/*
* Check for denormalized or zero add operand .
*/
if ( add_exponent = = 0 ) {
/* check for zero */
if ( Sgl_iszero_mantissa ( opnd3 ) ) {
/* right is zero */
/* Left can't be zero and must be result.
*
* The final result is now in tmpres and mpy_exponent ,
* and needs to be rounded and squeezed back into
* double precision format from double extended .
*/
result_exponent = mpy_exponent ;
Sglext_copy ( tmpresp1 , tmpresp2 , resultp1 , resultp2 ) ;
sign_save = Sgl_signextendedsign ( resultp1 ) ; /*save sign*/
goto round ;
}
/*
* Neither are zeroes .
* Adjust exponent and normalize add operand .
*/
sign_save = Sgl_signextendedsign ( opnd3 ) ; /* save sign */
Sgl_clear_signexponent ( opnd3 ) ;
Sgl_leftshiftby1 ( opnd3 ) ;
Sgl_normalize ( opnd3 , add_exponent ) ;
Sgl_set_sign ( opnd3 , sign_save ) ; /* restore sign */
} else {
Sgl_clear_exponent_set_hidden ( opnd3 ) ;
}
/*
* Copy opnd3 to the double extended variable called right .
*/
Sgl_copyto_sglext ( opnd3 , rightp1 , rightp2 ) ;
/*
* A zero " save " helps discover equal operands ( for later ) ,
* and is used in swapping operands ( if needed ) .
*/
Sglext_xortointp1 ( tmpresp1 , rightp1 , /*to*/ save ) ;
/*
* Compare magnitude of operands .
*/
Sglext_copytoint_exponentmantissa ( tmpresp1 , signlessleft1 ) ;
Sglext_copytoint_exponentmantissa ( rightp1 , signlessright1 ) ;
if ( mpy_exponent < add_exponent | | mpy_exponent = = add_exponent & &
Sglext_ismagnitudeless ( signlessleft1 , signlessright1 ) ) {
/*
* Set the left operand to the larger one by XOR swap .
* First finish the first word " save " .
*/
Sglext_xorfromintp1 ( save , rightp1 , /*to*/ rightp1 ) ;
Sglext_xorfromintp1 ( save , tmpresp1 , /*to*/ tmpresp1 ) ;
Sglext_swap_lower ( tmpresp2 , rightp2 ) ;
/* also setup exponents used in rest of routine */
diff_exponent = add_exponent - mpy_exponent ;
result_exponent = add_exponent ;
} else {
/* also setup exponents used in rest of routine */
diff_exponent = mpy_exponent - add_exponent ;
result_exponent = mpy_exponent ;
}
/* Invariant: left is not smaller than right. */
/*
* Special case alignment of operands that would force alignment
* beyond the extent of the extension . A further optimization
* could special case this but only reduces the path length for
* this infrequent case .
*/
if ( diff_exponent > SGLEXT_THRESHOLD ) {
diff_exponent = SGLEXT_THRESHOLD ;
}
/* Align right operand by shifting it to the right */
Sglext_clear_sign ( rightp1 ) ;
Sglext_right_align ( rightp1 , rightp2 , /*shifted by*/ diff_exponent ) ;
/* Treat sum and difference of the operands separately. */
if ( ( int ) save < 0 ) {
/*
* Difference of the two operands . Overflow can occur if the
* multiply overflowed . A borrow can occur out of the hidden
* bit and force a post normalization phase .
*/
Sglext_subtract ( tmpresp1 , tmpresp2 , rightp1 , rightp2 ,
resultp1 , resultp2 ) ;
sign_save = Sgl_signextendedsign ( resultp1 ) ;
if ( Sgl_iszero_hidden ( resultp1 ) ) {
/* Handle normalization */
2011-03-30 22:57:33 -03:00
/* A straightforward algorithm would now shift the
2005-04-16 15:20:36 -07:00
* result and extension left until the hidden bit
* becomes one . Not all of the extension bits need
* participate in the shift . Only the two most
* significant bits ( round and guard ) are needed .
* If only a single shift is needed then the guard
* bit becomes a significant low order bit and the
* extension must participate in the rounding .
* If more than a single shift is needed , then all
* bits to the right of the guard bit are zeros ,
* and the guard bit may or may not be zero . */
Sglext_leftshiftby1 ( resultp1 , resultp2 ) ;
/* Need to check for a zero result. The sign and
* exponent fields have already been zeroed . The more
* efficient test of the full object can be used .
*/
if ( Sglext_iszero ( resultp1 , resultp2 ) ) {
/* Must have been "x-x" or "x+(-x)". */
if ( Is_rounding_mode ( ROUNDMINUS ) )
Sgl_setone_sign ( resultp1 ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
return ( NOEXCEPTION ) ;
}
result_exponent - - ;
/* Look to see if normalization is finished. */
if ( Sgl_isone_hidden ( resultp1 ) ) {
/* No further normalization is needed */
goto round ;
}
/* Discover first one bit to determine shift amount.
* Use a modified binary search . We have already
* shifted the result one position right and still
* not found a one so the remainder of the extension
* must be zero and simplifies rounding . */
/* Scan bytes */
while ( Sgl_iszero_hiddenhigh7mantissa ( resultp1 ) ) {
Sglext_leftshiftby8 ( resultp1 , resultp2 ) ;
result_exponent - = 8 ;
}
/* Now narrow it down to the nibble */
if ( Sgl_iszero_hiddenhigh3mantissa ( resultp1 ) ) {
/* The lower nibble contains the
* normalizing one */
Sglext_leftshiftby4 ( resultp1 , resultp2 ) ;
result_exponent - = 4 ;
}
/* Select case where first bit is set (already
* normalized ) otherwise select the proper shift . */
jumpsize = Sgl_hiddenhigh3mantissa ( resultp1 ) ;
if ( jumpsize < = 7 ) switch ( jumpsize ) {
case 1 :
Sglext_leftshiftby3 ( resultp1 , resultp2 ) ;
result_exponent - = 3 ;
break ;
case 2 :
case 3 :
Sglext_leftshiftby2 ( resultp1 , resultp2 ) ;
result_exponent - = 2 ;
break ;
case 4 :
case 5 :
case 6 :
case 7 :
Sglext_leftshiftby1 ( resultp1 , resultp2 ) ;
result_exponent - = 1 ;
break ;
}
} /* end if (hidden...)... */
/* Fall through and round */
} /* end if (save < 0)... */
else {
/* Add magnitudes */
Sglext_addition ( tmpresp1 , tmpresp2 ,
rightp1 , rightp2 , /*to*/ resultp1 , resultp2 ) ;
sign_save = Sgl_signextendedsign ( resultp1 ) ;
if ( Sgl_isone_hiddenoverflow ( resultp1 ) ) {
/* Prenormalization required. */
Sglext_arithrightshiftby1 ( resultp1 , resultp2 ) ;
result_exponent + + ;
} /* end if hiddenoverflow... */
} /* end else ...add magnitudes... */
/* Round the result. If the extension and lower two words are
* all zeros , then the result is exact . Otherwise round in the
* correct direction . Underflow is possible . If a postnormalization
* is necessary , then the mantissa is all zeros so no shift is needed .
*/
round :
if ( result_exponent < = 0 & & ! Is_underflowtrap_enabled ( ) ) {
Sglext_denormalize ( resultp1 , resultp2 , result_exponent , is_tiny ) ;
}
Sgl_set_sign ( resultp1 , /*using*/ sign_save ) ;
if ( Sglext_isnotzero_mantissap2 ( resultp2 ) ) {
inexact = TRUE ;
switch ( Rounding_mode ( ) ) {
case ROUNDNEAREST : /* The default. */
if ( Sglext_isone_highp2 ( resultp2 ) ) {
/* at least 1/2 ulp */
if ( Sglext_isnotzero_low31p2 ( resultp2 ) | |
Sglext_isone_lowp1 ( resultp1 ) ) {
/* either exactly half way and odd or
* more than 1 / 2ul p */
Sgl_increment ( resultp1 ) ;
}
}
break ;
case ROUNDPLUS :
if ( Sgl_iszero_sign ( resultp1 ) ) {
/* Round up positive results */
Sgl_increment ( resultp1 ) ;
}
break ;
case ROUNDMINUS :
if ( Sgl_isone_sign ( resultp1 ) ) {
/* Round down negative results */
Sgl_increment ( resultp1 ) ;
}
case ROUNDZERO : ;
/* truncate is simple */
} /* end switch... */
if ( Sgl_isone_hiddenoverflow ( resultp1 ) ) result_exponent + + ;
}
if ( result_exponent > = SGL_INFINITY_EXPONENT ) {
/* Overflow */
if ( Is_overflowtrap_enabled ( ) ) {
/*
* Adjust bias of result
*/
Sgl_setwrapped_exponent ( resultp1 , result_exponent , ovfl ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) )
return ( OPC_2E_OVERFLOWEXCEPTION |
OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( OPC_2E_OVERFLOWEXCEPTION ) ;
}
inexact = TRUE ;
Set_overflowflag ( ) ;
Sgl_setoverflow ( resultp1 ) ;
} else if ( result_exponent < = 0 ) { /* underflow case */
if ( Is_underflowtrap_enabled ( ) ) {
/*
* Adjust bias of result
*/
Sgl_setwrapped_exponent ( resultp1 , result_exponent , unfl ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) )
return ( OPC_2E_UNDERFLOWEXCEPTION |
OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( OPC_2E_UNDERFLOWEXCEPTION ) ;
}
else if ( inexact & & is_tiny ) Set_underflowflag ( ) ;
}
else Sgl_set_exponent ( resultp1 , result_exponent ) ;
Sgl_copytoptr ( resultp1 , dstptr ) ;
if ( inexact )
if ( Is_inexacttrap_enabled ( ) ) return ( OPC_2E_INEXACTEXCEPTION ) ;
else Set_inexactflag ( ) ;
return ( NOEXCEPTION ) ;
}