linux/drivers/mtd/nand/spi/core.c

1407 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2017 Micron Technology, Inc.
*
* Authors:
* Peter Pan <peterpandong@micron.com>
* Boris Brezillon <boris.brezillon@bootlin.com>
*/
#define pr_fmt(fmt) "spi-nand: " fmt
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/spinand.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
{
struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
spinand->scratchbuf);
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
*val = *spinand->scratchbuf;
return 0;
}
static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
{
struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
spinand->scratchbuf);
*spinand->scratchbuf = val;
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_read_status(struct spinand_device *spinand, u8 *status)
{
return spinand_read_reg_op(spinand, REG_STATUS, status);
}
static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
{
struct nand_device *nand = spinand_to_nand(spinand);
if (WARN_ON(spinand->cur_target < 0 ||
spinand->cur_target >= nand->memorg.ntargets))
return -EINVAL;
*cfg = spinand->cfg_cache[spinand->cur_target];
return 0;
}
static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
if (WARN_ON(spinand->cur_target < 0 ||
spinand->cur_target >= nand->memorg.ntargets))
return -EINVAL;
if (spinand->cfg_cache[spinand->cur_target] == cfg)
return 0;
ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
if (ret)
return ret;
spinand->cfg_cache[spinand->cur_target] = cfg;
return 0;
}
/**
* spinand_upd_cfg() - Update the configuration register
* @spinand: the spinand device
* @mask: the mask encoding the bits to update in the config reg
* @val: the new value to apply
*
* Update the configuration register.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
{
int ret;
u8 cfg;
ret = spinand_get_cfg(spinand, &cfg);
if (ret)
return ret;
cfg &= ~mask;
cfg |= val;
return spinand_set_cfg(spinand, cfg);
}
/**
* spinand_select_target() - Select a specific NAND target/die
* @spinand: the spinand device
* @target: the target/die to select
*
* Select a new target/die. If chip only has one die, this function is a NOOP.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_select_target(struct spinand_device *spinand, unsigned int target)
{
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
if (WARN_ON(target >= nand->memorg.ntargets))
return -EINVAL;
if (spinand->cur_target == target)
return 0;
if (nand->memorg.ntargets == 1) {
spinand->cur_target = target;
return 0;
}
ret = spinand->select_target(spinand, target);
if (ret)
return ret;
spinand->cur_target = target;
return 0;
}
static int spinand_read_cfg(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int target;
int ret;
for (target = 0; target < nand->memorg.ntargets; target++) {
ret = spinand_select_target(spinand, target);
if (ret)
return ret;
/*
* We use spinand_read_reg_op() instead of spinand_get_cfg()
* here to bypass the config cache.
*/
ret = spinand_read_reg_op(spinand, REG_CFG,
&spinand->cfg_cache[target]);
if (ret)
return ret;
}
return 0;
}
static int spinand_init_cfg_cache(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct device *dev = &spinand->spimem->spi->dev;
spinand->cfg_cache = devm_kcalloc(dev,
nand->memorg.ntargets,
sizeof(*spinand->cfg_cache),
GFP_KERNEL);
if (!spinand->cfg_cache)
return -ENOMEM;
return 0;
}
static int spinand_init_quad_enable(struct spinand_device *spinand)
{
bool enable = false;
if (!(spinand->flags & SPINAND_HAS_QE_BIT))
return 0;
if (spinand->op_templates.read_cache->data.buswidth == 4 ||
spinand->op_templates.write_cache->data.buswidth == 4 ||
spinand->op_templates.update_cache->data.buswidth == 4)
enable = true;
return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
enable ? CFG_QUAD_ENABLE : 0);
}
static int spinand_ecc_enable(struct spinand_device *spinand,
bool enable)
{
return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
enable ? CFG_ECC_ENABLE : 0);
}
static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
{
struct nand_device *nand = spinand_to_nand(spinand);
if (spinand->eccinfo.get_status)
return spinand->eccinfo.get_status(spinand, status);
switch (status & STATUS_ECC_MASK) {
case STATUS_ECC_NO_BITFLIPS:
return 0;
case STATUS_ECC_HAS_BITFLIPS:
/*
* We have no way to know exactly how many bitflips have been
* fixed, so let's return the maximum possible value so that
* wear-leveling layers move the data immediately.
*/
return nanddev_get_ecc_conf(nand)->strength;
case STATUS_ECC_UNCOR_ERROR:
return -EBADMSG;
default:
break;
}
return -EINVAL;
}
static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
return -ERANGE;
}
static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
/* Reserve 2 bytes for the BBM. */
region->offset = 2;
region->length = 62;
return 0;
}
static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
.ecc = spinand_noecc_ooblayout_ecc,
.free = spinand_noecc_ooblayout_free,
};
static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
{
struct spinand_device *spinand = nand_to_spinand(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct spinand_ondie_ecc_conf *engine_conf;
nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
if (!engine_conf)
return -ENOMEM;
nand->ecc.ctx.priv = engine_conf;
if (spinand->eccinfo.ooblayout)
mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
else
mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
return 0;
}
static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
{
kfree(nand->ecc.ctx.priv);
}
static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct spinand_device *spinand = nand_to_spinand(nand);
bool enable = (req->mode != MTD_OPS_RAW);
memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
/* Only enable or disable the engine */
return spinand_ecc_enable(spinand, enable);
}
static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
struct spinand_device *spinand = nand_to_spinand(nand);
struct mtd_info *mtd = spinand_to_mtd(spinand);
int ret;
if (req->mode == MTD_OPS_RAW)
return 0;
/* Nothing to do when finishing a page write */
if (req->type == NAND_PAGE_WRITE)
return 0;
/* Finish a page read: check the status, report errors/bitflips */
ret = spinand_check_ecc_status(spinand, engine_conf->status);
if (ret == -EBADMSG)
mtd->ecc_stats.failed++;
else if (ret > 0)
mtd->ecc_stats.corrected += ret;
return ret;
}
static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
.init_ctx = spinand_ondie_ecc_init_ctx,
.cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
.prepare_io_req = spinand_ondie_ecc_prepare_io_req,
.finish_io_req = spinand_ondie_ecc_finish_io_req,
};
static struct nand_ecc_engine spinand_ondie_ecc_engine = {
.ops = &spinand_ondie_ecc_engine_ops,
};
static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
{
struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
engine_conf)
engine_conf->status = status;
}
static int spinand_write_enable_op(struct spinand_device *spinand)
{
struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_load_page_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_read_from_cache_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct mtd_info *mtd = spinand_to_mtd(spinand);
struct spi_mem_dirmap_desc *rdesc;
unsigned int nbytes = 0;
void *buf = NULL;
u16 column = 0;
ssize_t ret;
if (req->datalen) {
buf = spinand->databuf;
nbytes = nanddev_page_size(nand);
column = 0;
}
if (req->ooblen) {
nbytes += nanddev_per_page_oobsize(nand);
if (!buf) {
buf = spinand->oobbuf;
column = nanddev_page_size(nand);
}
}
if (req->mode == MTD_OPS_RAW)
rdesc = spinand->dirmaps[req->pos.plane].rdesc;
else
rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
while (nbytes) {
ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
if (ret < 0)
return ret;
if (!ret || ret > nbytes)
return -EIO;
nbytes -= ret;
column += ret;
buf += ret;
}
if (req->datalen)
memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
req->datalen);
if (req->ooblen) {
if (req->mode == MTD_OPS_AUTO_OOB)
mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
spinand->oobbuf,
req->ooboffs,
req->ooblen);
else
memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
req->ooblen);
}
return 0;
}
static int spinand_write_to_cache_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct mtd_info *mtd = spinand_to_mtd(spinand);
struct spi_mem_dirmap_desc *wdesc;
unsigned int nbytes, column = 0;
void *buf = spinand->databuf;
ssize_t ret;
/*
* Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
* the cache content to 0xFF (depends on vendor implementation), so we
* must fill the page cache entirely even if we only want to program
* the data portion of the page, otherwise we might corrupt the BBM or
* user data previously programmed in OOB area.
*
* Only reset the data buffer manually, the OOB buffer is prepared by
* ECC engines ->prepare_io_req() callback.
*/
nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
memset(spinand->databuf, 0xff, nanddev_page_size(nand));
if (req->datalen)
memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
req->datalen);
if (req->ooblen) {
if (req->mode == MTD_OPS_AUTO_OOB)
mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
spinand->oobbuf,
req->ooboffs,
req->ooblen);
else
memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
req->ooblen);
}
if (req->mode == MTD_OPS_RAW)
wdesc = spinand->dirmaps[req->pos.plane].wdesc;
else
wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
while (nbytes) {
ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
if (ret < 0)
return ret;
if (!ret || ret > nbytes)
return -EIO;
nbytes -= ret;
column += ret;
buf += ret;
}
return 0;
}
static int spinand_program_op(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_erase_op(struct spinand_device *spinand,
const struct nand_pos *pos)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, pos);
struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int spinand_wait(struct spinand_device *spinand,
unsigned long initial_delay_us,
unsigned long poll_delay_us,
u8 *s)
{
struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
spinand->scratchbuf);
u8 status;
int ret;
ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
initial_delay_us,
poll_delay_us,
SPINAND_WAITRDY_TIMEOUT_MS);
if (ret)
return ret;
status = *spinand->scratchbuf;
if (!(status & STATUS_BUSY))
goto out;
/*
* Extra read, just in case the STATUS_READY bit has changed
* since our last check
*/
ret = spinand_read_status(spinand, &status);
if (ret)
return ret;
out:
if (s)
*s = status;
return status & STATUS_BUSY ? -ETIMEDOUT : 0;
}
static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
u8 ndummy, u8 *buf)
{
struct spi_mem_op op = SPINAND_READID_OP(
naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (!ret)
memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
return ret;
}
static int spinand_reset_op(struct spinand_device *spinand)
{
struct spi_mem_op op = SPINAND_RESET_OP;
int ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
return spinand_wait(spinand,
SPINAND_RESET_INITIAL_DELAY_US,
SPINAND_RESET_POLL_DELAY_US,
NULL);
}
static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
{
return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
}
static int spinand_read_page(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
u8 status;
int ret;
ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
if (ret)
return ret;
ret = spinand_load_page_op(spinand, req);
if (ret)
return ret;
ret = spinand_wait(spinand,
SPINAND_READ_INITIAL_DELAY_US,
SPINAND_READ_POLL_DELAY_US,
&status);
if (ret < 0)
return ret;
spinand_ondie_ecc_save_status(nand, status);
ret = spinand_read_from_cache_op(spinand, req);
if (ret)
return ret;
return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
}
static int spinand_write_page(struct spinand_device *spinand,
const struct nand_page_io_req *req)
{
struct nand_device *nand = spinand_to_nand(spinand);
u8 status;
int ret;
ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_write_to_cache_op(spinand, req);
if (ret)
return ret;
ret = spinand_program_op(spinand, req);
if (ret)
return ret;
ret = spinand_wait(spinand,
SPINAND_WRITE_INITIAL_DELAY_US,
SPINAND_WRITE_POLL_DELAY_US,
&status);
if (!ret && (status & STATUS_PROG_FAILED))
return -EIO;
return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
}
static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct mtd_ecc_stats old_stats;
unsigned int max_bitflips = 0;
struct nand_io_iter iter;
bool disable_ecc = false;
bool ecc_failed = false;
int ret = 0;
if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
disable_ecc = true;
mutex_lock(&spinand->lock);
old_stats = mtd->ecc_stats;
nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
if (disable_ecc)
iter.req.mode = MTD_OPS_RAW;
ret = spinand_select_target(spinand, iter.req.pos.target);
if (ret)
break;
ret = spinand_read_page(spinand, &iter.req);
if (ret < 0 && ret != -EBADMSG)
break;
if (ret == -EBADMSG)
ecc_failed = true;
else
max_bitflips = max_t(unsigned int, max_bitflips, ret);
ret = 0;
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
if (ops->stats) {
ops->stats->uncorrectable_errors +=
mtd->ecc_stats.failed - old_stats.failed;
ops->stats->corrected_bitflips +=
mtd->ecc_stats.corrected - old_stats.corrected;
}
mutex_unlock(&spinand->lock);
if (ecc_failed && !ret)
ret = -EBADMSG;
return ret ? ret : max_bitflips;
}
static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_io_iter iter;
bool disable_ecc = false;
int ret = 0;
if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
disable_ecc = true;
mutex_lock(&spinand->lock);
nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
if (disable_ecc)
iter.req.mode = MTD_OPS_RAW;
ret = spinand_select_target(spinand, iter.req.pos.target);
if (ret)
break;
ret = spinand_write_page(spinand, &iter.req);
if (ret)
break;
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
mutex_unlock(&spinand->lock);
return ret;
}
static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 marker[2] = { };
struct nand_page_io_req req = {
.pos = *pos,
.ooblen = sizeof(marker),
.ooboffs = 0,
.oobbuf.in = marker,
.mode = MTD_OPS_RAW,
};
spinand_select_target(spinand, pos->target);
spinand_read_page(spinand, &req);
if (marker[0] != 0xff || marker[1] != 0xff)
return true;
return false;
}
static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct spinand_device *spinand = nand_to_spinand(nand);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_isbad(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 marker[2] = { };
struct nand_page_io_req req = {
.pos = *pos,
.ooboffs = 0,
.ooblen = sizeof(marker),
.oobbuf.out = marker,
.mode = MTD_OPS_RAW,
};
int ret;
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
return spinand_write_page(spinand, &req);
}
static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct spinand_device *spinand = nand_to_spinand(nand);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_markbad(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
{
struct spinand_device *spinand = nand_to_spinand(nand);
u8 status;
int ret;
ret = spinand_select_target(spinand, pos->target);
if (ret)
return ret;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spinand_erase_op(spinand, pos);
if (ret)
return ret;
ret = spinand_wait(spinand,
SPINAND_ERASE_INITIAL_DELAY_US,
SPINAND_ERASE_POLL_DELAY_US,
&status);
if (!ret && (status & STATUS_ERASE_FAILED))
ret = -EIO;
return ret;
}
static int spinand_mtd_erase(struct mtd_info *mtd,
struct erase_info *einfo)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
int ret;
mutex_lock(&spinand->lock);
ret = nanddev_mtd_erase(mtd, einfo);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_pos pos;
int ret;
nanddev_offs_to_pos(nand, offs, &pos);
mutex_lock(&spinand->lock);
ret = nanddev_isreserved(nand, &pos);
mutex_unlock(&spinand->lock);
return ret;
}
static int spinand_create_dirmap(struct spinand_device *spinand,
unsigned int plane)
{
struct nand_device *nand = spinand_to_nand(spinand);
struct spi_mem_dirmap_info info = {
.length = nanddev_page_size(nand) +
nanddev_per_page_oobsize(nand),
};
struct spi_mem_dirmap_desc *desc;
/* The plane number is passed in MSB just above the column address */
info.offset = plane << fls(nand->memorg.pagesize);
info.op_tmpl = *spinand->op_templates.update_cache;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
spinand->dirmaps[plane].wdesc = desc;
info.op_tmpl = *spinand->op_templates.read_cache;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
spinand->dirmaps[plane].rdesc = desc;
if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
return 0;
}
info.op_tmpl = *spinand->op_templates.update_cache;
info.op_tmpl.data.ecc = true;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
spinand->dirmaps[plane].wdesc_ecc = desc;
info.op_tmpl = *spinand->op_templates.read_cache;
info.op_tmpl.data.ecc = true;
desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
spinand->spimem, &info);
if (IS_ERR(desc))
return PTR_ERR(desc);
spinand->dirmaps[plane].rdesc_ecc = desc;
return 0;
}
static int spinand_create_dirmaps(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
int i, ret;
spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
sizeof(*spinand->dirmaps) *
nand->memorg.planes_per_lun,
GFP_KERNEL);
if (!spinand->dirmaps)
return -ENOMEM;
for (i = 0; i < nand->memorg.planes_per_lun; i++) {
ret = spinand_create_dirmap(spinand, i);
if (ret)
return ret;
}
return 0;
}
static const struct nand_ops spinand_ops = {
.erase = spinand_erase,
.markbad = spinand_markbad,
.isbad = spinand_isbad,
};
static const struct spinand_manufacturer *spinand_manufacturers[] = {
&alliancememory_spinand_manufacturer,
&ato_spinand_manufacturer,
&esmt_c8_spinand_manufacturer,
&gigadevice_spinand_manufacturer,
&macronix_spinand_manufacturer,
&micron_spinand_manufacturer,
&paragon_spinand_manufacturer,
&toshiba_spinand_manufacturer,
&winbond_spinand_manufacturer,
&xtx_spinand_manufacturer,
};
static int spinand_manufacturer_match(struct spinand_device *spinand,
enum spinand_readid_method rdid_method)
{
u8 *id = spinand->id.data;
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
const struct spinand_manufacturer *manufacturer =
spinand_manufacturers[i];
if (id[0] != manufacturer->id)
continue;
ret = spinand_match_and_init(spinand,
manufacturer->chips,
manufacturer->nchips,
rdid_method);
if (ret < 0)
continue;
spinand->manufacturer = manufacturer;
return 0;
}
return -ENOTSUPP;
}
static int spinand_id_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
ret = spinand_read_id_op(spinand, 0, 0, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
if (!ret)
return 0;
ret = spinand_read_id_op(spinand, 1, 0, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand,
SPINAND_READID_METHOD_OPCODE_ADDR);
if (!ret)
return 0;
ret = spinand_read_id_op(spinand, 0, 1, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand,
SPINAND_READID_METHOD_OPCODE_DUMMY);
return ret;
}
static int spinand_manufacturer_init(struct spinand_device *spinand)
{
if (spinand->manufacturer->ops->init)
return spinand->manufacturer->ops->init(spinand);
return 0;
}
static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
{
/* Release manufacturer private data */
if (spinand->manufacturer->ops->cleanup)
return spinand->manufacturer->ops->cleanup(spinand);
}
static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device *spinand,
const struct spinand_op_variants *variants)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
for (i = 0; i < variants->nops; i++) {
struct spi_mem_op op = variants->ops[i];
unsigned int nbytes;
int ret;
nbytes = nanddev_per_page_oobsize(nand) +
nanddev_page_size(nand);
while (nbytes) {
op.data.nbytes = nbytes;
ret = spi_mem_adjust_op_size(spinand->spimem, &op);
if (ret)
break;
if (!spi_mem_supports_op(spinand->spimem, &op))
break;
nbytes -= op.data.nbytes;
}
if (!nbytes)
return &variants->ops[i];
}
return NULL;
}
/**
* spinand_match_and_init() - Try to find a match between a device ID and an
* entry in a spinand_info table
* @spinand: SPI NAND object
* @table: SPI NAND device description table
* @table_size: size of the device description table
* @rdid_method: read id method to match
*
* Match between a device ID retrieved through the READ_ID command and an
* entry in the SPI NAND description table. If a match is found, the spinand
* object will be initialized with information provided by the matching
* spinand_info entry.
*
* Return: 0 on success, a negative error code otherwise.
*/
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
unsigned int table_size,
enum spinand_readid_method rdid_method)
{
u8 *id = spinand->id.data;
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
for (i = 0; i < table_size; i++) {
const struct spinand_info *info = &table[i];
const struct spi_mem_op *op;
if (rdid_method != info->devid.method)
continue;
if (memcmp(id + 1, info->devid.id, info->devid.len))
continue;
nand->memorg = table[i].memorg;
nanddev_set_ecc_requirements(nand, &table[i].eccreq);
spinand->eccinfo = table[i].eccinfo;
spinand->flags = table[i].flags;
spinand->id.len = 1 + table[i].devid.len;
spinand->select_target = table[i].select_target;
op = spinand_select_op_variant(spinand,
info->op_variants.read_cache);
if (!op)
return -ENOTSUPP;
spinand->op_templates.read_cache = op;
op = spinand_select_op_variant(spinand,
info->op_variants.write_cache);
if (!op)
return -ENOTSUPP;
spinand->op_templates.write_cache = op;
op = spinand_select_op_variant(spinand,
info->op_variants.update_cache);
spinand->op_templates.update_cache = op;
return 0;
}
return -ENOTSUPP;
}
static int spinand_detect(struct spinand_device *spinand)
{
struct device *dev = &spinand->spimem->spi->dev;
struct nand_device *nand = spinand_to_nand(spinand);
int ret;
ret = spinand_reset_op(spinand);
if (ret)
return ret;
ret = spinand_id_detect(spinand);
if (ret) {
dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
spinand->id.data);
return ret;
}
if (nand->memorg.ntargets > 1 && !spinand->select_target) {
dev_err(dev,
"SPI NANDs with more than one die must implement ->select_target()\n");
return -EINVAL;
}
dev_info(&spinand->spimem->spi->dev,
"%s SPI NAND was found.\n", spinand->manufacturer->name);
dev_info(&spinand->spimem->spi->dev,
"%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
return 0;
}
static int spinand_init_flash(struct spinand_device *spinand)
{
struct device *dev = &spinand->spimem->spi->dev;
struct nand_device *nand = spinand_to_nand(spinand);
int ret, i;
ret = spinand_read_cfg(spinand);
if (ret)
return ret;
ret = spinand_init_quad_enable(spinand);
if (ret)
return ret;
ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
if (ret)
return ret;
ret = spinand_manufacturer_init(spinand);
if (ret) {
dev_err(dev,
"Failed to initialize the SPI NAND chip (err = %d)\n",
ret);
return ret;
}
/* After power up, all blocks are locked, so unlock them here. */
for (i = 0; i < nand->memorg.ntargets; i++) {
ret = spinand_select_target(spinand, i);
if (ret)
break;
ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
if (ret)
break;
}
if (ret)
spinand_manufacturer_cleanup(spinand);
return ret;
}
static void spinand_mtd_resume(struct mtd_info *mtd)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
int ret;
ret = spinand_reset_op(spinand);
if (ret)
return;
ret = spinand_init_flash(spinand);
if (ret)
return;
spinand_ecc_enable(spinand, false);
}
static int spinand_init(struct spinand_device *spinand)
{
struct device *dev = &spinand->spimem->spi->dev;
struct mtd_info *mtd = spinand_to_mtd(spinand);
struct nand_device *nand = mtd_to_nanddev(mtd);
int ret;
/*
* We need a scratch buffer because the spi_mem interface requires that
* buf passed in spi_mem_op->data.buf be DMA-able.
*/
spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
if (!spinand->scratchbuf)
return -ENOMEM;
ret = spinand_detect(spinand);
if (ret)
goto err_free_bufs;
/*
* Use kzalloc() instead of devm_kzalloc() here, because some drivers
* may use this buffer for DMA access.
* Memory allocated by devm_ does not guarantee DMA-safe alignment.
*/
spinand->databuf = kzalloc(nanddev_page_size(nand) +
nanddev_per_page_oobsize(nand),
GFP_KERNEL);
if (!spinand->databuf) {
ret = -ENOMEM;
goto err_free_bufs;
}
spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
ret = spinand_init_cfg_cache(spinand);
if (ret)
goto err_free_bufs;
ret = spinand_init_flash(spinand);
if (ret)
goto err_free_bufs;
ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
if (ret)
goto err_manuf_cleanup;
/* SPI-NAND default ECC engine is on-die */
nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
spinand_ecc_enable(spinand, false);
ret = nanddev_ecc_engine_init(nand);
if (ret)
goto err_cleanup_nanddev;
mtd->_read_oob = spinand_mtd_read;
mtd->_write_oob = spinand_mtd_write;
mtd->_block_isbad = spinand_mtd_block_isbad;
mtd->_block_markbad = spinand_mtd_block_markbad;
mtd->_block_isreserved = spinand_mtd_block_isreserved;
mtd->_erase = spinand_mtd_erase;
mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
mtd->_resume = spinand_mtd_resume;
if (nand->ecc.engine) {
ret = mtd_ooblayout_count_freebytes(mtd);
if (ret < 0)
goto err_cleanup_ecc_engine;
}
mtd->oobavail = ret;
/* Propagate ECC information to mtd_info */
mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
ret = spinand_create_dirmaps(spinand);
if (ret) {
dev_err(dev,
"Failed to create direct mappings for read/write operations (err = %d)\n",
ret);
goto err_cleanup_ecc_engine;
}
return 0;
err_cleanup_ecc_engine:
nanddev_ecc_engine_cleanup(nand);
err_cleanup_nanddev:
nanddev_cleanup(nand);
err_manuf_cleanup:
spinand_manufacturer_cleanup(spinand);
err_free_bufs:
kfree(spinand->databuf);
kfree(spinand->scratchbuf);
return ret;
}
static void spinand_cleanup(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
nanddev_cleanup(nand);
spinand_manufacturer_cleanup(spinand);
kfree(spinand->databuf);
kfree(spinand->scratchbuf);
}
static int spinand_probe(struct spi_mem *mem)
{
struct spinand_device *spinand;
struct mtd_info *mtd;
int ret;
spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
GFP_KERNEL);
if (!spinand)
return -ENOMEM;
spinand->spimem = mem;
spi_mem_set_drvdata(mem, spinand);
spinand_set_of_node(spinand, mem->spi->dev.of_node);
mutex_init(&spinand->lock);
mtd = spinand_to_mtd(spinand);
mtd->dev.parent = &mem->spi->dev;
ret = spinand_init(spinand);
if (ret)
return ret;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_spinand_cleanup;
return 0;
err_spinand_cleanup:
spinand_cleanup(spinand);
return ret;
}
static int spinand_remove(struct spi_mem *mem)
{
struct spinand_device *spinand;
struct mtd_info *mtd;
int ret;
spinand = spi_mem_get_drvdata(mem);
mtd = spinand_to_mtd(spinand);
ret = mtd_device_unregister(mtd);
if (ret)
return ret;
spinand_cleanup(spinand);
return 0;
}
static const struct spi_device_id spinand_ids[] = {
{ .name = "spi-nand" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(spi, spinand_ids);
#ifdef CONFIG_OF
static const struct of_device_id spinand_of_ids[] = {
{ .compatible = "spi-nand" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, spinand_of_ids);
#endif
static struct spi_mem_driver spinand_drv = {
.spidrv = {
.id_table = spinand_ids,
.driver = {
.name = "spi-nand",
.of_match_table = of_match_ptr(spinand_of_ids),
},
},
.probe = spinand_probe,
.remove = spinand_remove,
};
module_spi_mem_driver(spinand_drv);
MODULE_DESCRIPTION("SPI NAND framework");
MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
MODULE_LICENSE("GPL v2");