2016-06-22 19:49:15 +03:00
/*
* Copyright ( c ) 2013 , Kenneth MacKay
* All rights reserved .
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions are
* met :
* * Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* * Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in the
* documentation and / or other materials provided with the distribution .
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* " AS IS " AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT
* LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL ,
* SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES ( INCLUDING , BUT NOT
* LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE ,
* DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT
* ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
*/
# include <linux/random.h>
# include <linux/slab.h>
# include <linux/swab.h>
# include <linux/fips.h>
# include <crypto/ecdh.h>
2017-05-30 17:52:48 +03:00
# include <crypto/rng.h>
2016-06-22 19:49:15 +03:00
# include "ecc.h"
# include "ecc_curve_defs.h"
typedef struct {
u64 m_low ;
u64 m_high ;
} uint128_t ;
static inline const struct ecc_curve * ecc_get_curve ( unsigned int curve_id )
{
switch ( curve_id ) {
/* In FIPS mode only allow P256 and higher */
case ECC_CURVE_NIST_P192 :
return fips_enabled ? NULL : & nist_p192 ;
case ECC_CURVE_NIST_P256 :
return & nist_p256 ;
default :
return NULL ;
}
}
static u64 * ecc_alloc_digits_space ( unsigned int ndigits )
{
size_t len = ndigits * sizeof ( u64 ) ;
if ( ! len )
return NULL ;
return kmalloc ( len , GFP_KERNEL ) ;
}
static void ecc_free_digits_space ( u64 * space )
{
kzfree ( space ) ;
}
static struct ecc_point * ecc_alloc_point ( unsigned int ndigits )
{
struct ecc_point * p = kmalloc ( sizeof ( * p ) , GFP_KERNEL ) ;
if ( ! p )
return NULL ;
p - > x = ecc_alloc_digits_space ( ndigits ) ;
if ( ! p - > x )
goto err_alloc_x ;
p - > y = ecc_alloc_digits_space ( ndigits ) ;
if ( ! p - > y )
goto err_alloc_y ;
p - > ndigits = ndigits ;
return p ;
err_alloc_y :
ecc_free_digits_space ( p - > x ) ;
err_alloc_x :
kfree ( p ) ;
return NULL ;
}
static void ecc_free_point ( struct ecc_point * p )
{
if ( ! p )
return ;
kzfree ( p - > x ) ;
kzfree ( p - > y ) ;
kzfree ( p ) ;
}
static void vli_clear ( u64 * vli , unsigned int ndigits )
{
int i ;
for ( i = 0 ; i < ndigits ; i + + )
vli [ i ] = 0 ;
}
/* Returns true if vli == 0, false otherwise. */
static bool vli_is_zero ( const u64 * vli , unsigned int ndigits )
{
int i ;
for ( i = 0 ; i < ndigits ; i + + ) {
if ( vli [ i ] )
return false ;
}
return true ;
}
/* Returns nonzero if bit bit of vli is set. */
static u64 vli_test_bit ( const u64 * vli , unsigned int bit )
{
return ( vli [ bit / 64 ] & ( ( u64 ) 1 < < ( bit % 64 ) ) ) ;
}
/* Counts the number of 64-bit "digits" in vli. */
static unsigned int vli_num_digits ( const u64 * vli , unsigned int ndigits )
{
int i ;
/* Search from the end until we find a non-zero digit.
* We do it in reverse because we expect that most digits will
* be nonzero .
*/
for ( i = ndigits - 1 ; i > = 0 & & vli [ i ] = = 0 ; i - - ) ;
return ( i + 1 ) ;
}
/* Counts the number of bits required for vli. */
static unsigned int vli_num_bits ( const u64 * vli , unsigned int ndigits )
{
unsigned int i , num_digits ;
u64 digit ;
num_digits = vli_num_digits ( vli , ndigits ) ;
if ( num_digits = = 0 )
return 0 ;
digit = vli [ num_digits - 1 ] ;
for ( i = 0 ; digit ; i + + )
digit > > = 1 ;
return ( ( num_digits - 1 ) * 64 + i ) ;
}
/* Sets dest = src. */
static void vli_set ( u64 * dest , const u64 * src , unsigned int ndigits )
{
int i ;
for ( i = 0 ; i < ndigits ; i + + )
dest [ i ] = src [ i ] ;
}
/* Returns sign of left - right. */
static int vli_cmp ( const u64 * left , const u64 * right , unsigned int ndigits )
{
int i ;
for ( i = ndigits - 1 ; i > = 0 ; i - - ) {
if ( left [ i ] > right [ i ] )
return 1 ;
else if ( left [ i ] < right [ i ] )
return - 1 ;
}
return 0 ;
}
/* Computes result = in << c, returning carry. Can modify in place
* ( if result = = in ) . 0 < shift < 64.
*/
static u64 vli_lshift ( u64 * result , const u64 * in , unsigned int shift ,
unsigned int ndigits )
{
u64 carry = 0 ;
int i ;
for ( i = 0 ; i < ndigits ; i + + ) {
u64 temp = in [ i ] ;
result [ i ] = ( temp < < shift ) | carry ;
carry = temp > > ( 64 - shift ) ;
}
return carry ;
}
/* Computes vli = vli >> 1. */
static void vli_rshift1 ( u64 * vli , unsigned int ndigits )
{
u64 * end = vli ;
u64 carry = 0 ;
vli + = ndigits ;
while ( vli - - > end ) {
u64 temp = * vli ;
* vli = ( temp > > 1 ) | carry ;
carry = temp < < 63 ;
}
}
/* Computes result = left + right, returning carry. Can modify in place. */
static u64 vli_add ( u64 * result , const u64 * left , const u64 * right ,
unsigned int ndigits )
{
u64 carry = 0 ;
int i ;
for ( i = 0 ; i < ndigits ; i + + ) {
u64 sum ;
sum = left [ i ] + right [ i ] + carry ;
if ( sum ! = left [ i ] )
carry = ( sum < left [ i ] ) ;
result [ i ] = sum ;
}
return carry ;
}
/* Computes result = left - right, returning borrow. Can modify in place. */
static u64 vli_sub ( u64 * result , const u64 * left , const u64 * right ,
unsigned int ndigits )
{
u64 borrow = 0 ;
int i ;
for ( i = 0 ; i < ndigits ; i + + ) {
u64 diff ;
diff = left [ i ] - right [ i ] - borrow ;
if ( diff ! = left [ i ] )
borrow = ( diff > left [ i ] ) ;
result [ i ] = diff ;
}
return borrow ;
}
static uint128_t mul_64_64 ( u64 left , u64 right )
{
u64 a0 = left & 0xffffffffull ;
u64 a1 = left > > 32 ;
u64 b0 = right & 0xffffffffull ;
u64 b1 = right > > 32 ;
u64 m0 = a0 * b0 ;
u64 m1 = a0 * b1 ;
u64 m2 = a1 * b0 ;
u64 m3 = a1 * b1 ;
uint128_t result ;
m2 + = ( m0 > > 32 ) ;
m2 + = m1 ;
/* Overflow */
if ( m2 < m1 )
m3 + = 0x100000000ull ;
result . m_low = ( m0 & 0xffffffffull ) | ( m2 < < 32 ) ;
result . m_high = m3 + ( m2 > > 32 ) ;
return result ;
}
static uint128_t add_128_128 ( uint128_t a , uint128_t b )
{
uint128_t result ;
result . m_low = a . m_low + b . m_low ;
result . m_high = a . m_high + b . m_high + ( result . m_low < a . m_low ) ;
return result ;
}
static void vli_mult ( u64 * result , const u64 * left , const u64 * right ,
unsigned int ndigits )
{
uint128_t r01 = { 0 , 0 } ;
u64 r2 = 0 ;
unsigned int i , k ;
/* Compute each digit of result in sequence, maintaining the
* carries .
*/
for ( k = 0 ; k < ndigits * 2 - 1 ; k + + ) {
unsigned int min ;
if ( k < ndigits )
min = 0 ;
else
min = ( k + 1 ) - ndigits ;
for ( i = min ; i < = k & & i < ndigits ; i + + ) {
uint128_t product ;
product = mul_64_64 ( left [ i ] , right [ k - i ] ) ;
r01 = add_128_128 ( r01 , product ) ;
r2 + = ( r01 . m_high < product . m_high ) ;
}
result [ k ] = r01 . m_low ;
r01 . m_low = r01 . m_high ;
r01 . m_high = r2 ;
r2 = 0 ;
}
result [ ndigits * 2 - 1 ] = r01 . m_low ;
}
static void vli_square ( u64 * result , const u64 * left , unsigned int ndigits )
{
uint128_t r01 = { 0 , 0 } ;
u64 r2 = 0 ;
int i , k ;
for ( k = 0 ; k < ndigits * 2 - 1 ; k + + ) {
unsigned int min ;
if ( k < ndigits )
min = 0 ;
else
min = ( k + 1 ) - ndigits ;
for ( i = min ; i < = k & & i < = k - i ; i + + ) {
uint128_t product ;
product = mul_64_64 ( left [ i ] , left [ k - i ] ) ;
if ( i < k - i ) {
r2 + = product . m_high > > 63 ;
product . m_high = ( product . m_high < < 1 ) |
( product . m_low > > 63 ) ;
product . m_low < < = 1 ;
}
r01 = add_128_128 ( r01 , product ) ;
r2 + = ( r01 . m_high < product . m_high ) ;
}
result [ k ] = r01 . m_low ;
r01 . m_low = r01 . m_high ;
r01 . m_high = r2 ;
r2 = 0 ;
}
result [ ndigits * 2 - 1 ] = r01 . m_low ;
}
/* Computes result = (left + right) % mod.
* Assumes that left < mod and right < mod , result ! = mod .
*/
static void vli_mod_add ( u64 * result , const u64 * left , const u64 * right ,
const u64 * mod , unsigned int ndigits )
{
u64 carry ;
carry = vli_add ( result , left , right , ndigits ) ;
/* result > mod (result = mod + remainder), so subtract mod to
* get remainder .
*/
if ( carry | | vli_cmp ( result , mod , ndigits ) > = 0 )
vli_sub ( result , result , mod , ndigits ) ;
}
/* Computes result = (left - right) % mod.
* Assumes that left < mod and right < mod , result ! = mod .
*/
static void vli_mod_sub ( u64 * result , const u64 * left , const u64 * right ,
const u64 * mod , unsigned int ndigits )
{
u64 borrow = vli_sub ( result , left , right , ndigits ) ;
/* In this case, p_result == -diff == (max int) - diff.
* Since - x % d = = d - x , we can get the correct result from
* result + mod ( with overflow ) .
*/
if ( borrow )
vli_add ( result , result , mod , ndigits ) ;
}
/* Computes p_result = p_product % curve_p.
* See algorithm 5 and 6 from
* http : //www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
*/
static void vli_mmod_fast_192 ( u64 * result , const u64 * product ,
const u64 * curve_prime , u64 * tmp )
{
const unsigned int ndigits = 3 ;
int carry ;
vli_set ( result , product , ndigits ) ;
vli_set ( tmp , & product [ 3 ] , ndigits ) ;
carry = vli_add ( result , result , tmp , ndigits ) ;
tmp [ 0 ] = 0 ;
tmp [ 1 ] = product [ 3 ] ;
tmp [ 2 ] = product [ 4 ] ;
carry + = vli_add ( result , result , tmp , ndigits ) ;
tmp [ 0 ] = tmp [ 1 ] = product [ 5 ] ;
tmp [ 2 ] = 0 ;
carry + = vli_add ( result , result , tmp , ndigits ) ;
while ( carry | | vli_cmp ( curve_prime , result , ndigits ) ! = 1 )
carry - = vli_sub ( result , result , curve_prime , ndigits ) ;
}
/* Computes result = product % curve_prime
* from http : //www.nsa.gov/ia/_files/nist-routines.pdf
*/
static void vli_mmod_fast_256 ( u64 * result , const u64 * product ,
const u64 * curve_prime , u64 * tmp )
{
int carry ;
const unsigned int ndigits = 4 ;
/* t */
vli_set ( result , product , ndigits ) ;
/* s1 */
tmp [ 0 ] = 0 ;
tmp [ 1 ] = product [ 5 ] & 0xffffffff00000000ull ;
tmp [ 2 ] = product [ 6 ] ;
tmp [ 3 ] = product [ 7 ] ;
carry = vli_lshift ( tmp , tmp , 1 , ndigits ) ;
carry + = vli_add ( result , result , tmp , ndigits ) ;
/* s2 */
tmp [ 1 ] = product [ 6 ] < < 32 ;
tmp [ 2 ] = ( product [ 6 ] > > 32 ) | ( product [ 7 ] < < 32 ) ;
tmp [ 3 ] = product [ 7 ] > > 32 ;
carry + = vli_lshift ( tmp , tmp , 1 , ndigits ) ;
carry + = vli_add ( result , result , tmp , ndigits ) ;
/* s3 */
tmp [ 0 ] = product [ 4 ] ;
tmp [ 1 ] = product [ 5 ] & 0xffffffff ;
tmp [ 2 ] = 0 ;
tmp [ 3 ] = product [ 7 ] ;
carry + = vli_add ( result , result , tmp , ndigits ) ;
/* s4 */
tmp [ 0 ] = ( product [ 4 ] > > 32 ) | ( product [ 5 ] < < 32 ) ;
tmp [ 1 ] = ( product [ 5 ] > > 32 ) | ( product [ 6 ] & 0xffffffff00000000ull ) ;
tmp [ 2 ] = product [ 7 ] ;
tmp [ 3 ] = ( product [ 6 ] > > 32 ) | ( product [ 4 ] < < 32 ) ;
carry + = vli_add ( result , result , tmp , ndigits ) ;
/* d1 */
tmp [ 0 ] = ( product [ 5 ] > > 32 ) | ( product [ 6 ] < < 32 ) ;
tmp [ 1 ] = ( product [ 6 ] > > 32 ) ;
tmp [ 2 ] = 0 ;
tmp [ 3 ] = ( product [ 4 ] & 0xffffffff ) | ( product [ 5 ] < < 32 ) ;
carry - = vli_sub ( result , result , tmp , ndigits ) ;
/* d2 */
tmp [ 0 ] = product [ 6 ] ;
tmp [ 1 ] = product [ 7 ] ;
tmp [ 2 ] = 0 ;
tmp [ 3 ] = ( product [ 4 ] > > 32 ) | ( product [ 5 ] & 0xffffffff00000000ull ) ;
carry - = vli_sub ( result , result , tmp , ndigits ) ;
/* d3 */
tmp [ 0 ] = ( product [ 6 ] > > 32 ) | ( product [ 7 ] < < 32 ) ;
tmp [ 1 ] = ( product [ 7 ] > > 32 ) | ( product [ 4 ] < < 32 ) ;
tmp [ 2 ] = ( product [ 4 ] > > 32 ) | ( product [ 5 ] < < 32 ) ;
tmp [ 3 ] = ( product [ 6 ] < < 32 ) ;
carry - = vli_sub ( result , result , tmp , ndigits ) ;
/* d4 */
tmp [ 0 ] = product [ 7 ] ;
tmp [ 1 ] = product [ 4 ] & 0xffffffff00000000ull ;
tmp [ 2 ] = product [ 5 ] ;
tmp [ 3 ] = product [ 6 ] & 0xffffffff00000000ull ;
carry - = vli_sub ( result , result , tmp , ndigits ) ;
if ( carry < 0 ) {
do {
carry + = vli_add ( result , result , curve_prime , ndigits ) ;
} while ( carry < 0 ) ;
} else {
while ( carry | | vli_cmp ( curve_prime , result , ndigits ) ! = 1 )
carry - = vli_sub ( result , result , curve_prime , ndigits ) ;
}
}
/* Computes result = product % curve_prime
* from http : //www.nsa.gov/ia/_files/nist-routines.pdf
*/
static bool vli_mmod_fast ( u64 * result , u64 * product ,
const u64 * curve_prime , unsigned int ndigits )
{
u64 tmp [ 2 * ndigits ] ;
switch ( ndigits ) {
case 3 :
vli_mmod_fast_192 ( result , product , curve_prime , tmp ) ;
break ;
case 4 :
vli_mmod_fast_256 ( result , product , curve_prime , tmp ) ;
break ;
default :
pr_err ( " unsupports digits size! \n " ) ;
return false ;
}
return true ;
}
/* Computes result = (left * right) % curve_prime. */
static void vli_mod_mult_fast ( u64 * result , const u64 * left , const u64 * right ,
const u64 * curve_prime , unsigned int ndigits )
{
u64 product [ 2 * ndigits ] ;
vli_mult ( product , left , right , ndigits ) ;
vli_mmod_fast ( result , product , curve_prime , ndigits ) ;
}
/* Computes result = left^2 % curve_prime. */
static void vli_mod_square_fast ( u64 * result , const u64 * left ,
const u64 * curve_prime , unsigned int ndigits )
{
u64 product [ 2 * ndigits ] ;
vli_square ( product , left , ndigits ) ;
vli_mmod_fast ( result , product , curve_prime , ndigits ) ;
}
# define EVEN(vli) (!(vli[0] & 1))
/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
* See " From Euclid's GCD to Montgomery Multiplication to the Great Divide "
* https : //labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
*/
static void vli_mod_inv ( u64 * result , const u64 * input , const u64 * mod ,
unsigned int ndigits )
{
u64 a [ ndigits ] , b [ ndigits ] ;
u64 u [ ndigits ] , v [ ndigits ] ;
u64 carry ;
int cmp_result ;
if ( vli_is_zero ( input , ndigits ) ) {
vli_clear ( result , ndigits ) ;
return ;
}
vli_set ( a , input , ndigits ) ;
vli_set ( b , mod , ndigits ) ;
vli_clear ( u , ndigits ) ;
u [ 0 ] = 1 ;
vli_clear ( v , ndigits ) ;
while ( ( cmp_result = vli_cmp ( a , b , ndigits ) ) ! = 0 ) {
carry = 0 ;
if ( EVEN ( a ) ) {
vli_rshift1 ( a , ndigits ) ;
if ( ! EVEN ( u ) )
carry = vli_add ( u , u , mod , ndigits ) ;
vli_rshift1 ( u , ndigits ) ;
if ( carry )
u [ ndigits - 1 ] | = 0x8000000000000000ull ;
} else if ( EVEN ( b ) ) {
vli_rshift1 ( b , ndigits ) ;
if ( ! EVEN ( v ) )
carry = vli_add ( v , v , mod , ndigits ) ;
vli_rshift1 ( v , ndigits ) ;
if ( carry )
v [ ndigits - 1 ] | = 0x8000000000000000ull ;
} else if ( cmp_result > 0 ) {
vli_sub ( a , a , b , ndigits ) ;
vli_rshift1 ( a , ndigits ) ;
if ( vli_cmp ( u , v , ndigits ) < 0 )
vli_add ( u , u , mod , ndigits ) ;
vli_sub ( u , u , v , ndigits ) ;
if ( ! EVEN ( u ) )
carry = vli_add ( u , u , mod , ndigits ) ;
vli_rshift1 ( u , ndigits ) ;
if ( carry )
u [ ndigits - 1 ] | = 0x8000000000000000ull ;
} else {
vli_sub ( b , b , a , ndigits ) ;
vli_rshift1 ( b , ndigits ) ;
if ( vli_cmp ( v , u , ndigits ) < 0 )
vli_add ( v , v , mod , ndigits ) ;
vli_sub ( v , v , u , ndigits ) ;
if ( ! EVEN ( v ) )
carry = vli_add ( v , v , mod , ndigits ) ;
vli_rshift1 ( v , ndigits ) ;
if ( carry )
v [ ndigits - 1 ] | = 0x8000000000000000ull ;
}
}
vli_set ( result , u , ndigits ) ;
}
/* ------ Point operations ------ */
/* Returns true if p_point is the point at infinity, false otherwise. */
static bool ecc_point_is_zero ( const struct ecc_point * point )
{
return ( vli_is_zero ( point - > x , point - > ndigits ) & &
vli_is_zero ( point - > y , point - > ndigits ) ) ;
}
/* Point multiplication algorithm using Montgomery's ladder with co-Z
* coordinates . From http : //eprint.iacr.org/2011/338.pdf
*/
/* Double in place */
static void ecc_point_double_jacobian ( u64 * x1 , u64 * y1 , u64 * z1 ,
u64 * curve_prime , unsigned int ndigits )
{
/* t1 = x, t2 = y, t3 = z */
u64 t4 [ ndigits ] ;
u64 t5 [ ndigits ] ;
if ( vli_is_zero ( z1 , ndigits ) )
return ;
/* t4 = y1^2 */
vli_mod_square_fast ( t4 , y1 , curve_prime , ndigits ) ;
/* t5 = x1*y1^2 = A */
vli_mod_mult_fast ( t5 , x1 , t4 , curve_prime , ndigits ) ;
/* t4 = y1^4 */
vli_mod_square_fast ( t4 , t4 , curve_prime , ndigits ) ;
/* t2 = y1*z1 = z3 */
vli_mod_mult_fast ( y1 , y1 , z1 , curve_prime , ndigits ) ;
/* t3 = z1^2 */
vli_mod_square_fast ( z1 , z1 , curve_prime , ndigits ) ;
/* t1 = x1 + z1^2 */
vli_mod_add ( x1 , x1 , z1 , curve_prime , ndigits ) ;
/* t3 = 2*z1^2 */
vli_mod_add ( z1 , z1 , z1 , curve_prime , ndigits ) ;
/* t3 = x1 - z1^2 */
vli_mod_sub ( z1 , x1 , z1 , curve_prime , ndigits ) ;
/* t1 = x1^2 - z1^4 */
vli_mod_mult_fast ( x1 , x1 , z1 , curve_prime , ndigits ) ;
/* t3 = 2*(x1^2 - z1^4) */
vli_mod_add ( z1 , x1 , x1 , curve_prime , ndigits ) ;
/* t1 = 3*(x1^2 - z1^4) */
vli_mod_add ( x1 , x1 , z1 , curve_prime , ndigits ) ;
if ( vli_test_bit ( x1 , 0 ) ) {
u64 carry = vli_add ( x1 , x1 , curve_prime , ndigits ) ;
vli_rshift1 ( x1 , ndigits ) ;
x1 [ ndigits - 1 ] | = carry < < 63 ;
} else {
vli_rshift1 ( x1 , ndigits ) ;
}
/* t1 = 3/2*(x1^2 - z1^4) = B */
/* t3 = B^2 */
vli_mod_square_fast ( z1 , x1 , curve_prime , ndigits ) ;
/* t3 = B^2 - A */
vli_mod_sub ( z1 , z1 , t5 , curve_prime , ndigits ) ;
/* t3 = B^2 - 2A = x3 */
vli_mod_sub ( z1 , z1 , t5 , curve_prime , ndigits ) ;
/* t5 = A - x3 */
vli_mod_sub ( t5 , t5 , z1 , curve_prime , ndigits ) ;
/* t1 = B * (A - x3) */
vli_mod_mult_fast ( x1 , x1 , t5 , curve_prime , ndigits ) ;
/* t4 = B * (A - x3) - y1^4 = y3 */
vli_mod_sub ( t4 , x1 , t4 , curve_prime , ndigits ) ;
vli_set ( x1 , z1 , ndigits ) ;
vli_set ( z1 , y1 , ndigits ) ;
vli_set ( y1 , t4 , ndigits ) ;
}
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
static void apply_z ( u64 * x1 , u64 * y1 , u64 * z , u64 * curve_prime ,
unsigned int ndigits )
{
u64 t1 [ ndigits ] ;
vli_mod_square_fast ( t1 , z , curve_prime , ndigits ) ; /* z^2 */
vli_mod_mult_fast ( x1 , x1 , t1 , curve_prime , ndigits ) ; /* x1 * z^2 */
vli_mod_mult_fast ( t1 , t1 , z , curve_prime , ndigits ) ; /* z^3 */
vli_mod_mult_fast ( y1 , y1 , t1 , curve_prime , ndigits ) ; /* y1 * z^3 */
}
/* P = (x1, y1) => 2P, (x2, y2) => P' */
static void xycz_initial_double ( u64 * x1 , u64 * y1 , u64 * x2 , u64 * y2 ,
u64 * p_initial_z , u64 * curve_prime ,
unsigned int ndigits )
{
u64 z [ ndigits ] ;
vli_set ( x2 , x1 , ndigits ) ;
vli_set ( y2 , y1 , ndigits ) ;
vli_clear ( z , ndigits ) ;
z [ 0 ] = 1 ;
if ( p_initial_z )
vli_set ( z , p_initial_z , ndigits ) ;
apply_z ( x1 , y1 , z , curve_prime , ndigits ) ;
ecc_point_double_jacobian ( x1 , y1 , z , curve_prime , ndigits ) ;
apply_z ( x2 , y2 , z , curve_prime , ndigits ) ;
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
* Output P ' = ( x1 ' , y1 ' , Z3 ) , P + Q = ( x3 , y3 , Z3 )
* or P = > P ' , Q = > P + Q
*/
static void xycz_add ( u64 * x1 , u64 * y1 , u64 * x2 , u64 * y2 , u64 * curve_prime ,
unsigned int ndigits )
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
u64 t5 [ ndigits ] ;
/* t5 = x2 - x1 */
vli_mod_sub ( t5 , x2 , x1 , curve_prime , ndigits ) ;
/* t5 = (x2 - x1)^2 = A */
vli_mod_square_fast ( t5 , t5 , curve_prime , ndigits ) ;
/* t1 = x1*A = B */
vli_mod_mult_fast ( x1 , x1 , t5 , curve_prime , ndigits ) ;
/* t3 = x2*A = C */
vli_mod_mult_fast ( x2 , x2 , t5 , curve_prime , ndigits ) ;
/* t4 = y2 - y1 */
vli_mod_sub ( y2 , y2 , y1 , curve_prime , ndigits ) ;
/* t5 = (y2 - y1)^2 = D */
vli_mod_square_fast ( t5 , y2 , curve_prime , ndigits ) ;
/* t5 = D - B */
vli_mod_sub ( t5 , t5 , x1 , curve_prime , ndigits ) ;
/* t5 = D - B - C = x3 */
vli_mod_sub ( t5 , t5 , x2 , curve_prime , ndigits ) ;
/* t3 = C - B */
vli_mod_sub ( x2 , x2 , x1 , curve_prime , ndigits ) ;
/* t2 = y1*(C - B) */
vli_mod_mult_fast ( y1 , y1 , x2 , curve_prime , ndigits ) ;
/* t3 = B - x3 */
vli_mod_sub ( x2 , x1 , t5 , curve_prime , ndigits ) ;
/* t4 = (y2 - y1)*(B - x3) */
vli_mod_mult_fast ( y2 , y2 , x2 , curve_prime , ndigits ) ;
/* t4 = y3 */
vli_mod_sub ( y2 , y2 , y1 , curve_prime , ndigits ) ;
vli_set ( x2 , t5 , ndigits ) ;
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
* Output P + Q = ( x3 , y3 , Z3 ) , P - Q = ( x3 ' , y3 ' , Z3 )
* or P = > P - Q , Q = > P + Q
*/
static void xycz_add_c ( u64 * x1 , u64 * y1 , u64 * x2 , u64 * y2 , u64 * curve_prime ,
unsigned int ndigits )
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
u64 t5 [ ndigits ] ;
u64 t6 [ ndigits ] ;
u64 t7 [ ndigits ] ;
/* t5 = x2 - x1 */
vli_mod_sub ( t5 , x2 , x1 , curve_prime , ndigits ) ;
/* t5 = (x2 - x1)^2 = A */
vli_mod_square_fast ( t5 , t5 , curve_prime , ndigits ) ;
/* t1 = x1*A = B */
vli_mod_mult_fast ( x1 , x1 , t5 , curve_prime , ndigits ) ;
/* t3 = x2*A = C */
vli_mod_mult_fast ( x2 , x2 , t5 , curve_prime , ndigits ) ;
/* t4 = y2 + y1 */
vli_mod_add ( t5 , y2 , y1 , curve_prime , ndigits ) ;
/* t4 = y2 - y1 */
vli_mod_sub ( y2 , y2 , y1 , curve_prime , ndigits ) ;
/* t6 = C - B */
vli_mod_sub ( t6 , x2 , x1 , curve_prime , ndigits ) ;
/* t2 = y1 * (C - B) */
vli_mod_mult_fast ( y1 , y1 , t6 , curve_prime , ndigits ) ;
/* t6 = B + C */
vli_mod_add ( t6 , x1 , x2 , curve_prime , ndigits ) ;
/* t3 = (y2 - y1)^2 */
vli_mod_square_fast ( x2 , y2 , curve_prime , ndigits ) ;
/* t3 = x3 */
vli_mod_sub ( x2 , x2 , t6 , curve_prime , ndigits ) ;
/* t7 = B - x3 */
vli_mod_sub ( t7 , x1 , x2 , curve_prime , ndigits ) ;
/* t4 = (y2 - y1)*(B - x3) */
vli_mod_mult_fast ( y2 , y2 , t7 , curve_prime , ndigits ) ;
/* t4 = y3 */
vli_mod_sub ( y2 , y2 , y1 , curve_prime , ndigits ) ;
/* t7 = (y2 + y1)^2 = F */
vli_mod_square_fast ( t7 , t5 , curve_prime , ndigits ) ;
/* t7 = x3' */
vli_mod_sub ( t7 , t7 , t6 , curve_prime , ndigits ) ;
/* t6 = x3' - B */
vli_mod_sub ( t6 , t7 , x1 , curve_prime , ndigits ) ;
/* t6 = (y2 + y1)*(x3' - B) */
vli_mod_mult_fast ( t6 , t6 , t5 , curve_prime , ndigits ) ;
/* t2 = y3' */
vli_mod_sub ( y1 , t6 , y1 , curve_prime , ndigits ) ;
vli_set ( x1 , t7 , ndigits ) ;
}
static void ecc_point_mult ( struct ecc_point * result ,
const struct ecc_point * point , const u64 * scalar ,
u64 * initial_z , u64 * curve_prime ,
unsigned int ndigits )
{
/* R0 and R1 */
u64 rx [ 2 ] [ ndigits ] ;
u64 ry [ 2 ] [ ndigits ] ;
u64 z [ ndigits ] ;
int i , nb ;
int num_bits = vli_num_bits ( scalar , ndigits ) ;
vli_set ( rx [ 1 ] , point - > x , ndigits ) ;
vli_set ( ry [ 1 ] , point - > y , ndigits ) ;
xycz_initial_double ( rx [ 1 ] , ry [ 1 ] , rx [ 0 ] , ry [ 0 ] , initial_z , curve_prime ,
ndigits ) ;
for ( i = num_bits - 2 ; i > 0 ; i - - ) {
nb = ! vli_test_bit ( scalar , i ) ;
xycz_add_c ( rx [ 1 - nb ] , ry [ 1 - nb ] , rx [ nb ] , ry [ nb ] , curve_prime ,
ndigits ) ;
xycz_add ( rx [ nb ] , ry [ nb ] , rx [ 1 - nb ] , ry [ 1 - nb ] , curve_prime ,
ndigits ) ;
}
nb = ! vli_test_bit ( scalar , 0 ) ;
xycz_add_c ( rx [ 1 - nb ] , ry [ 1 - nb ] , rx [ nb ] , ry [ nb ] , curve_prime ,
ndigits ) ;
/* Find final 1/Z value. */
/* X1 - X0 */
vli_mod_sub ( z , rx [ 1 ] , rx [ 0 ] , curve_prime , ndigits ) ;
/* Yb * (X1 - X0) */
vli_mod_mult_fast ( z , z , ry [ 1 - nb ] , curve_prime , ndigits ) ;
/* xP * Yb * (X1 - X0) */
vli_mod_mult_fast ( z , z , point - > x , curve_prime , ndigits ) ;
/* 1 / (xP * Yb * (X1 - X0)) */
vli_mod_inv ( z , z , curve_prime , point - > ndigits ) ;
/* yP / (xP * Yb * (X1 - X0)) */
vli_mod_mult_fast ( z , z , point - > y , curve_prime , ndigits ) ;
/* Xb * yP / (xP * Yb * (X1 - X0)) */
vli_mod_mult_fast ( z , z , rx [ 1 - nb ] , curve_prime , ndigits ) ;
/* End 1/Z calculation */
xycz_add ( rx [ nb ] , ry [ nb ] , rx [ 1 - nb ] , ry [ 1 - nb ] , curve_prime , ndigits ) ;
apply_z ( rx [ 0 ] , ry [ 0 ] , z , curve_prime , ndigits ) ;
vli_set ( result - > x , rx [ 0 ] , ndigits ) ;
vli_set ( result - > y , ry [ 0 ] , ndigits ) ;
}
static inline void ecc_swap_digits ( const u64 * in , u64 * out ,
unsigned int ndigits )
{
int i ;
for ( i = 0 ; i < ndigits ; i + + )
out [ i ] = __swab64 ( in [ ndigits - 1 - i ] ) ;
}
int ecc_is_key_valid ( unsigned int curve_id , unsigned int ndigits ,
2017-05-25 10:18:05 +03:00
const u64 * private_key , unsigned int private_key_len )
2016-06-22 19:49:15 +03:00
{
int nbytes ;
const struct ecc_curve * curve = ecc_get_curve ( curve_id ) ;
if ( ! private_key )
return - EINVAL ;
nbytes = ndigits < < ECC_DIGITS_TO_BYTES_SHIFT ;
if ( private_key_len ! = nbytes )
return - EINVAL ;
2017-05-25 10:18:05 +03:00
if ( vli_is_zero ( private_key , ndigits ) )
2016-06-22 19:49:15 +03:00
return - EINVAL ;
/* Make sure the private key is in the range [1, n-1]. */
2017-05-25 10:18:05 +03:00
if ( vli_cmp ( curve - > n , private_key , ndigits ) ! = 1 )
2016-06-22 19:49:15 +03:00
return - EINVAL ;
return 0 ;
}
2017-05-30 17:52:48 +03:00
/*
* ECC private keys are generated using the method of extra random bits ,
* equivalent to that described in FIPS 186 - 4 , Appendix B .4 .1 .
*
* d = ( c mod ( n – 1 ) ) + 1 where c is a string of random bits , 64 bits longer
* than requested
* 0 < = c mod ( n - 1 ) < = n - 2 and implies that
* 1 < = d < = n - 1
*
* This method generates a private key uniformly distributed in the range
* [ 1 , n - 1 ] .
*/
int ecc_gen_privkey ( unsigned int curve_id , unsigned int ndigits , u64 * privkey )
{
const struct ecc_curve * curve = ecc_get_curve ( curve_id ) ;
u64 priv [ ndigits ] ;
unsigned int nbytes = ndigits < < ECC_DIGITS_TO_BYTES_SHIFT ;
unsigned int nbits = vli_num_bits ( curve - > n , ndigits ) ;
int err ;
/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
if ( nbits < 160 )
return - EINVAL ;
/*
* FIPS 186 - 4 recommends that the private key should be obtained from a
* RBG with a security strength equal to or greater than the security
* strength associated with N .
*
* The maximum security strength identified by NIST SP800 - 57 pt1r4 for
* ECC is 256 ( N > = 512 ) .
*
* This condition is met by the default RNG because it selects a favored
* DRBG with a security strength of 256.
*/
if ( crypto_get_default_rng ( ) )
2017-11-12 17:24:32 +03:00
return - EFAULT ;
2017-05-30 17:52:48 +03:00
err = crypto_rng_get_bytes ( crypto_default_rng , ( u8 * ) priv , nbytes ) ;
crypto_put_default_rng ( ) ;
if ( err )
return err ;
if ( vli_is_zero ( priv , ndigits ) )
return - EINVAL ;
/* Make sure the private key is in the range [1, n-1]. */
if ( vli_cmp ( curve - > n , priv , ndigits ) ! = 1 )
return - EINVAL ;
ecc_swap_digits ( priv , privkey , ndigits ) ;
return 0 ;
}
2017-05-30 15:37:56 +03:00
int ecc_make_pub_key ( unsigned int curve_id , unsigned int ndigits ,
const u64 * private_key , u64 * public_key )
2016-06-22 19:49:15 +03:00
{
int ret = 0 ;
struct ecc_point * pk ;
u64 priv [ ndigits ] ;
const struct ecc_curve * curve = ecc_get_curve ( curve_id ) ;
if ( ! private_key | | ! curve ) {
ret = - EINVAL ;
goto out ;
}
2017-05-25 10:18:05 +03:00
ecc_swap_digits ( private_key , priv , ndigits ) ;
2016-06-22 19:49:15 +03:00
pk = ecc_alloc_point ( ndigits ) ;
if ( ! pk ) {
ret = - ENOMEM ;
goto out ;
}
ecc_point_mult ( pk , & curve - > g , priv , NULL , curve - > p , ndigits ) ;
if ( ecc_point_is_zero ( pk ) ) {
ret = - EAGAIN ;
goto err_free_point ;
}
2017-05-25 10:18:05 +03:00
ecc_swap_digits ( pk - > x , public_key , ndigits ) ;
ecc_swap_digits ( pk - > y , & public_key [ ndigits ] , ndigits ) ;
2016-06-22 19:49:15 +03:00
err_free_point :
ecc_free_point ( pk ) ;
out :
return ret ;
}
2016-06-24 09:20:22 +03:00
int crypto_ecdh_shared_secret ( unsigned int curve_id , unsigned int ndigits ,
2017-05-25 10:18:05 +03:00
const u64 * private_key , const u64 * public_key ,
u64 * secret )
2016-06-22 19:49:15 +03:00
{
int ret = 0 ;
struct ecc_point * product , * pk ;
2018-03-09 00:57:02 +03:00
u64 * priv , * rand_z ;
2016-06-22 19:49:15 +03:00
const struct ecc_curve * curve = ecc_get_curve ( curve_id ) ;
if ( ! private_key | | ! public_key | | ! curve ) {
ret = - EINVAL ;
goto out ;
}
2018-03-09 00:57:02 +03:00
priv = kmalloc_array ( ndigits , sizeof ( * priv ) , GFP_KERNEL ) ;
if ( ! priv ) {
ret = - ENOMEM ;
goto out ;
}
2016-06-22 19:49:15 +03:00
2018-03-09 00:57:02 +03:00
rand_z = kmalloc_array ( ndigits , sizeof ( * rand_z ) , GFP_KERNEL ) ;
if ( ! rand_z ) {
ret = - ENOMEM ;
goto kfree_out ;
}
2016-06-22 19:49:15 +03:00
pk = ecc_alloc_point ( ndigits ) ;
if ( ! pk ) {
ret = - ENOMEM ;
2018-03-09 00:57:02 +03:00
goto kfree_out ;
2016-06-22 19:49:15 +03:00
}
product = ecc_alloc_point ( ndigits ) ;
if ( ! product ) {
ret = - ENOMEM ;
goto err_alloc_product ;
}
2018-03-09 00:57:02 +03:00
get_random_bytes ( rand_z , ndigits < < ECC_DIGITS_TO_BYTES_SHIFT ) ;
2017-05-25 10:18:05 +03:00
ecc_swap_digits ( public_key , pk - > x , ndigits ) ;
ecc_swap_digits ( & public_key [ ndigits ] , pk - > y , ndigits ) ;
ecc_swap_digits ( private_key , priv , ndigits ) ;
2016-06-22 19:49:15 +03:00
ecc_point_mult ( product , pk , priv , rand_z , curve - > p , ndigits ) ;
2017-05-25 10:18:05 +03:00
ecc_swap_digits ( product - > x , secret , ndigits ) ;
2016-06-22 19:49:15 +03:00
if ( ecc_point_is_zero ( product ) )
ret = - EFAULT ;
ecc_free_point ( product ) ;
err_alloc_product :
ecc_free_point ( pk ) ;
2018-03-09 00:57:02 +03:00
kfree_out :
kzfree ( priv ) ;
kzfree ( rand_z ) ;
2016-06-22 19:49:15 +03:00
out :
return ret ;
}