linux/scripts/link-vmlinux.sh

310 lines
7.0 KiB
Bash
Raw Normal View History

#!/bin/sh
#
# link vmlinux
#
# vmlinux is linked from the objects selected by $(KBUILD_VMLINUX_INIT) and
# $(KBUILD_VMLINUX_MAIN). Most are built-in.o files from top-level directories
# in the kernel tree, others are specified in arch/$(ARCH)/Makefile.
# Ordering when linking is important, and $(KBUILD_VMLINUX_INIT) must be first.
#
# vmlinux
# ^
# |
# +-< $(KBUILD_VMLINUX_INIT)
# | +--< init/version.o + more
# |
# +--< $(KBUILD_VMLINUX_MAIN)
# | +--< drivers/built-in.o mm/built-in.o + more
# |
# +-< ${kallsymso} (see description in KALLSYMS section)
#
# vmlinux version (uname -v) cannot be updated during normal
# descending-into-subdirs phase since we do not yet know if we need to
# update vmlinux.
# Therefore this step is delayed until just before final link of vmlinux.
#
# System.map is generated to document addresses of all kernel symbols
# Error out on error
set -e
# Nice output in kbuild format
# Will be supressed by "make -s"
info()
{
if [ "${quiet}" != "silent_" ]; then
printf " %-7s %s\n" ${1} ${2}
fi
}
kbuild: allow architectures to use thin archives instead of ld -r ld -r is an incremental link used to create built-in.o files in build subdirectories. It produces relocatable object files containing all its input files, and these are are then pulled together and relocated in the final link. Aside from the bloat, this constrains the final link relocations, which has bitten large powerpc builds with unresolvable relocations in the final link. Alan Modra has recommended the kernel use thin archives for linking. This is an alternative and means that the linker has more information available to it when it links the kernel. This patch enables a config option architectures can select, which causes all built-in.o files to be built as thin archives. built-in.o files in subdirectories do not get symbol table or index attached, which improves speed and size. The final link pass creates a built-in.o archive in the root output directory which includes the symbol table and index. The linker then uses takes this file to link. The --whole-archive linker option is required, because the linker now has visibility to every individual object file, and it will otherwise just completely avoid including those without external references (consider a file with EXPORT_SYMBOL or initcall or hardware exceptions as its only entry points). The traditional built works "by luck" as built-in.o files are large enough that they're going to get external references. However this optimisation is unpredictable for the kernel (due to above external references), ineffective at culling unused, and costly because the .o files have to be searched for references. Superior alternatives for link-time culling should be used instead. Build characteristics for inclink vs thinarc, on a small powerpc64le pseries VM with a modest .config: inclink thinarc sizes vmlinux 15 618 680 15 625 028 sum of all built-in.o 56 091 808 1 054 334 sum excluding root built-in.o 151 430 find -name built-in.o | xargs rm ; time make vmlinux real 22.772s 21.143s user 13.280s 13.430s sys 4.310s 2.750s - Final kernel pulled in only about 6K more, which shows how ineffective the object file culling is. - Build performance looks improved due to less pagecache activity. On IO constrained systems it could be a bigger win. - Build size saving is significant. Side note, the toochain understands archives, so there's some tricks, $ ar t built-in.o # list all files you linked with $ size built-in.o # and their sizes $ objdump -d built-in.o # disassembly (unrelocated) with filenames Implementation by sfr, minor tweaks by npiggin. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 22:29:19 +10:00
# Thin archive build here makes a final archive with
# symbol table and indexes from vmlinux objects, which can be
# used as input to linker.
#
# Traditional incremental style of link does not require this step
#
# built-in.o output file
#
archive_builtin()
{
if [ -n "${CONFIG_THIN_ARCHIVES}" ]; then
info AR built-in.o
rm -f built-in.o;
${AR} rcsT${KBUILD_ARFLAGS} built-in.o \
${KBUILD_VMLINUX_INIT} \
${KBUILD_VMLINUX_MAIN}
fi
}
# Link of vmlinux.o used for section mismatch analysis
# ${1} output file
modpost_link()
{
kbuild: allow architectures to use thin archives instead of ld -r ld -r is an incremental link used to create built-in.o files in build subdirectories. It produces relocatable object files containing all its input files, and these are are then pulled together and relocated in the final link. Aside from the bloat, this constrains the final link relocations, which has bitten large powerpc builds with unresolvable relocations in the final link. Alan Modra has recommended the kernel use thin archives for linking. This is an alternative and means that the linker has more information available to it when it links the kernel. This patch enables a config option architectures can select, which causes all built-in.o files to be built as thin archives. built-in.o files in subdirectories do not get symbol table or index attached, which improves speed and size. The final link pass creates a built-in.o archive in the root output directory which includes the symbol table and index. The linker then uses takes this file to link. The --whole-archive linker option is required, because the linker now has visibility to every individual object file, and it will otherwise just completely avoid including those without external references (consider a file with EXPORT_SYMBOL or initcall or hardware exceptions as its only entry points). The traditional built works "by luck" as built-in.o files are large enough that they're going to get external references. However this optimisation is unpredictable for the kernel (due to above external references), ineffective at culling unused, and costly because the .o files have to be searched for references. Superior alternatives for link-time culling should be used instead. Build characteristics for inclink vs thinarc, on a small powerpc64le pseries VM with a modest .config: inclink thinarc sizes vmlinux 15 618 680 15 625 028 sum of all built-in.o 56 091 808 1 054 334 sum excluding root built-in.o 151 430 find -name built-in.o | xargs rm ; time make vmlinux real 22.772s 21.143s user 13.280s 13.430s sys 4.310s 2.750s - Final kernel pulled in only about 6K more, which shows how ineffective the object file culling is. - Build performance looks improved due to less pagecache activity. On IO constrained systems it could be a bigger win. - Build size saving is significant. Side note, the toochain understands archives, so there's some tricks, $ ar t built-in.o # list all files you linked with $ size built-in.o # and their sizes $ objdump -d built-in.o # disassembly (unrelocated) with filenames Implementation by sfr, minor tweaks by npiggin. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 22:29:19 +10:00
local objects
if [ -n "${CONFIG_THIN_ARCHIVES}" ]; then
objects="--whole-archive built-in.o"
else
objects="${KBUILD_VMLINUX_INIT} \
--start-group \
${KBUILD_VMLINUX_MAIN} \
--end-group"
fi
${LD} ${LDFLAGS} -r -o ${1} ${objects}
}
# Link of vmlinux
# ${1} - optional extra .o files
# ${2} - output file
vmlinux_link()
{
local lds="${objtree}/${KBUILD_LDS}"
kbuild: allow architectures to use thin archives instead of ld -r ld -r is an incremental link used to create built-in.o files in build subdirectories. It produces relocatable object files containing all its input files, and these are are then pulled together and relocated in the final link. Aside from the bloat, this constrains the final link relocations, which has bitten large powerpc builds with unresolvable relocations in the final link. Alan Modra has recommended the kernel use thin archives for linking. This is an alternative and means that the linker has more information available to it when it links the kernel. This patch enables a config option architectures can select, which causes all built-in.o files to be built as thin archives. built-in.o files in subdirectories do not get symbol table or index attached, which improves speed and size. The final link pass creates a built-in.o archive in the root output directory which includes the symbol table and index. The linker then uses takes this file to link. The --whole-archive linker option is required, because the linker now has visibility to every individual object file, and it will otherwise just completely avoid including those without external references (consider a file with EXPORT_SYMBOL or initcall or hardware exceptions as its only entry points). The traditional built works "by luck" as built-in.o files are large enough that they're going to get external references. However this optimisation is unpredictable for the kernel (due to above external references), ineffective at culling unused, and costly because the .o files have to be searched for references. Superior alternatives for link-time culling should be used instead. Build characteristics for inclink vs thinarc, on a small powerpc64le pseries VM with a modest .config: inclink thinarc sizes vmlinux 15 618 680 15 625 028 sum of all built-in.o 56 091 808 1 054 334 sum excluding root built-in.o 151 430 find -name built-in.o | xargs rm ; time make vmlinux real 22.772s 21.143s user 13.280s 13.430s sys 4.310s 2.750s - Final kernel pulled in only about 6K more, which shows how ineffective the object file culling is. - Build performance looks improved due to less pagecache activity. On IO constrained systems it could be a bigger win. - Build size saving is significant. Side note, the toochain understands archives, so there's some tricks, $ ar t built-in.o # list all files you linked with $ size built-in.o # and their sizes $ objdump -d built-in.o # disassembly (unrelocated) with filenames Implementation by sfr, minor tweaks by npiggin. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 22:29:19 +10:00
local objects
if [ "${SRCARCH}" != "um" ]; then
kbuild: allow architectures to use thin archives instead of ld -r ld -r is an incremental link used to create built-in.o files in build subdirectories. It produces relocatable object files containing all its input files, and these are are then pulled together and relocated in the final link. Aside from the bloat, this constrains the final link relocations, which has bitten large powerpc builds with unresolvable relocations in the final link. Alan Modra has recommended the kernel use thin archives for linking. This is an alternative and means that the linker has more information available to it when it links the kernel. This patch enables a config option architectures can select, which causes all built-in.o files to be built as thin archives. built-in.o files in subdirectories do not get symbol table or index attached, which improves speed and size. The final link pass creates a built-in.o archive in the root output directory which includes the symbol table and index. The linker then uses takes this file to link. The --whole-archive linker option is required, because the linker now has visibility to every individual object file, and it will otherwise just completely avoid including those without external references (consider a file with EXPORT_SYMBOL or initcall or hardware exceptions as its only entry points). The traditional built works "by luck" as built-in.o files are large enough that they're going to get external references. However this optimisation is unpredictable for the kernel (due to above external references), ineffective at culling unused, and costly because the .o files have to be searched for references. Superior alternatives for link-time culling should be used instead. Build characteristics for inclink vs thinarc, on a small powerpc64le pseries VM with a modest .config: inclink thinarc sizes vmlinux 15 618 680 15 625 028 sum of all built-in.o 56 091 808 1 054 334 sum excluding root built-in.o 151 430 find -name built-in.o | xargs rm ; time make vmlinux real 22.772s 21.143s user 13.280s 13.430s sys 4.310s 2.750s - Final kernel pulled in only about 6K more, which shows how ineffective the object file culling is. - Build performance looks improved due to less pagecache activity. On IO constrained systems it could be a bigger win. - Build size saving is significant. Side note, the toochain understands archives, so there's some tricks, $ ar t built-in.o # list all files you linked with $ size built-in.o # and their sizes $ objdump -d built-in.o # disassembly (unrelocated) with filenames Implementation by sfr, minor tweaks by npiggin. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 22:29:19 +10:00
if [ -n "${CONFIG_THIN_ARCHIVES}" ]; then
objects="--whole-archive built-in.o ${1}"
else
objects="${KBUILD_VMLINUX_INIT} \
--start-group \
${KBUILD_VMLINUX_MAIN} \
--end-group \
${1}"
fi
${LD} ${LDFLAGS} ${LDFLAGS_vmlinux} -o ${2} \
-T ${lds} ${objects}
else
kbuild: allow architectures to use thin archives instead of ld -r ld -r is an incremental link used to create built-in.o files in build subdirectories. It produces relocatable object files containing all its input files, and these are are then pulled together and relocated in the final link. Aside from the bloat, this constrains the final link relocations, which has bitten large powerpc builds with unresolvable relocations in the final link. Alan Modra has recommended the kernel use thin archives for linking. This is an alternative and means that the linker has more information available to it when it links the kernel. This patch enables a config option architectures can select, which causes all built-in.o files to be built as thin archives. built-in.o files in subdirectories do not get symbol table or index attached, which improves speed and size. The final link pass creates a built-in.o archive in the root output directory which includes the symbol table and index. The linker then uses takes this file to link. The --whole-archive linker option is required, because the linker now has visibility to every individual object file, and it will otherwise just completely avoid including those without external references (consider a file with EXPORT_SYMBOL or initcall or hardware exceptions as its only entry points). The traditional built works "by luck" as built-in.o files are large enough that they're going to get external references. However this optimisation is unpredictable for the kernel (due to above external references), ineffective at culling unused, and costly because the .o files have to be searched for references. Superior alternatives for link-time culling should be used instead. Build characteristics for inclink vs thinarc, on a small powerpc64le pseries VM with a modest .config: inclink thinarc sizes vmlinux 15 618 680 15 625 028 sum of all built-in.o 56 091 808 1 054 334 sum excluding root built-in.o 151 430 find -name built-in.o | xargs rm ; time make vmlinux real 22.772s 21.143s user 13.280s 13.430s sys 4.310s 2.750s - Final kernel pulled in only about 6K more, which shows how ineffective the object file culling is. - Build performance looks improved due to less pagecache activity. On IO constrained systems it could be a bigger win. - Build size saving is significant. Side note, the toochain understands archives, so there's some tricks, $ ar t built-in.o # list all files you linked with $ size built-in.o # and their sizes $ objdump -d built-in.o # disassembly (unrelocated) with filenames Implementation by sfr, minor tweaks by npiggin. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 22:29:19 +10:00
if [ -n "${CONFIG_THIN_ARCHIVES}" ]; then
objects="-Wl,--whole-archive built-in.o ${1}"
else
objects="${KBUILD_VMLINUX_INIT} \
-Wl,--start-group \
${KBUILD_VMLINUX_MAIN} \
-Wl,--end-group \
${1}"
fi
${CC} ${CFLAGS_vmlinux} -o ${2} \
-Wl,-T,${lds} \
${objects} \
-lutil -lrt -lpthread
rm -f linux
fi
}
# Create ${2} .o file with all symbols from the ${1} object file
kallsyms()
{
info KSYM ${2}
local kallsymopt;
if [ -n "${CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX}" ]; then
kallsymopt="${kallsymopt} --symbol-prefix=_"
fi
if [ -n "${CONFIG_KALLSYMS_ALL}" ]; then
kallsymopt="${kallsymopt} --all-symbols"
fi
if [ -n "${CONFIG_KALLSYMS_ABSOLUTE_PERCPU}" ]; then
kallsyms: fix percpu vars on x86-64 with relocation. x86-64 has a problem: per-cpu variables are actually represented by their absolute offsets within the per-cpu area, but the symbols are not emitted as absolute. Thus kallsyms naively creates them as offsets from _text, meaning their values change if the kernel is relocated (especially noticeable with CONFIG_RANDOMIZE_BASE): $ egrep ' (gdt_|_(stext|_per_cpu_))' /root/kallsyms.nokaslr 0000000000000000 D __per_cpu_start 0000000000004000 D gdt_page 0000000000014280 D __per_cpu_end ffffffff810001c8 T _stext ffffffff81ee53c0 D __per_cpu_offset $ egrep ' (gdt_|_(stext|_per_cpu_))' /root/kallsyms.kaslr1 000000001f200000 D __per_cpu_start 000000001f204000 D gdt_page 000000001f214280 D __per_cpu_end ffffffffa02001c8 T _stext ffffffffa10e53c0 D __per_cpu_offset Making them absolute symbols is the Right Thing, but requires fixes to the relocs tool. So for the moment, we add a --absolute-percpu option which makes them absolute from a kallsyms perspective: $ egrep ' (gdt_|_(stext|_per_cpu_))' /proc/kallsyms # no KASLR 0000000000000000 A __per_cpu_start 000000000000a000 A gdt_page 0000000000013040 A __per_cpu_end ffffffff802001c8 T _stext ffffffff8099b180 D __per_cpu_offset ffffffff809a3000 D __per_cpu_load $ egrep ' (gdt_|_(stext|_per_cpu_))' /proc/kallsyms # With KASLR 0000000000000000 A __per_cpu_start 000000000000a000 A gdt_page 0000000000013040 A __per_cpu_end ffffffff89c001c8 T _stext ffffffff8a39d180 D __per_cpu_offset ffffffff8a3a5000 D __per_cpu_load Based-on-the-original-screenplay-by: Andy Honig <ahonig@google.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Acked-by: Kees Cook <keescook@chromium.org>
2014-03-17 14:05:46 +10:30
kallsymopt="${kallsymopt} --absolute-percpu"
fi
kallsyms: add support for relative offsets in kallsyms address table Similar to how relative extables are implemented, it is possible to emit the kallsyms table in such a way that it contains offsets relative to some anchor point in the kernel image rather than absolute addresses. On 64-bit architectures, it cuts the size of the kallsyms address table in half, since offsets between kernel symbols can typically be expressed in 32 bits. This saves several hundreds of kilobytes of permanent .rodata on average. In addition, the kallsyms address table is no longer subject to dynamic relocation when CONFIG_RELOCATABLE is in effect, so the relocation work done after decompression now doesn't have to do relocation updates for all these values. This saves up to 24 bytes (i.e., the size of a ELF64 RELA relocation table entry) per value, which easily adds up to a couple of megabytes of uncompressed __init data on ppc64 or arm64. Even if these relocation entries typically compress well, the combined size reduction of 2.8 MB uncompressed for a ppc64_defconfig build (of which 2.4 MB is __init data) results in a ~500 KB space saving in the compressed image. Since it is useful for some architectures (like x86) to retain the ability to emit absolute values as well, this patch also adds support for capturing both absolute and relative values when KALLSYMS_ABSOLUTE_PERCPU is in effect, by emitting absolute per-cpu addresses as positive 32-bit values, and addresses relative to the lowest encountered relative symbol as negative values, which are subtracted from the runtime address of this base symbol to produce the actual address. Support for the above is enabled by default for all architectures except IA-64 and Tile-GX, whose symbols are too far apart to capture in this manner. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Guenter Roeck <linux@roeck-us.net> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 14:58:19 -07:00
if [ -n "${CONFIG_KALLSYMS_BASE_RELATIVE}" ]; then
kallsymopt="${kallsymopt} --base-relative"
fi
local aflags="${KBUILD_AFLAGS} ${KBUILD_AFLAGS_KERNEL} \
${NOSTDINC_FLAGS} ${LINUXINCLUDE} ${KBUILD_CPPFLAGS}"
local afile="`basename ${2} .o`.S"
${NM} -n ${1} | scripts/kallsyms ${kallsymopt} > ${afile}
${CC} ${aflags} -c -o ${2} ${afile}
}
# Create map file with all symbols from ${1}
# See mksymap for additional details
mksysmap()
{
${CONFIG_SHELL} "${srctree}/scripts/mksysmap" ${1} ${2}
}
sortextable()
{
${objtree}/scripts/sortextable ${1}
}
# Delete output files in case of error
cleanup()
{
rm -f .old_version
rm -f .tmp_System.map
rm -f .tmp_kallsyms*
rm -f .tmp_version
rm -f .tmp_vmlinux*
kbuild: allow architectures to use thin archives instead of ld -r ld -r is an incremental link used to create built-in.o files in build subdirectories. It produces relocatable object files containing all its input files, and these are are then pulled together and relocated in the final link. Aside from the bloat, this constrains the final link relocations, which has bitten large powerpc builds with unresolvable relocations in the final link. Alan Modra has recommended the kernel use thin archives for linking. This is an alternative and means that the linker has more information available to it when it links the kernel. This patch enables a config option architectures can select, which causes all built-in.o files to be built as thin archives. built-in.o files in subdirectories do not get symbol table or index attached, which improves speed and size. The final link pass creates a built-in.o archive in the root output directory which includes the symbol table and index. The linker then uses takes this file to link. The --whole-archive linker option is required, because the linker now has visibility to every individual object file, and it will otherwise just completely avoid including those without external references (consider a file with EXPORT_SYMBOL or initcall or hardware exceptions as its only entry points). The traditional built works "by luck" as built-in.o files are large enough that they're going to get external references. However this optimisation is unpredictable for the kernel (due to above external references), ineffective at culling unused, and costly because the .o files have to be searched for references. Superior alternatives for link-time culling should be used instead. Build characteristics for inclink vs thinarc, on a small powerpc64le pseries VM with a modest .config: inclink thinarc sizes vmlinux 15 618 680 15 625 028 sum of all built-in.o 56 091 808 1 054 334 sum excluding root built-in.o 151 430 find -name built-in.o | xargs rm ; time make vmlinux real 22.772s 21.143s user 13.280s 13.430s sys 4.310s 2.750s - Final kernel pulled in only about 6K more, which shows how ineffective the object file culling is. - Build performance looks improved due to less pagecache activity. On IO constrained systems it could be a bigger win. - Build size saving is significant. Side note, the toochain understands archives, so there's some tricks, $ ar t built-in.o # list all files you linked with $ size built-in.o # and their sizes $ objdump -d built-in.o # disassembly (unrelocated) with filenames Implementation by sfr, minor tweaks by npiggin. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 22:29:19 +10:00
rm -f built-in.o
rm -f System.map
rm -f vmlinux
rm -f vmlinux.o
}
on_exit()
{
if [ $? -ne 0 ]; then
cleanup
fi
}
trap on_exit EXIT
on_signals()
{
exit 1
}
trap on_signals HUP INT QUIT TERM
#
#
# Use "make V=1" to debug this script
case "${KBUILD_VERBOSE}" in
*1*)
set -x
;;
esac
if [ "$1" = "clean" ]; then
cleanup
exit 0
fi
# We need access to CONFIG_ symbols
case "${KCONFIG_CONFIG}" in
*/*)
. "${KCONFIG_CONFIG}"
;;
*)
# Force using a file from the current directory
. "./${KCONFIG_CONFIG}"
esac
# Update version
info GEN .version
if [ ! -r .version ]; then
rm -f .version;
echo 1 >.version;
else
mv .version .old_version;
expr 0$(cat .old_version) + 1 >.version;
fi;
# final build of init/
GCC plugin infrastructure This patch allows to build the whole kernel with GCC plugins. It was ported from grsecurity/PaX. The infrastructure supports building out-of-tree modules and building in a separate directory. Cross-compilation is supported too. Currently the x86, arm, arm64 and uml architectures enable plugins. The directory of the gcc plugins is scripts/gcc-plugins. You can use a file or a directory there. The plugins compile with these options: * -fno-rtti: gcc is compiled with this option so the plugins must use it too * -fno-exceptions: this is inherited from gcc too * -fasynchronous-unwind-tables: this is inherited from gcc too * -ggdb: it is useful for debugging a plugin (better backtrace on internal errors) * -Wno-narrowing: to suppress warnings from gcc headers (ipa-utils.h) * -Wno-unused-variable: to suppress warnings from gcc headers (gcc_version variable, plugin-version.h) The infrastructure introduces a new Makefile target called gcc-plugins. It supports all gcc versions from 4.5 to 6.0. The scripts/gcc-plugin.sh script chooses the proper host compiler (gcc-4.7 can be built by either gcc or g++). This script also checks the availability of the included headers in scripts/gcc-plugins/gcc-common.h. The gcc-common.h header contains frequently included headers for GCC plugins and it has a compatibility layer for the supported gcc versions. The gcc-generate-*-pass.h headers automatically generate the registration structures for GIMPLE, SIMPLE_IPA, IPA and RTL passes. Note that 'make clean' keeps the *.so files (only the distclean or mrproper targets clean all) because they are needed for out-of-tree modules. Based on work created by the PaX Team. Signed-off-by: Emese Revfy <re.emese@gmail.com> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Michal Marek <mmarek@suse.com>
2016-05-24 00:09:38 +02:00
${MAKE} -f "${srctree}/scripts/Makefile.build" obj=init GCC_PLUGINS_CFLAGS="${GCC_PLUGINS_CFLAGS}"
archive_builtin
#link vmlinux.o
info LD vmlinux.o
modpost_link vmlinux.o
# modpost vmlinux.o to check for section mismatches
${MAKE} -f "${srctree}/scripts/Makefile.modpost" vmlinux.o
kallsymso=""
kallsyms_vmlinux=""
if [ -n "${CONFIG_KALLSYMS}" ]; then
# kallsyms support
# Generate section listing all symbols and add it into vmlinux
# It's a three step process:
# 1) Link .tmp_vmlinux1 so it has all symbols and sections,
# but __kallsyms is empty.
# Running kallsyms on that gives us .tmp_kallsyms1.o with
# the right size
# 2) Link .tmp_vmlinux2 so it now has a __kallsyms section of
# the right size, but due to the added section, some
# addresses have shifted.
# From here, we generate a correct .tmp_kallsyms2.o
# 3) That link may have expanded the kernel image enough that
# more linker branch stubs / trampolines had to be added, which
# introduces new names, which further expands kallsyms. Do another
# pass if that is the case. In theory it's possible this results
# in even more stubs, but unlikely.
# KALLSYMS_EXTRA_PASS=1 may also used to debug or work around
# other bugs.
# 4) The correct ${kallsymso} is linked into the final vmlinux.
#
# a) Verify that the System.map from vmlinux matches the map from
# ${kallsymso}.
kallsymso=.tmp_kallsyms2.o
kallsyms_vmlinux=.tmp_vmlinux2
# step 1
vmlinux_link "" .tmp_vmlinux1
kallsyms .tmp_vmlinux1 .tmp_kallsyms1.o
# step 2
vmlinux_link .tmp_kallsyms1.o .tmp_vmlinux2
kallsyms .tmp_vmlinux2 .tmp_kallsyms2.o
# step 3
size1=$(stat -c "%s" .tmp_kallsyms1.o)
size2=$(stat -c "%s" .tmp_kallsyms2.o)
if [ $size1 -ne $size2 ] || [ -n "${KALLSYMS_EXTRA_PASS}" ]; then
kallsymso=.tmp_kallsyms3.o
kallsyms_vmlinux=.tmp_vmlinux3
vmlinux_link .tmp_kallsyms2.o .tmp_vmlinux3
kallsyms .tmp_vmlinux3 .tmp_kallsyms3.o
fi
fi
info LD vmlinux
vmlinux_link "${kallsymso}" vmlinux
if [ -n "${CONFIG_BUILDTIME_EXTABLE_SORT}" ]; then
info SORTEX vmlinux
sortextable vmlinux
fi
info SYSMAP System.map
mksysmap vmlinux System.map
# step a (see comment above)
if [ -n "${CONFIG_KALLSYMS}" ]; then
mksysmap ${kallsyms_vmlinux} .tmp_System.map
if ! cmp -s System.map .tmp_System.map; then
echo >&2 Inconsistent kallsyms data
echo >&2 Try "make KALLSYMS_EXTRA_PASS=1" as a workaround
exit 1
fi
fi
# We made a new kernel - delete old version file
rm -f .old_version