linux/drivers/cpufreq/scmi-cpufreq.c

419 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Power Interface (SCMI) based CPUFreq Interface driver
*
* Copyright (C) 2018-2021 ARM Ltd.
* Sudeep Holla <sudeep.holla@arm.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk-provider.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/energy_model.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/scmi_protocol.h>
#include <linux/types.h>
PM: EM: convert power field to micro-Watts precision and align drivers The milli-Watts precision causes rounding errors while calculating efficiency cost for each OPP. This is especially visible in the 'simple' Energy Model (EM), where the power for each OPP is provided from OPP framework. This can cause some OPPs to be marked inefficient, while using micro-Watts precision that might not happen. Update all EM users which access 'power' field and assume the value is in milli-Watts. Solve also an issue with potential overflow in calculation of energy estimation on 32bit machine. It's needed now since the power value (thus the 'cost' as well) are higher. Example calculation which shows the rounding error and impact: power = 'dyn-power-coeff' * volt_mV * volt_mV * freq_MHz power_a_uW = (100 * 600mW * 600mW * 500MHz) / 10^6 = 18000 power_a_mW = (100 * 600mW * 600mW * 500MHz) / 10^9 = 18 power_b_uW = (100 * 605mW * 605mW * 600MHz) / 10^6 = 21961 power_b_mW = (100 * 605mW * 605mW * 600MHz) / 10^9 = 21 max_freq = 2000MHz cost_a_mW = 18 * 2000MHz/500MHz = 72 cost_a_uW = 18000 * 2000MHz/500MHz = 72000 cost_b_mW = 21 * 2000MHz/600MHz = 70 // <- artificially better cost_b_uW = 21961 * 2000MHz/600MHz = 73203 The 'cost_b_mW' (which is based on old milli-Watts) is misleadingly better that the 'cost_b_uW' (this patch uses micro-Watts) and such would have impact on the 'inefficient OPPs' information in the Cpufreq framework. This patch set removes the rounding issue. Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-07-07 08:15:52 +01:00
#include <linux/units.h>
struct scmi_data {
int domain_id;
int nr_opp;
struct device *cpu_dev;
cpumask_var_t opp_shared_cpus;
};
static struct scmi_protocol_handle *ph;
static const struct scmi_perf_proto_ops *perf_ops;
static struct cpufreq_driver scmi_cpufreq_driver;
static unsigned int scmi_cpufreq_get_rate(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
struct scmi_data *priv = policy->driver_data;
unsigned long rate;
int ret;
ret = perf_ops->freq_get(ph, priv->domain_id, &rate, false);
if (ret)
return 0;
return rate / 1000;
}
/*
* perf_ops->freq_set is not a synchronous, the actual OPP change will
* happen asynchronously and can get notified if the events are
* subscribed for by the SCMI firmware
*/
static int
scmi_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int index)
{
struct scmi_data *priv = policy->driver_data;
u64 freq = policy->freq_table[index].frequency;
return perf_ops->freq_set(ph, priv->domain_id, freq * 1000, false);
}
static unsigned int scmi_cpufreq_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct scmi_data *priv = policy->driver_data;
if (!perf_ops->freq_set(ph, priv->domain_id,
cpufreq: move invariance setter calls in cpufreq core To properly scale its per-entity load-tracking signals, the task scheduler needs to be given a frequency scale factor, i.e. some image of the current frequency the CPU is running at. Currently, this scale can be computed either by using counters (APERF/MPERF on x86, AMU on arm64), or by piggy-backing on the frequency selection done by cpufreq. For the latter, drivers have to explicitly set the scale factor themselves, despite it being purely boiler-plate code: the required information depends entirely on the kind of frequency switch callback implemented by the driver, i.e. either of: target_index(), target(), fast_switch() and setpolicy(). The fitness of those callbacks with regard to driving the Frequency Invariance Engine (FIE) is studied below: target_index() ============== Documentation states that the chosen frequency "must be determined by freq_table[index].frequency". It isn't clear if it *has* to be that frequency, or if it can use that frequency value to do some computation that ultimately leads to a different frequency selection. All drivers go for the former, while the vexpress-spc-cpufreq has an atypical implementation which is handled separately. Therefore, the hook works on the assumption the core can use freq_table[index].frequency. target() ======= This has been flagged as deprecated since: commit 9c0ebcf78fde ("cpufreq: Implement light weight ->target_index() routine") It also doesn't have that many users: gx-suspmod.c:439: .target = cpufreq_gx_target, s3c24xx-cpufreq.c:428: .target = s3c_cpufreq_target, intel_pstate.c:2528: .target = intel_cpufreq_target, cppc_cpufreq.c:401: .target = cppc_cpufreq_set_target, cpufreq-nforce2.c:371: .target = nforce2_target, sh-cpufreq.c:163: .target = sh_cpufreq_target, pcc-cpufreq.c:573: .target = pcc_cpufreq_target, Similarly to the path taken for target_index() calls in the cpufreq core during a frequency change, all of the drivers above will mark the end of a frequency change by a call to cpufreq_freq_transition_end(). Therefore, cpufreq_freq_transition_end() can be used as the location for the arch_set_freq_scale() call to potentially inform the scheduler of the frequency change. This change maintains the previous functionality for the drivers that implement the target_index() callback, while also adding support for the few drivers that implement the deprecated target() callback. fast_switch() ============= This callback *has* to return the frequency that was selected. setpolicy() =========== This callback does not have any designated way of informing what was the end choice. But there are only two drivers using setpolicy(), and none of them have current FIE support: drivers/cpufreq/longrun.c:281: .setpolicy = longrun_set_policy, drivers/cpufreq/intel_pstate.c:2215: .setpolicy = intel_pstate_set_policy, The intel_pstate is known to use counter-driven frequency invariance. Conclusion ========== Given that the significant majority of current FIE enabled drivers use callbacks that lend themselves to triggering the setting of the FIE scale factor in a generic way, move the invariance setter calls to cpufreq core. As a result of setting the frequency scale factor in cpufreq core, after callbacks that lend themselves to trigger it, remove this functionality from the driver side. To be noted that despite marking a successful frequency change, many cpufreq drivers will consider the new frequency as the requested frequency, although this is might not be the one granted by the hardware. Therefore, the call to arch_set_freq_scale() is a "best effort" one, and it is up to the architecture if the new frequency is used in the new frequency scale factor setting (determined by the implementation of arch_set_freq_scale()) or eventually used by the scheduler (determined by the implementation of arch_scale_freq_capacity()). The architecture is in a better position to decide if it has better methods to obtain more accurate information regarding the current frequency and use that information instead (for example, the use of counters). Also, the implementation to arch_set_freq_scale() will now have to handle error conditions (current frequency == 0) in order to prevent the overhead in cpufreq core when the default arch_set_freq_scale() implementation is used. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Suggested-by: Valentin Schneider <valentin.schneider@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-09-01 21:55:46 +01:00
target_freq * 1000, true))
return target_freq;
return 0;
}
static int scmi_cpu_domain_id(struct device *cpu_dev)
{
struct device_node *np = cpu_dev->of_node;
struct of_phandle_args domain_id;
int index;
if (of_parse_phandle_with_args(np, "clocks", "#clock-cells", 0,
&domain_id)) {
/* Find the corresponding index for power-domain "perf". */
index = of_property_match_string(np, "power-domain-names",
"perf");
if (index < 0)
return -EINVAL;
if (of_parse_phandle_with_args(np, "power-domains",
"#power-domain-cells", index,
&domain_id))
return -EINVAL;
}
return domain_id.args[0];
}
static int
scmi_get_sharing_cpus(struct device *cpu_dev, int domain,
struct cpumask *cpumask)
{
int cpu, tdomain;
struct device *tcpu_dev;
for_each_possible_cpu(cpu) {
if (cpu == cpu_dev->id)
continue;
tcpu_dev = get_cpu_device(cpu);
if (!tcpu_dev)
continue;
tdomain = scmi_cpu_domain_id(tcpu_dev);
if (tdomain == domain)
cpumask_set_cpu(cpu, cpumask);
}
return 0;
}
static int __maybe_unused
scmi_get_cpu_power(struct device *cpu_dev, unsigned long *power,
unsigned long *KHz)
{
enum scmi_power_scale power_scale = perf_ops->power_scale_get(ph);
unsigned long Hz;
int ret, domain;
domain = scmi_cpu_domain_id(cpu_dev);
if (domain < 0)
return domain;
/* Get the power cost of the performance domain. */
Hz = *KHz * 1000;
ret = perf_ops->est_power_get(ph, domain, &Hz, power);
if (ret)
return ret;
/* Convert the power to uW if it is mW (ignore bogoW) */
if (power_scale == SCMI_POWER_MILLIWATTS)
PM: EM: convert power field to micro-Watts precision and align drivers The milli-Watts precision causes rounding errors while calculating efficiency cost for each OPP. This is especially visible in the 'simple' Energy Model (EM), where the power for each OPP is provided from OPP framework. This can cause some OPPs to be marked inefficient, while using micro-Watts precision that might not happen. Update all EM users which access 'power' field and assume the value is in milli-Watts. Solve also an issue with potential overflow in calculation of energy estimation on 32bit machine. It's needed now since the power value (thus the 'cost' as well) are higher. Example calculation which shows the rounding error and impact: power = 'dyn-power-coeff' * volt_mV * volt_mV * freq_MHz power_a_uW = (100 * 600mW * 600mW * 500MHz) / 10^6 = 18000 power_a_mW = (100 * 600mW * 600mW * 500MHz) / 10^9 = 18 power_b_uW = (100 * 605mW * 605mW * 600MHz) / 10^6 = 21961 power_b_mW = (100 * 605mW * 605mW * 600MHz) / 10^9 = 21 max_freq = 2000MHz cost_a_mW = 18 * 2000MHz/500MHz = 72 cost_a_uW = 18000 * 2000MHz/500MHz = 72000 cost_b_mW = 21 * 2000MHz/600MHz = 70 // <- artificially better cost_b_uW = 21961 * 2000MHz/600MHz = 73203 The 'cost_b_mW' (which is based on old milli-Watts) is misleadingly better that the 'cost_b_uW' (this patch uses micro-Watts) and such would have impact on the 'inefficient OPPs' information in the Cpufreq framework. This patch set removes the rounding issue. Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-07-07 08:15:52 +01:00
*power *= MICROWATT_PER_MILLIWATT;
/* The EM framework specifies the frequency in KHz. */
*KHz = Hz / 1000;
return 0;
}
static int
scmi_get_rate_limit(u32 domain, bool has_fast_switch)
{
int ret, rate_limit;
if (has_fast_switch) {
/*
* Fast channels are used whenever available,
* so use their rate_limit value if populated.
*/
ret = perf_ops->fast_switch_rate_limit(ph, domain,
&rate_limit);
if (!ret && rate_limit)
return rate_limit;
}
ret = perf_ops->rate_limit_get(ph, domain, &rate_limit);
if (ret)
return 0;
return rate_limit;
}
static struct freq_attr *scmi_cpufreq_hw_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
NULL,
};
static int scmi_cpufreq_init(struct cpufreq_policy *policy)
{
int ret, nr_opp, domain;
unsigned int latency;
struct device *cpu_dev;
struct scmi_data *priv;
struct cpufreq_frequency_table *freq_table;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("failed to get cpu%d device\n", policy->cpu);
return -ENODEV;
}
domain = scmi_cpu_domain_id(cpu_dev);
if (domain < 0)
return domain;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
if (!zalloc_cpumask_var(&priv->opp_shared_cpus, GFP_KERNEL)) {
ret = -ENOMEM;
goto out_free_priv;
}
/* Obtain CPUs that share SCMI performance controls */
ret = scmi_get_sharing_cpus(cpu_dev, domain, policy->cpus);
if (ret) {
dev_warn(cpu_dev, "failed to get sharing cpumask\n");
goto out_free_cpumask;
}
/*
* Obtain CPUs that share performance levels.
* The OPP 'sharing cpus' info may come from DT through an empty opp
* table and opp-shared.
*/
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, priv->opp_shared_cpus);
if (ret || cpumask_empty(priv->opp_shared_cpus)) {
/*
* Either opp-table is not set or no opp-shared was found.
* Use the CPU mask from SCMI to designate CPUs sharing an OPP
* table.
*/
cpumask_copy(priv->opp_shared_cpus, policy->cpus);
}
/*
* A previous CPU may have marked OPPs as shared for a few CPUs, based on
* what OPP core provided. If the current CPU is part of those few, then
* there is no need to add OPPs again.
*/
nr_opp = dev_pm_opp_get_opp_count(cpu_dev);
if (nr_opp <= 0) {
ret = perf_ops->device_opps_add(ph, cpu_dev, domain);
if (ret) {
dev_warn(cpu_dev, "failed to add opps to the device\n");
goto out_free_cpumask;
}
nr_opp = dev_pm_opp_get_opp_count(cpu_dev);
if (nr_opp <= 0) {
dev_err(cpu_dev, "%s: No OPPs for this device: %d\n",
__func__, nr_opp);
ret = -ENODEV;
goto out_free_opp;
}
ret = dev_pm_opp_set_sharing_cpus(cpu_dev, priv->opp_shared_cpus);
if (ret) {
dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
__func__, ret);
goto out_free_opp;
}
priv->nr_opp = nr_opp;
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto out_free_opp;
}
priv->cpu_dev = cpu_dev;
priv->domain_id = domain;
policy->driver_data = priv;
policy->freq_table = freq_table;
/* SCMI allows DVFS request for any domain from any CPU */
policy->dvfs_possible_from_any_cpu = true;
latency = perf_ops->transition_latency_get(ph, domain);
if (!latency)
latency = CPUFREQ_ETERNAL;
policy->cpuinfo.transition_latency = latency;
policy->fast_switch_possible =
perf_ops->fast_switch_possible(ph, domain);
policy->transition_delay_us =
scmi_get_rate_limit(domain, policy->fast_switch_possible);
if (policy_has_boost_freq(policy)) {
ret = cpufreq_enable_boost_support();
if (ret) {
dev_warn(cpu_dev, "failed to enable boost: %d\n", ret);
goto out_free_opp;
} else {
scmi_cpufreq_hw_attr[1] = &cpufreq_freq_attr_scaling_boost_freqs;
scmi_cpufreq_driver.boost_enabled = true;
}
}
return 0;
out_free_opp:
dev_pm_opp_remove_all_dynamic(cpu_dev);
out_free_cpumask:
free_cpumask_var(priv->opp_shared_cpus);
out_free_priv:
kfree(priv);
return ret;
}
static int scmi_cpufreq_exit(struct cpufreq_policy *policy)
{
struct scmi_data *priv = policy->driver_data;
dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
dev_pm_opp_remove_all_dynamic(priv->cpu_dev);
free_cpumask_var(priv->opp_shared_cpus);
kfree(priv);
return 0;
}
static void scmi_cpufreq_register_em(struct cpufreq_policy *policy)
{
struct em_data_callback em_cb = EM_DATA_CB(scmi_get_cpu_power);
enum scmi_power_scale power_scale = perf_ops->power_scale_get(ph);
struct scmi_data *priv = policy->driver_data;
bool em_power_scale = false;
/*
* This callback will be called for each policy, but we don't need to
* register with EM every time. Despite not being part of the same
* policy, some CPUs may still share their perf-domains, and a CPU from
* another policy may already have registered with EM on behalf of CPUs
* of this policy.
*/
if (!priv->nr_opp)
return;
if (power_scale == SCMI_POWER_MILLIWATTS
|| power_scale == SCMI_POWER_MICROWATTS)
em_power_scale = true;
em_dev_register_perf_domain(get_cpu_device(policy->cpu), priv->nr_opp,
&em_cb, priv->opp_shared_cpus,
em_power_scale);
}
static struct cpufreq_driver scmi_cpufreq_driver = {
.name = "scmi",
cpufreq: Remove CPUFREQ_STICKY flag During cpufreq driver's registration, if the ->init() callback for all the CPUs fail then there is not much point in keeping the driver around as it will only account for more of unnecessary noise, for example cpufreq core will try to suspend/resume the driver which never got registered properly. The removal of such a driver is avoided if the driver carries the CPUFREQ_STICKY flag. This was added way back [1] in 2004 and perhaps no one should ever need it now. A lot of drivers do set this flag, probably because they just copied it from other drivers. This was added earlier for some platforms [2] because their cpufreq drivers were getting registered before the CPUs were registered with subsys framework. And hence they used to fail. The same isn't true anymore though. The current code flow in the kernel is: start_kernel() -> kernel_init() -> kernel_init_freeable() -> do_basic_setup() -> driver_init() -> cpu_dev_init() -> subsys_system_register() //For CPUs -> do_initcalls() -> cpufreq_register_driver() Clearly, the CPUs will always get registered with subsys framework before any cpufreq driver can get probed. Remove the flag and update the relevant drivers. Link: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/include/linux/cpufreq.h?id=7cc9f0d9a1ab04cedc60d64fd8dcf7df224a3b4d # [1] Link: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/arch/arm/mach-sa1100/cpu-sa1100.c?id=f59d3bbe35f6268d729f51be82af8325d62f20f5 # [2] Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-02-02 10:25:11 +05:30
.flags = CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.attr = scmi_cpufreq_hw_attr,
.target_index = scmi_cpufreq_set_target,
.fast_switch = scmi_cpufreq_fast_switch,
.get = scmi_cpufreq_get_rate,
.init = scmi_cpufreq_init,
.exit = scmi_cpufreq_exit,
.register_em = scmi_cpufreq_register_em,
};
static int scmi_cpufreq_probe(struct scmi_device *sdev)
{
int ret;
struct device *dev = &sdev->dev;
const struct scmi_handle *handle;
handle = sdev->handle;
if (!handle)
return -ENODEV;
perf_ops = handle->devm_protocol_get(sdev, SCMI_PROTOCOL_PERF, &ph);
if (IS_ERR(perf_ops))
return PTR_ERR(perf_ops);
#ifdef CONFIG_COMMON_CLK
/* dummy clock provider as needed by OPP if clocks property is used */
if (of_property_present(dev->of_node, "#clock-cells")) {
ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, NULL);
if (ret)
return dev_err_probe(dev, ret, "%s: registering clock provider failed\n", __func__);
}
#endif
ret = cpufreq_register_driver(&scmi_cpufreq_driver);
if (ret) {
dev_err(dev, "%s: registering cpufreq failed, err: %d\n",
__func__, ret);
}
return ret;
}
static void scmi_cpufreq_remove(struct scmi_device *sdev)
{
cpufreq_unregister_driver(&scmi_cpufreq_driver);
}
static const struct scmi_device_id scmi_id_table[] = {
{ SCMI_PROTOCOL_PERF, "cpufreq" },
{ },
};
MODULE_DEVICE_TABLE(scmi, scmi_id_table);
static struct scmi_driver scmi_cpufreq_drv = {
.name = "scmi-cpufreq",
.probe = scmi_cpufreq_probe,
.remove = scmi_cpufreq_remove,
.id_table = scmi_id_table,
};
module_scmi_driver(scmi_cpufreq_drv);
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI CPUFreq interface driver");
MODULE_LICENSE("GPL v2");