2017-04-04 13:31:42 +03:00
/*
* Copyright ( c ) 2016 , Mellanox Technologies inc . All rights reserved .
*
* This software is available to you under a choice of one of two
* licenses . You may choose to be licensed under the terms of the GNU
* General Public License ( GPL ) Version 2 , available from the file
* COPYING in the main directory of this source tree , or the
* OpenIB . org BSD license below :
*
* Redistribution and use in source and binary forms , with or
* without modification , are permitted provided that the following
* conditions are met :
*
* - Redistributions of source code must retain the above
* copyright notice , this list of conditions and the following
* disclaimer .
*
* - Redistributions in binary form must reproduce the above
* copyright notice , this list of conditions and the following
* disclaimer in the documentation and / or other materials
* provided with the distribution .
*
* THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND ,
* EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT . IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , WHETHER IN AN
* ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM , OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE .
*/
# include <linux/file.h>
# include <linux/anon_inodes.h>
# include <rdma/ib_verbs.h>
# include <rdma/uverbs_types.h>
# include <linux/rcupdate.h>
2017-08-03 16:06:55 +03:00
# include <rdma/uverbs_ioctl.h>
IB/core: Add new ioctl interface
In this ioctl interface, processing the command starts from
properties of the command and fetching the appropriate user objects
before calling the handler.
Parsing and validation is done according to a specifier declared by
the driver's code. In the driver, all supported objects are declared.
These objects are separated to different object namepsaces. Dividing
objects to namespaces is done at initialization by using the higher
bits of the object ids. This initialization can mix objects declared
in different places to one parsing tree using in this ioctl interface.
For each object we list all supported methods. Similarly to objects,
methods are separated to method namespaces too. Namespacing is done
similarly to the objects case. This could be used in order to add
methods to an existing object.
Each method has a specific handler, which could be either a default
handler or a driver specific handler.
Along with the handler, a bunch of attributes are specified as well.
Similarly to objects and method, attributes are namespaced and hashed
by their ids at initialization too. All supported attributes are
subject to automatic fetching and validation. These attributes include
the command, response and the method's related objects' ids.
When these entities (objects, methods and attributes) are used, the
high bits of the entities ids are used in order to calculate the hash
bucket index. Then, these high bits are masked out in order to have a
zero based index. Since we use these high bits for both bucketing and
namespacing, we get a compact representation and O(1) array access.
This is mandatory for efficient dispatching.
Each attribute has a type (PTR_IN, PTR_OUT, IDR and FD) and a length.
Attributes could be validated through some attributes, like:
(*) Minimum size / Exact size
(*) Fops for FD
(*) Object type for IDR
If an IDR/fd attribute is specified, the kernel also states the object
type and the required access (NEW, WRITE, READ or DESTROY).
All uobject/fd management is done automatically by the infrastructure,
meaning - the infrastructure will fail concurrent commands that at
least one of them requires concurrent access (WRITE/DESTROY),
synchronize actions with device removals (dissociate context events)
and take care of reference counting (increase/decrease) for concurrent
actions invocation. The reference counts on the actual kernel objects
shall be handled by the handlers.
objects
+--------+
| |
| | methods +--------+
| | ns method method_spec +-----+ |len |
+--------+ +------+[d]+-------+ +----------------+[d]+------------+ |attr1+-> |type |
| object +> |method+-> | spec +-> + attr_buckets +-> |default_chain+--> +-----+ |idr_type|
+--------+ +------+ |handler| | | +------------+ |attr2| |access |
| | | | +-------+ +----------------+ |driver chain| +-----+ +--------+
| | | | +------------+
| | +------+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--------+
[d] = Hash ids to groups using the high order bits
The right types table is also chosen by using the high bits from
the ids. Currently we have either default or driver specific groups.
Once validation and object fetching (or creation) completed, we call
the handler:
int (*handler)(struct ib_device *ib_dev, struct ib_uverbs_file *ufile,
struct uverbs_attr_bundle *ctx);
ctx bundles attributes of different namespaces. Each element there
is an array of attributes which corresponds to one namespaces of
attributes. For example, in the usually used case:
ctx core
+----------------------------+ +------------+
| core: +---> | valid |
+----------------------------+ | cmd_attr |
| driver: | +------------+
|----------------------------+--+ | valid |
| | cmd_attr |
| +------------+
| | valid |
| | obj_attr |
| +------------+
|
| drivers
| +------------+
+> | valid |
| cmd_attr |
+------------+
| valid |
| cmd_attr |
+------------+
| valid |
| obj_attr |
+------------+
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-03 16:06:57 +03:00
# include <rdma/rdma_user_ioctl.h>
2017-04-04 13:31:42 +03:00
# include "uverbs.h"
# include "core_priv.h"
# include "rdma_core.h"
IB/core: Add new ioctl interface
In this ioctl interface, processing the command starts from
properties of the command and fetching the appropriate user objects
before calling the handler.
Parsing and validation is done according to a specifier declared by
the driver's code. In the driver, all supported objects are declared.
These objects are separated to different object namepsaces. Dividing
objects to namespaces is done at initialization by using the higher
bits of the object ids. This initialization can mix objects declared
in different places to one parsing tree using in this ioctl interface.
For each object we list all supported methods. Similarly to objects,
methods are separated to method namespaces too. Namespacing is done
similarly to the objects case. This could be used in order to add
methods to an existing object.
Each method has a specific handler, which could be either a default
handler or a driver specific handler.
Along with the handler, a bunch of attributes are specified as well.
Similarly to objects and method, attributes are namespaced and hashed
by their ids at initialization too. All supported attributes are
subject to automatic fetching and validation. These attributes include
the command, response and the method's related objects' ids.
When these entities (objects, methods and attributes) are used, the
high bits of the entities ids are used in order to calculate the hash
bucket index. Then, these high bits are masked out in order to have a
zero based index. Since we use these high bits for both bucketing and
namespacing, we get a compact representation and O(1) array access.
This is mandatory for efficient dispatching.
Each attribute has a type (PTR_IN, PTR_OUT, IDR and FD) and a length.
Attributes could be validated through some attributes, like:
(*) Minimum size / Exact size
(*) Fops for FD
(*) Object type for IDR
If an IDR/fd attribute is specified, the kernel also states the object
type and the required access (NEW, WRITE, READ or DESTROY).
All uobject/fd management is done automatically by the infrastructure,
meaning - the infrastructure will fail concurrent commands that at
least one of them requires concurrent access (WRITE/DESTROY),
synchronize actions with device removals (dissociate context events)
and take care of reference counting (increase/decrease) for concurrent
actions invocation. The reference counts on the actual kernel objects
shall be handled by the handlers.
objects
+--------+
| |
| | methods +--------+
| | ns method method_spec +-----+ |len |
+--------+ +------+[d]+-------+ +----------------+[d]+------------+ |attr1+-> |type |
| object +> |method+-> | spec +-> + attr_buckets +-> |default_chain+--> +-----+ |idr_type|
+--------+ +------+ |handler| | | +------------+ |attr2| |access |
| | | | +-------+ +----------------+ |driver chain| +-----+ +--------+
| | | | +------------+
| | +------+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--------+
[d] = Hash ids to groups using the high order bits
The right types table is also chosen by using the high bits from
the ids. Currently we have either default or driver specific groups.
Once validation and object fetching (or creation) completed, we call
the handler:
int (*handler)(struct ib_device *ib_dev, struct ib_uverbs_file *ufile,
struct uverbs_attr_bundle *ctx);
ctx bundles attributes of different namespaces. Each element there
is an array of attributes which corresponds to one namespaces of
attributes. For example, in the usually used case:
ctx core
+----------------------------+ +------------+
| core: +---> | valid |
+----------------------------+ | cmd_attr |
| driver: | +------------+
|----------------------------+--+ | valid |
| | cmd_attr |
| +------------+
| | valid |
| | obj_attr |
| +------------+
|
| drivers
| +------------+
+> | valid |
| cmd_attr |
+------------+
| valid |
| cmd_attr |
+------------+
| valid |
| obj_attr |
+------------+
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-03 16:06:57 +03:00
int uverbs_ns_idx ( u16 * id , unsigned int ns_count )
{
int ret = ( * id & UVERBS_ID_NS_MASK ) > > UVERBS_ID_NS_SHIFT ;
if ( ret > = ns_count )
return - EINVAL ;
* id & = ~ UVERBS_ID_NS_MASK ;
return ret ;
}
2018-07-04 08:50:23 +03:00
const struct uverbs_object_spec * uverbs_get_object ( struct ib_uverbs_file * ufile ,
IB/core: Add new ioctl interface
In this ioctl interface, processing the command starts from
properties of the command and fetching the appropriate user objects
before calling the handler.
Parsing and validation is done according to a specifier declared by
the driver's code. In the driver, all supported objects are declared.
These objects are separated to different object namepsaces. Dividing
objects to namespaces is done at initialization by using the higher
bits of the object ids. This initialization can mix objects declared
in different places to one parsing tree using in this ioctl interface.
For each object we list all supported methods. Similarly to objects,
methods are separated to method namespaces too. Namespacing is done
similarly to the objects case. This could be used in order to add
methods to an existing object.
Each method has a specific handler, which could be either a default
handler or a driver specific handler.
Along with the handler, a bunch of attributes are specified as well.
Similarly to objects and method, attributes are namespaced and hashed
by their ids at initialization too. All supported attributes are
subject to automatic fetching and validation. These attributes include
the command, response and the method's related objects' ids.
When these entities (objects, methods and attributes) are used, the
high bits of the entities ids are used in order to calculate the hash
bucket index. Then, these high bits are masked out in order to have a
zero based index. Since we use these high bits for both bucketing and
namespacing, we get a compact representation and O(1) array access.
This is mandatory for efficient dispatching.
Each attribute has a type (PTR_IN, PTR_OUT, IDR and FD) and a length.
Attributes could be validated through some attributes, like:
(*) Minimum size / Exact size
(*) Fops for FD
(*) Object type for IDR
If an IDR/fd attribute is specified, the kernel also states the object
type and the required access (NEW, WRITE, READ or DESTROY).
All uobject/fd management is done automatically by the infrastructure,
meaning - the infrastructure will fail concurrent commands that at
least one of them requires concurrent access (WRITE/DESTROY),
synchronize actions with device removals (dissociate context events)
and take care of reference counting (increase/decrease) for concurrent
actions invocation. The reference counts on the actual kernel objects
shall be handled by the handlers.
objects
+--------+
| |
| | methods +--------+
| | ns method method_spec +-----+ |len |
+--------+ +------+[d]+-------+ +----------------+[d]+------------+ |attr1+-> |type |
| object +> |method+-> | spec +-> + attr_buckets +-> |default_chain+--> +-----+ |idr_type|
+--------+ +------+ |handler| | | +------------+ |attr2| |access |
| | | | +-------+ +----------------+ |driver chain| +-----+ +--------+
| | | | +------------+
| | +------+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--------+
[d] = Hash ids to groups using the high order bits
The right types table is also chosen by using the high bits from
the ids. Currently we have either default or driver specific groups.
Once validation and object fetching (or creation) completed, we call
the handler:
int (*handler)(struct ib_device *ib_dev, struct ib_uverbs_file *ufile,
struct uverbs_attr_bundle *ctx);
ctx bundles attributes of different namespaces. Each element there
is an array of attributes which corresponds to one namespaces of
attributes. For example, in the usually used case:
ctx core
+----------------------------+ +------------+
| core: +---> | valid |
+----------------------------+ | cmd_attr |
| driver: | +------------+
|----------------------------+--+ | valid |
| | cmd_attr |
| +------------+
| | valid |
| | obj_attr |
| +------------+
|
| drivers
| +------------+
+> | valid |
| cmd_attr |
+------------+
| valid |
| cmd_attr |
+------------+
| valid |
| obj_attr |
+------------+
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-03 16:06:57 +03:00
uint16_t object )
{
2018-07-04 08:50:23 +03:00
const struct uverbs_root_spec * object_hash = ufile - > device - > specs_root ;
IB/core: Add new ioctl interface
In this ioctl interface, processing the command starts from
properties of the command and fetching the appropriate user objects
before calling the handler.
Parsing and validation is done according to a specifier declared by
the driver's code. In the driver, all supported objects are declared.
These objects are separated to different object namepsaces. Dividing
objects to namespaces is done at initialization by using the higher
bits of the object ids. This initialization can mix objects declared
in different places to one parsing tree using in this ioctl interface.
For each object we list all supported methods. Similarly to objects,
methods are separated to method namespaces too. Namespacing is done
similarly to the objects case. This could be used in order to add
methods to an existing object.
Each method has a specific handler, which could be either a default
handler or a driver specific handler.
Along with the handler, a bunch of attributes are specified as well.
Similarly to objects and method, attributes are namespaced and hashed
by their ids at initialization too. All supported attributes are
subject to automatic fetching and validation. These attributes include
the command, response and the method's related objects' ids.
When these entities (objects, methods and attributes) are used, the
high bits of the entities ids are used in order to calculate the hash
bucket index. Then, these high bits are masked out in order to have a
zero based index. Since we use these high bits for both bucketing and
namespacing, we get a compact representation and O(1) array access.
This is mandatory for efficient dispatching.
Each attribute has a type (PTR_IN, PTR_OUT, IDR and FD) and a length.
Attributes could be validated through some attributes, like:
(*) Minimum size / Exact size
(*) Fops for FD
(*) Object type for IDR
If an IDR/fd attribute is specified, the kernel also states the object
type and the required access (NEW, WRITE, READ or DESTROY).
All uobject/fd management is done automatically by the infrastructure,
meaning - the infrastructure will fail concurrent commands that at
least one of them requires concurrent access (WRITE/DESTROY),
synchronize actions with device removals (dissociate context events)
and take care of reference counting (increase/decrease) for concurrent
actions invocation. The reference counts on the actual kernel objects
shall be handled by the handlers.
objects
+--------+
| |
| | methods +--------+
| | ns method method_spec +-----+ |len |
+--------+ +------+[d]+-------+ +----------------+[d]+------------+ |attr1+-> |type |
| object +> |method+-> | spec +-> + attr_buckets +-> |default_chain+--> +-----+ |idr_type|
+--------+ +------+ |handler| | | +------------+ |attr2| |access |
| | | | +-------+ +----------------+ |driver chain| +-----+ +--------+
| | | | +------------+
| | +------+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--------+
[d] = Hash ids to groups using the high order bits
The right types table is also chosen by using the high bits from
the ids. Currently we have either default or driver specific groups.
Once validation and object fetching (or creation) completed, we call
the handler:
int (*handler)(struct ib_device *ib_dev, struct ib_uverbs_file *ufile,
struct uverbs_attr_bundle *ctx);
ctx bundles attributes of different namespaces. Each element there
is an array of attributes which corresponds to one namespaces of
attributes. For example, in the usually used case:
ctx core
+----------------------------+ +------------+
| core: +---> | valid |
+----------------------------+ | cmd_attr |
| driver: | +------------+
|----------------------------+--+ | valid |
| | cmd_attr |
| +------------+
| | valid |
| | obj_attr |
| +------------+
|
| drivers
| +------------+
+> | valid |
| cmd_attr |
+------------+
| valid |
| cmd_attr |
+------------+
| valid |
| obj_attr |
+------------+
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-03 16:06:57 +03:00
const struct uverbs_object_spec_hash * objects ;
int ret = uverbs_ns_idx ( & object , object_hash - > num_buckets ) ;
if ( ret < 0 )
return NULL ;
objects = object_hash - > object_buckets [ ret ] ;
if ( object > = objects - > num_objects )
return NULL ;
return objects - > objects [ object ] ;
}
const struct uverbs_method_spec * uverbs_get_method ( const struct uverbs_object_spec * object ,
uint16_t method )
{
const struct uverbs_method_spec_hash * methods ;
int ret = uverbs_ns_idx ( & method , object - > num_buckets ) ;
if ( ret < 0 )
return NULL ;
methods = object - > method_buckets [ ret ] ;
if ( method > = methods - > num_methods )
return NULL ;
return methods - > methods [ method ] ;
}
2017-04-04 13:31:42 +03:00
void uverbs_uobject_get ( struct ib_uobject * uobject )
{
kref_get ( & uobject - > ref ) ;
}
2017-04-18 12:03:37 +03:00
static void uverbs_uobject_free ( struct kref * ref )
2017-04-04 13:31:42 +03:00
{
struct ib_uobject * uobj =
container_of ( ref , struct ib_uobject , ref ) ;
if ( uobj - > type - > type_class - > needs_kfree_rcu )
kfree_rcu ( uobj , rcu ) ;
else
kfree ( uobj ) ;
}
void uverbs_uobject_put ( struct ib_uobject * uobject )
{
2017-04-18 12:03:37 +03:00
kref_put ( & uobject - > ref , uverbs_uobject_free ) ;
2017-04-04 13:31:42 +03:00
}
2017-04-18 12:03:37 +03:00
static int uverbs_try_lock_object ( struct ib_uobject * uobj , bool exclusive )
2017-04-04 13:31:42 +03:00
{
/*
2017-04-18 12:03:37 +03:00
* When a shared access is required , we use a positive counter . Each
* shared access request checks that the value ! = - 1 and increment it .
* Exclusive access is required for operations like write or destroy .
* In exclusive access mode , we check that the counter is zero ( nobody
* claimed this object ) and we set it to - 1. Releasing a shared access
* lock is done simply by decreasing the counter . As for exclusive
* access locks , since only a single one of them is is allowed
* concurrently , setting the counter to zero is enough for releasing
* this lock .
2017-04-04 13:31:42 +03:00
*/
2017-04-18 12:03:37 +03:00
if ( ! exclusive )
2017-04-04 13:31:42 +03:00
return __atomic_add_unless ( & uobj - > usecnt , 1 , - 1 ) = = - 1 ?
- EBUSY : 0 ;
/* lock is either WRITE or DESTROY - should be exclusive */
return atomic_cmpxchg ( & uobj - > usecnt , 0 , - 1 ) = = 0 ? 0 : - EBUSY ;
}
2018-07-04 11:32:06 +03:00
/*
* Does both rdma_lookup_get_uobject ( ) and rdma_remove_commit_uobject ( ) , then
* returns success_res on success ( negative errno on failure ) . For use by
* callers that do not need the uobj .
*/
2018-07-10 20:55:14 -06:00
int __uobj_perform_destroy ( const struct uverbs_obj_type * type , u32 id ,
2018-07-04 11:32:06 +03:00
struct ib_uverbs_file * ufile , int success_res )
{
struct ib_uobject * uobj ;
int ret ;
2018-07-04 11:32:08 +03:00
uobj = rdma_lookup_get_uobject ( type , ufile , id , true ) ;
2018-07-04 11:32:06 +03:00
if ( IS_ERR ( uobj ) )
return PTR_ERR ( uobj ) ;
ret = rdma_remove_commit_uobject ( uobj ) ;
if ( ret )
return ret ;
return success_res ;
}
2018-07-04 11:32:08 +03:00
static struct ib_uobject * alloc_uobj ( struct ib_uverbs_file * ufile ,
2017-04-04 13:31:42 +03:00
const struct uverbs_obj_type * type )
{
2017-04-18 12:03:39 +03:00
struct ib_uobject * uobj = kzalloc ( type - > obj_size , GFP_KERNEL ) ;
2017-04-04 13:31:42 +03:00
if ( ! uobj )
return ERR_PTR ( - ENOMEM ) ;
/*
* user_handle should be filled by the handler ,
* The object is added to the list in the commit stage .
*/
2018-07-04 11:32:08 +03:00
uobj - > ufile = ufile ;
uobj - > context = ufile - > ucontext ;
2017-04-04 13:31:42 +03:00
uobj - > type = type ;
2018-02-13 12:18:36 +02:00
/*
* Allocated objects start out as write locked to deny any other
* syscalls from accessing them until they are committed . See
* rdma_alloc_commit_uobject
*/
atomic_set ( & uobj - > usecnt , - 1 ) ;
2017-04-04 13:31:42 +03:00
kref_init ( & uobj - > ref ) ;
return uobj ;
}
static int idr_add_uobj ( struct ib_uobject * uobj )
{
int ret ;
idr_preload ( GFP_KERNEL ) ;
2018-07-04 11:32:10 +03:00
spin_lock ( & uobj - > ufile - > idr_lock ) ;
2017-04-04 13:31:42 +03:00
/*
* We start with allocating an idr pointing to NULL . This represents an
* object which isn ' t initialized yet . We ' ll replace it later on with
* the real object once we commit .
*/
2018-07-04 11:32:10 +03:00
ret = idr_alloc ( & uobj - > ufile - > idr , NULL , 0 ,
2017-04-04 13:31:42 +03:00
min_t ( unsigned long , U32_MAX - 1 , INT_MAX ) , GFP_NOWAIT ) ;
if ( ret > = 0 )
uobj - > id = ret ;
2018-07-04 11:32:10 +03:00
spin_unlock ( & uobj - > ufile - > idr_lock ) ;
2017-04-04 13:31:42 +03:00
idr_preload_end ( ) ;
return ret < 0 ? ret : 0 ;
}
/*
* It only removes it from the uobjects list , uverbs_uobject_put ( ) is still
* required .
*/
static void uverbs_idr_remove_uobj ( struct ib_uobject * uobj )
{
2018-07-04 11:32:10 +03:00
spin_lock ( & uobj - > ufile - > idr_lock ) ;
idr_remove ( & uobj - > ufile - > idr , uobj - > id ) ;
spin_unlock ( & uobj - > ufile - > idr_lock ) ;
2017-04-04 13:31:42 +03:00
}
/* Returns the ib_uobject or an error. The caller should check for IS_ERR. */
2018-07-04 11:32:08 +03:00
static struct ib_uobject *
lookup_get_idr_uobject ( const struct uverbs_obj_type * type ,
2018-07-10 20:55:14 -06:00
struct ib_uverbs_file * ufile , s64 id , bool exclusive )
2017-04-04 13:31:42 +03:00
{
struct ib_uobject * uobj ;
2018-07-10 20:55:14 -06:00
unsigned long idrno = id ;
if ( id < 0 | | id > ULONG_MAX )
return ERR_PTR ( - EINVAL ) ;
2017-04-04 13:31:42 +03:00
rcu_read_lock ( ) ;
/* object won't be released as we're protected in rcu */
2018-07-10 20:55:14 -06:00
uobj = idr_find ( & ufile - > idr , idrno ) ;
2017-04-04 13:31:42 +03:00
if ( ! uobj ) {
uobj = ERR_PTR ( - ENOENT ) ;
goto free ;
}
2018-02-13 12:18:37 +02:00
/*
* The idr_find is guaranteed to return a pointer to something that
* isn ' t freed yet , or NULL , as the free after idr_remove goes through
* kfree_rcu ( ) . However the object may still have been released and
* kfree ( ) could be called at any time .
*/
if ( ! kref_get_unless_zero ( & uobj - > ref ) )
uobj = ERR_PTR ( - ENOENT ) ;
2017-04-04 13:31:42 +03:00
free :
rcu_read_unlock ( ) ;
return uobj ;
}
2017-04-04 13:31:46 +03:00
static struct ib_uobject * lookup_get_fd_uobject ( const struct uverbs_obj_type * type ,
2018-07-04 11:32:08 +03:00
struct ib_uverbs_file * ufile ,
2018-07-10 20:55:14 -06:00
s64 id , bool exclusive )
2017-04-04 13:31:46 +03:00
{
struct file * f ;
struct ib_uobject * uobject ;
2018-07-10 20:55:14 -06:00
int fdno = id ;
2017-04-04 13:31:46 +03:00
const struct uverbs_obj_fd_type * fd_type =
container_of ( type , struct uverbs_obj_fd_type , type ) ;
2018-07-10 20:55:14 -06:00
if ( fdno ! = id )
return ERR_PTR ( - EINVAL ) ;
2017-04-18 12:03:37 +03:00
if ( exclusive )
2017-04-04 13:31:46 +03:00
return ERR_PTR ( - EOPNOTSUPP ) ;
2018-07-10 20:55:14 -06:00
f = fget ( fdno ) ;
2017-04-04 13:31:46 +03:00
if ( ! f )
return ERR_PTR ( - EBADF ) ;
uobject = f - > private_data ;
/*
* fget ( id ) ensures we are not currently running uverbs_close_fd ,
* and the caller is expected to ensure that uverbs_close_fd is never
* done while a call top lookup is possible .
*/
if ( f - > f_op ! = fd_type - > fops ) {
fput ( f ) ;
return ERR_PTR ( - EBADF ) ;
}
uverbs_uobject_get ( uobject ) ;
return uobject ;
}
2017-04-04 13:31:42 +03:00
struct ib_uobject * rdma_lookup_get_uobject ( const struct uverbs_obj_type * type ,
2018-07-10 20:55:14 -06:00
struct ib_uverbs_file * ufile , s64 id ,
2018-07-04 11:32:08 +03:00
bool exclusive )
2017-04-04 13:31:42 +03:00
{
struct ib_uobject * uobj ;
int ret ;
2018-07-04 11:32:08 +03:00
uobj = type - > type_class - > lookup_get ( type , ufile , id , exclusive ) ;
2017-04-04 13:31:42 +03:00
if ( IS_ERR ( uobj ) )
return uobj ;
if ( uobj - > type ! = type ) {
ret = - EINVAL ;
goto free ;
}
2017-04-18 12:03:37 +03:00
ret = uverbs_try_lock_object ( uobj , exclusive ) ;
2017-04-04 13:31:42 +03:00
if ( ret ) {
2018-07-04 11:32:07 +03:00
WARN ( uobj - > ufile - > cleanup_reason ,
2017-04-04 13:31:42 +03:00
" ib_uverbs: Trying to lookup_get while cleanup context \n " ) ;
goto free ;
}
return uobj ;
free :
2017-04-18 12:03:37 +03:00
uobj - > type - > type_class - > lookup_put ( uobj , exclusive ) ;
2017-04-04 13:31:42 +03:00
uverbs_uobject_put ( uobj ) ;
return ERR_PTR ( ret ) ;
}
static struct ib_uobject * alloc_begin_idr_uobject ( const struct uverbs_obj_type * type ,
2018-07-04 11:32:08 +03:00
struct ib_uverbs_file * ufile )
2017-04-04 13:31:42 +03:00
{
int ret ;
struct ib_uobject * uobj ;
2018-07-04 11:32:08 +03:00
uobj = alloc_uobj ( ufile , type ) ;
2017-04-04 13:31:42 +03:00
if ( IS_ERR ( uobj ) )
return uobj ;
ret = idr_add_uobj ( uobj ) ;
if ( ret )
goto uobj_put ;
2018-07-04 11:32:08 +03:00
ret = ib_rdmacg_try_charge ( & uobj - > cg_obj , ufile - > ucontext - > device ,
2017-04-04 13:31:42 +03:00
RDMACG_RESOURCE_HCA_OBJECT ) ;
if ( ret )
goto idr_remove ;
return uobj ;
idr_remove :
uverbs_idr_remove_uobj ( uobj ) ;
uobj_put :
uverbs_uobject_put ( uobj ) ;
return ERR_PTR ( ret ) ;
}
2017-04-04 13:31:46 +03:00
static struct ib_uobject * alloc_begin_fd_uobject ( const struct uverbs_obj_type * type ,
2018-07-04 11:32:08 +03:00
struct ib_uverbs_file * ufile )
2017-04-04 13:31:46 +03:00
{
const struct uverbs_obj_fd_type * fd_type =
container_of ( type , struct uverbs_obj_fd_type , type ) ;
int new_fd ;
struct ib_uobject * uobj ;
struct file * filp ;
new_fd = get_unused_fd_flags ( O_CLOEXEC ) ;
if ( new_fd < 0 )
return ERR_PTR ( new_fd ) ;
2018-07-04 11:32:08 +03:00
uobj = alloc_uobj ( ufile , type ) ;
2017-04-04 13:31:46 +03:00
if ( IS_ERR ( uobj ) ) {
put_unused_fd ( new_fd ) ;
return uobj ;
}
filp = anon_inode_getfile ( fd_type - > name ,
fd_type - > fops ,
2018-07-04 11:32:11 +03:00
uobj ,
2017-04-04 13:31:46 +03:00
fd_type - > flags ) ;
if ( IS_ERR ( filp ) ) {
put_unused_fd ( new_fd ) ;
uverbs_uobject_put ( uobj ) ;
return ( void * ) filp ;
}
2018-07-04 11:32:11 +03:00
uobj - > id = new_fd ;
uobj - > object = filp ;
uobj - > ufile = ufile ;
2017-04-04 13:31:46 +03:00
INIT_LIST_HEAD ( & uobj - > list ) ;
2018-07-04 11:32:11 +03:00
kref_get ( & ufile - > ref ) ;
2017-04-04 13:31:46 +03:00
return uobj ;
}
2017-04-04 13:31:42 +03:00
struct ib_uobject * rdma_alloc_begin_uobject ( const struct uverbs_obj_type * type ,
2018-07-04 11:32:08 +03:00
struct ib_uverbs_file * ufile )
2017-04-04 13:31:42 +03:00
{
2018-07-04 11:32:08 +03:00
return type - > type_class - > alloc_begin ( type , ufile ) ;
2017-04-04 13:31:42 +03:00
}
static int __must_check remove_commit_idr_uobject ( struct ib_uobject * uobj ,
enum rdma_remove_reason why )
{
const struct uverbs_obj_idr_type * idr_type =
container_of ( uobj - > type , struct uverbs_obj_idr_type ,
type ) ;
int ret = idr_type - > destroy_object ( uobj , why ) ;
/*
* We can only fail gracefully if the user requested to destroy the
2018-06-20 17:11:39 +03:00
* object or when a retry may be called upon an error .
* In the rest of the cases , just remove whatever you can .
2017-04-04 13:31:42 +03:00
*/
2018-06-20 17:11:39 +03:00
if ( ib_is_destroy_retryable ( ret , why , uobj ) )
2017-04-04 13:31:42 +03:00
return ret ;
ib_rdmacg_uncharge ( & uobj - > cg_obj , uobj - > context - > device ,
RDMACG_RESOURCE_HCA_OBJECT ) ;
uverbs_idr_remove_uobj ( uobj ) ;
return ret ;
}
2017-04-04 13:31:46 +03:00
static void alloc_abort_fd_uobject ( struct ib_uobject * uobj )
{
struct file * filp = uobj - > object ;
2018-07-04 11:32:11 +03:00
int id = uobj - > id ;
2017-04-04 13:31:46 +03:00
/* Unsuccessful NEW */
fput ( filp ) ;
put_unused_fd ( id ) ;
}
static int __must_check remove_commit_fd_uobject ( struct ib_uobject * uobj ,
enum rdma_remove_reason why )
{
const struct uverbs_obj_fd_type * fd_type =
container_of ( uobj - > type , struct uverbs_obj_fd_type , type ) ;
2018-07-04 11:32:11 +03:00
int ret = fd_type - > context_closed ( uobj , why ) ;
2017-04-04 13:31:46 +03:00
2018-06-20 17:11:39 +03:00
if ( ib_is_destroy_retryable ( ret , why , uobj ) )
2017-04-04 13:31:46 +03:00
return ret ;
if ( why = = RDMA_REMOVE_DURING_CLEANUP ) {
alloc_abort_fd_uobject ( uobj ) ;
return ret ;
}
2018-07-04 11:32:11 +03:00
uobj - > context = NULL ;
2017-04-04 13:31:46 +03:00
return ret ;
}
2018-02-13 12:18:38 +02:00
static void assert_uverbs_usecnt ( struct ib_uobject * uobj , bool exclusive )
2017-04-04 13:31:42 +03:00
{
# ifdef CONFIG_LOCKDEP
2017-04-18 12:03:37 +03:00
if ( exclusive )
2018-02-13 12:18:38 +02:00
WARN_ON ( atomic_read ( & uobj - > usecnt ) ! = - 1 ) ;
2017-04-04 13:31:42 +03:00
else
2018-02-13 12:18:38 +02:00
WARN_ON ( atomic_read ( & uobj - > usecnt ) < = 0 ) ;
2017-04-04 13:31:42 +03:00
# endif
}
static int __must_check _rdma_remove_commit_uobject ( struct ib_uobject * uobj ,
2017-04-18 12:03:38 +03:00
enum rdma_remove_reason why )
2017-04-04 13:31:42 +03:00
{
2018-07-04 11:32:07 +03:00
struct ib_uverbs_file * ufile = uobj - > ufile ;
2017-04-04 13:31:42 +03:00
int ret ;
2018-07-10 20:55:13 -06:00
if ( ! uobj - > object )
return 0 ;
2017-04-04 13:31:42 +03:00
ret = uobj - > type - > type_class - > remove_commit ( uobj , why ) ;
2018-06-20 17:11:39 +03:00
if ( ib_is_destroy_retryable ( ret , why , uobj ) ) {
2017-04-04 13:31:42 +03:00
/* We couldn't remove the object, so just unlock the uobject */
atomic_set ( & uobj - > usecnt , 0 ) ;
uobj - > type - > type_class - > lookup_put ( uobj , true ) ;
} else {
2018-07-10 20:55:13 -06:00
uobj - > object = NULL ;
2018-07-04 11:32:07 +03:00
mutex_lock ( & ufile - > uobjects_lock ) ;
2017-04-04 13:31:42 +03:00
list_del ( & uobj - > list ) ;
2018-07-04 11:32:07 +03:00
mutex_unlock ( & ufile - > uobjects_lock ) ;
2017-04-04 13:31:42 +03:00
/* put the ref we took when we created the object */
uverbs_uobject_put ( uobj ) ;
}
return ret ;
}
/* This is called only for user requested DESTROY reasons */
int __must_check rdma_remove_commit_uobject ( struct ib_uobject * uobj )
{
int ret ;
2018-07-10 20:55:13 -06:00
ret = rdma_explicit_destroy ( uobj ) ;
/* Pairs with the lookup_get done by the caller */
rdma_lookup_put_uobject ( uobj , true ) ;
2017-04-04 13:31:42 +03:00
return ret ;
}
2017-08-03 16:07:02 +03:00
int rdma_explicit_destroy ( struct ib_uobject * uobject )
{
int ret ;
2018-07-04 11:32:07 +03:00
struct ib_uverbs_file * ufile = uobject - > ufile ;
2017-08-03 16:07:02 +03:00
/* Cleanup is running. Calling this should have been impossible */
2018-07-04 11:32:07 +03:00
if ( ! down_read_trylock ( & ufile - > cleanup_rwsem ) ) {
2017-08-03 16:07:02 +03:00
WARN ( true , " ib_uverbs: Cleanup is running while removing an uobject \n " ) ;
return 0 ;
}
2018-02-13 12:18:38 +02:00
assert_uverbs_usecnt ( uobject , true ) ;
2018-07-10 20:55:13 -06:00
ret = _rdma_remove_commit_uobject ( uobject , RDMA_REMOVE_DESTROY ) ;
2017-08-03 16:07:02 +03:00
2018-07-04 11:32:07 +03:00
up_read ( & ufile - > cleanup_rwsem ) ;
2018-02-13 12:18:40 +02:00
return ret ;
2017-08-03 16:07:02 +03:00
}
2017-04-04 13:31:42 +03:00
static void alloc_commit_idr_uobject ( struct ib_uobject * uobj )
{
2018-07-04 11:32:10 +03:00
spin_lock ( & uobj - > ufile - > idr_lock ) ;
2017-04-04 13:31:42 +03:00
/*
* We already allocated this IDR with a NULL object , so
* this shouldn ' t fail .
*/
2018-07-04 11:32:10 +03:00
WARN_ON ( idr_replace ( & uobj - > ufile - > idr , uobj , uobj - > id ) ) ;
spin_unlock ( & uobj - > ufile - > idr_lock ) ;
2017-04-04 13:31:42 +03:00
}
2017-04-04 13:31:46 +03:00
static void alloc_commit_fd_uobject ( struct ib_uobject * uobj )
{
2018-07-04 11:32:11 +03:00
fd_install ( uobj - > id , uobj - > object ) ;
2017-04-04 13:31:46 +03:00
/* This shouldn't be used anymore. Use the file object instead */
2018-07-04 11:32:11 +03:00
uobj - > id = 0 ;
2017-04-04 13:31:46 +03:00
/* Get another reference as we export this to the fops */
2018-07-04 11:32:11 +03:00
uverbs_uobject_get ( uobj ) ;
2017-04-04 13:31:46 +03:00
}
2017-04-04 13:31:42 +03:00
int rdma_alloc_commit_uobject ( struct ib_uobject * uobj )
{
2018-07-04 11:32:07 +03:00
struct ib_uverbs_file * ufile = uobj - > ufile ;
2017-04-04 13:31:42 +03:00
/* Cleanup is running. Calling this should have been impossible */
2018-07-04 11:32:07 +03:00
if ( ! down_read_trylock ( & ufile - > cleanup_rwsem ) ) {
2017-04-04 13:31:42 +03:00
int ret ;
WARN ( true , " ib_uverbs: Cleanup is running while allocating an uobject \n " ) ;
ret = uobj - > type - > type_class - > remove_commit ( uobj ,
RDMA_REMOVE_DURING_CLEANUP ) ;
if ( ret )
pr_warn ( " ib_uverbs: cleanup of idr object %d failed \n " ,
uobj - > id ) ;
return ret ;
}
2018-02-13 12:18:36 +02:00
/* matches atomic_set(-1) in alloc_uobj */
2018-02-13 12:18:38 +02:00
assert_uverbs_usecnt ( uobj , true ) ;
2018-02-13 12:18:36 +02:00
atomic_set ( & uobj - > usecnt , 0 ) ;
2018-07-04 11:32:07 +03:00
mutex_lock ( & ufile - > uobjects_lock ) ;
list_add ( & uobj - > list , & ufile - > uobjects ) ;
mutex_unlock ( & ufile - > uobjects_lock ) ;
2018-02-13 12:18:39 +02:00
2017-04-04 13:31:42 +03:00
uobj - > type - > type_class - > alloc_commit ( uobj ) ;
2018-07-04 11:32:07 +03:00
up_read ( & ufile - > cleanup_rwsem ) ;
2017-04-04 13:31:42 +03:00
return 0 ;
}
static void alloc_abort_idr_uobject ( struct ib_uobject * uobj )
{
uverbs_idr_remove_uobj ( uobj ) ;
ib_rdmacg_uncharge ( & uobj - > cg_obj , uobj - > context - > device ,
RDMACG_RESOURCE_HCA_OBJECT ) ;
uverbs_uobject_put ( uobj ) ;
}
void rdma_alloc_abort_uobject ( struct ib_uobject * uobj )
{
uobj - > type - > type_class - > alloc_abort ( uobj ) ;
}
2017-04-18 12:03:37 +03:00
static void lookup_put_idr_uobject ( struct ib_uobject * uobj , bool exclusive )
2017-04-04 13:31:42 +03:00
{
}
2017-04-18 12:03:37 +03:00
static void lookup_put_fd_uobject ( struct ib_uobject * uobj , bool exclusive )
2017-04-04 13:31:46 +03:00
{
struct file * filp = uobj - > object ;
2017-04-18 12:03:37 +03:00
WARN_ON ( exclusive ) ;
2017-04-04 13:31:46 +03:00
/* This indirectly calls uverbs_close_fd and free the object */
fput ( filp ) ;
}
2017-04-18 12:03:37 +03:00
void rdma_lookup_put_uobject ( struct ib_uobject * uobj , bool exclusive )
2017-04-04 13:31:42 +03:00
{
2018-02-13 12:18:38 +02:00
assert_uverbs_usecnt ( uobj , exclusive ) ;
2017-04-18 12:03:37 +03:00
uobj - > type - > type_class - > lookup_put ( uobj , exclusive ) ;
2017-04-04 13:31:42 +03:00
/*
* In order to unlock an object , either decrease its usecnt for
2017-04-18 12:03:37 +03:00
* read access or zero it in case of exclusive access . See
2017-04-04 13:31:42 +03:00
* uverbs_try_lock_object for locking schema information .
*/
2017-04-18 12:03:37 +03:00
if ( ! exclusive )
2017-04-04 13:31:42 +03:00
atomic_dec ( & uobj - > usecnt ) ;
else
atomic_set ( & uobj - > usecnt , 0 ) ;
uverbs_uobject_put ( uobj ) ;
}
const struct uverbs_obj_type_class uverbs_idr_class = {
. alloc_begin = alloc_begin_idr_uobject ,
. lookup_get = lookup_get_idr_uobject ,
. alloc_commit = alloc_commit_idr_uobject ,
. alloc_abort = alloc_abort_idr_uobject ,
. lookup_put = lookup_put_idr_uobject ,
. remove_commit = remove_commit_idr_uobject ,
/*
* When we destroy an object , we first just lock it for WRITE and
* actually DESTROY it in the finalize stage . So , the problematic
* scenario is when we just started the finalize stage of the
* destruction ( nothing was executed yet ) . Now , the other thread
* fetched the object for READ access , but it didn ' t lock it yet .
* The DESTROY thread continues and starts destroying the object .
* When the other thread continue - without the RCU , it would
* access freed memory . However , the rcu_read_lock delays the free
* until the rcu_read_lock of the READ operation quits . Since the
2017-04-18 12:03:37 +03:00
* exclusive lock of the object is still taken by the DESTROY flow , the
2017-04-04 13:31:42 +03:00
* READ operation will get - EBUSY and it ' ll just bail out .
*/
. needs_kfree_rcu = true ,
} ;
2018-06-17 12:59:50 +03:00
EXPORT_SYMBOL ( uverbs_idr_class ) ;
2017-04-04 13:31:42 +03:00
2018-07-04 11:32:11 +03:00
static void _uverbs_close_fd ( struct ib_uobject * uobj )
2017-04-04 13:31:46 +03:00
{
2018-07-04 11:32:11 +03:00
struct ib_uverbs_file * ufile = uobj - > ufile ;
2017-04-04 13:31:46 +03:00
int ret ;
2018-07-04 11:32:07 +03:00
mutex_lock ( & ufile - > cleanup_mutex ) ;
2017-04-04 13:31:46 +03:00
/* uobject was either already cleaned up or is cleaned up right now anyway */
2018-07-04 11:32:11 +03:00
if ( ! uobj - > context | |
2018-07-04 11:32:07 +03:00
! down_read_trylock ( & ufile - > cleanup_rwsem ) )
2017-04-04 13:31:46 +03:00
goto unlock ;
2018-07-04 11:32:11 +03:00
ret = _rdma_remove_commit_uobject ( uobj , RDMA_REMOVE_CLOSE ) ;
2018-07-04 11:32:07 +03:00
up_read ( & ufile - > cleanup_rwsem ) ;
2017-04-04 13:31:46 +03:00
if ( ret )
pr_warn ( " uverbs: unable to clean up uobject file in uverbs_close_fd. \n " ) ;
unlock :
mutex_unlock ( & ufile - > cleanup_mutex ) ;
}
void uverbs_close_fd ( struct file * f )
{
2018-07-04 11:32:11 +03:00
struct ib_uobject * uobj = f - > private_data ;
struct kref * uverbs_file_ref = & uobj - > ufile - > ref ;
2017-04-04 13:31:46 +03:00
2018-07-04 11:32:11 +03:00
_uverbs_close_fd ( uobj ) ;
uverbs_uobject_put ( uobj ) ;
2017-04-04 13:31:46 +03:00
kref_put ( uverbs_file_ref , ib_uverbs_release_file ) ;
}
2018-07-04 11:32:08 +03:00
static int __uverbs_cleanup_ufile ( struct ib_uverbs_file * ufile ,
enum rdma_remove_reason reason )
2017-04-04 13:31:42 +03:00
{
2018-06-20 17:11:39 +03:00
struct ib_uobject * obj , * next_obj ;
int ret = - EINVAL ;
int err = 0 ;
2017-04-04 13:31:42 +03:00
2018-06-20 17:11:39 +03:00
/*
* This shouldn ' t run while executing other commands on this
* context . Thus , the only thing we should take care of is
* releasing a FD while traversing this list . The FD could be
* closed and released from the _release fop of this FD .
* In order to mitigate this , we add a lock .
* We take and release the lock per traversal in order to let
* other threads ( which might still use the FDs ) chance to run .
*/
2018-07-04 11:32:07 +03:00
mutex_lock ( & ufile - > uobjects_lock ) ;
ufile - > cleanup_reason = reason ;
list_for_each_entry_safe ( obj , next_obj , & ufile - > uobjects , list ) {
2018-06-20 17:11:39 +03:00
/*
* if we hit this WARN_ON , that means we are
* racing with a lookup_get .
*/
WARN_ON ( uverbs_try_lock_object ( obj , true ) ) ;
err = obj - > type - > type_class - > remove_commit ( obj , reason ) ;
if ( ib_is_destroy_retryable ( err , reason , obj ) ) {
pr_debug ( " ib_uverbs: failed to remove uobject id %d err %d \n " ,
obj - > id , err ) ;
atomic_set ( & obj - > usecnt , 0 ) ;
continue ;
}
if ( err )
pr_err ( " ib_uverbs: unable to remove uobject id %d err %d \n " ,
obj - > id , err ) ;
list_del ( & obj - > list ) ;
/* put the ref we took when we created the object */
uverbs_uobject_put ( obj ) ;
ret = 0 ;
}
2018-07-04 11:32:07 +03:00
mutex_unlock ( & ufile - > uobjects_lock ) ;
2018-06-20 17:11:39 +03:00
return ret ;
}
2018-07-04 11:32:08 +03:00
void uverbs_cleanup_ufile ( struct ib_uverbs_file * ufile , bool device_removed )
2018-06-20 17:11:39 +03:00
{
enum rdma_remove_reason reason = device_removed ?
RDMA_REMOVE_DRIVER_REMOVE :
RDMA_REMOVE_CLOSE ;
2018-07-04 11:32:07 +03:00
2017-04-04 13:31:42 +03:00
/*
* Waits for all remove_commit and alloc_commit to finish . Logically , We
* want to hold this forever as the context is going to be destroyed ,
* but we ' ll release it since it causes a " held lock freed " BUG message .
*/
2018-07-04 11:32:07 +03:00
down_write ( & ufile - > cleanup_rwsem ) ;
ufile - > ucontext - > cleanup_retryable = true ;
while ( ! list_empty ( & ufile - > uobjects ) )
2018-07-04 11:32:08 +03:00
if ( __uverbs_cleanup_ufile ( ufile , reason ) ) {
2018-06-20 17:11:39 +03:00
/*
* No entry was cleaned - up successfully during this
* iteration
*/
break ;
}
2017-04-04 13:31:42 +03:00
2018-07-04 11:32:07 +03:00
ufile - > ucontext - > cleanup_retryable = false ;
if ( ! list_empty ( & ufile - > uobjects ) )
2018-07-04 11:32:08 +03:00
__uverbs_cleanup_ufile ( ufile , reason ) ;
2017-04-04 13:31:42 +03:00
2018-07-04 11:32:07 +03:00
up_write ( & ufile - > cleanup_rwsem ) ;
2017-04-04 13:31:42 +03:00
}
2017-04-04 13:31:46 +03:00
const struct uverbs_obj_type_class uverbs_fd_class = {
. alloc_begin = alloc_begin_fd_uobject ,
. lookup_get = lookup_get_fd_uobject ,
. alloc_commit = alloc_commit_fd_uobject ,
. alloc_abort = alloc_abort_fd_uobject ,
. lookup_put = lookup_put_fd_uobject ,
. remove_commit = remove_commit_fd_uobject ,
. needs_kfree_rcu = false ,
} ;
2018-06-17 12:59:50 +03:00
EXPORT_SYMBOL ( uverbs_fd_class ) ;
2017-04-04 13:31:46 +03:00
2018-07-04 11:32:08 +03:00
struct ib_uobject *
uverbs_get_uobject_from_file ( const struct uverbs_obj_type * type_attrs ,
struct ib_uverbs_file * ufile ,
2018-07-10 20:55:14 -06:00
enum uverbs_obj_access access , s64 id )
2017-08-03 16:06:55 +03:00
{
switch ( access ) {
case UVERBS_ACCESS_READ :
2018-07-04 11:32:08 +03:00
return rdma_lookup_get_uobject ( type_attrs , ufile , id , false ) ;
2017-08-03 16:06:55 +03:00
case UVERBS_ACCESS_DESTROY :
case UVERBS_ACCESS_WRITE :
2018-07-04 11:32:08 +03:00
return rdma_lookup_get_uobject ( type_attrs , ufile , id , true ) ;
2017-08-03 16:06:55 +03:00
case UVERBS_ACCESS_NEW :
2018-07-04 11:32:08 +03:00
return rdma_alloc_begin_uobject ( type_attrs , ufile ) ;
2017-08-03 16:06:55 +03:00
default :
WARN_ON ( true ) ;
return ERR_PTR ( - EOPNOTSUPP ) ;
}
}
int uverbs_finalize_object ( struct ib_uobject * uobj ,
enum uverbs_obj_access access ,
bool commit )
{
int ret = 0 ;
/*
* refcounts should be handled at the object level and not at the
* uobject level . Refcounts of the objects themselves are done in
* handlers .
*/
switch ( access ) {
case UVERBS_ACCESS_READ :
rdma_lookup_put_uobject ( uobj , false ) ;
break ;
case UVERBS_ACCESS_WRITE :
rdma_lookup_put_uobject ( uobj , true ) ;
break ;
case UVERBS_ACCESS_DESTROY :
if ( commit )
ret = rdma_remove_commit_uobject ( uobj ) ;
else
rdma_lookup_put_uobject ( uobj , true ) ;
break ;
case UVERBS_ACCESS_NEW :
if ( commit )
ret = rdma_alloc_commit_uobject ( uobj ) ;
else
rdma_alloc_abort_uobject ( uobj ) ;
break ;
default :
WARN_ON ( true ) ;
ret = - EOPNOTSUPP ;
}
return ret ;
}