184 lines
4.3 KiB
C
184 lines
4.3 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* arch/parisc/kernel/kprobes.c
|
||
|
*
|
||
|
* PA-RISC kprobes implementation
|
||
|
*
|
||
|
* Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/patch.h>
|
||
|
|
||
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
||
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
||
|
|
||
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
if ((unsigned long)p->addr & 3UL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
p->ainsn.insn = get_insn_slot();
|
||
|
if (!p->ainsn.insn)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
memcpy(p->ainsn.insn, p->addr,
|
||
|
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
||
|
p->opcode = *p->addr;
|
||
|
flush_insn_slot(p);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
if (!p->ainsn.insn)
|
||
|
return;
|
||
|
|
||
|
free_insn_slot(p->ainsn.insn, 0);
|
||
|
p->ainsn.insn = NULL;
|
||
|
}
|
||
|
|
||
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
|
||
|
}
|
||
|
|
||
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
patch_text(p->addr, p->opcode);
|
||
|
}
|
||
|
|
||
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
kcb->prev_kprobe.kp = kprobe_running();
|
||
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
||
|
}
|
||
|
|
||
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
||
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
||
|
}
|
||
|
|
||
|
static inline void __kprobes set_current_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, p);
|
||
|
}
|
||
|
|
||
|
static void __kprobes setup_singlestep(struct kprobe *p,
|
||
|
struct kprobe_ctlblk *kcb, struct pt_regs *regs)
|
||
|
{
|
||
|
kcb->iaoq[0] = regs->iaoq[0];
|
||
|
kcb->iaoq[1] = regs->iaoq[1];
|
||
|
regs->iaoq[0] = (unsigned long)p->ainsn.insn;
|
||
|
mtctl(0, 0);
|
||
|
regs->gr[0] |= PSW_R;
|
||
|
}
|
||
|
|
||
|
int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe *p;
|
||
|
struct kprobe_ctlblk *kcb;
|
||
|
|
||
|
preempt_disable();
|
||
|
|
||
|
kcb = get_kprobe_ctlblk();
|
||
|
p = get_kprobe((unsigned long *)regs->iaoq[0]);
|
||
|
|
||
|
if (!p) {
|
||
|
preempt_enable_no_resched();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (kprobe_running()) {
|
||
|
/*
|
||
|
* We have reentered the kprobe_handler, since another kprobe
|
||
|
* was hit while within the handler, we save the original
|
||
|
* kprobes and single step on the instruction of the new probe
|
||
|
* without calling any user handlers to avoid recursive
|
||
|
* kprobes.
|
||
|
*/
|
||
|
save_previous_kprobe(kcb);
|
||
|
set_current_kprobe(p);
|
||
|
kprobes_inc_nmissed_count(p);
|
||
|
setup_singlestep(p, kcb, regs);
|
||
|
kcb->kprobe_status = KPROBE_REENTER;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
set_current_kprobe(p);
|
||
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
||
|
|
||
|
/* If we have no pre-handler or it returned 0, we continue with
|
||
|
* normal processing. If we have a pre-handler and it returned
|
||
|
* non-zero - which means user handler setup registers to exit
|
||
|
* to another instruction, we must skip the single stepping.
|
||
|
*/
|
||
|
|
||
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
||
|
setup_singlestep(p, kcb, regs);
|
||
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
||
|
} else {
|
||
|
reset_current_kprobe();
|
||
|
preempt_enable_no_resched();
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
struct kprobe *p = kprobe_running();
|
||
|
|
||
|
if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
|
||
|
return 0;
|
||
|
|
||
|
/* restore back original saved kprobe variables and continue */
|
||
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
||
|
restore_previous_kprobe(kcb);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* for absolute branch instructions we can copy iaoq_b. for relative
|
||
|
* branch instructions we need to calculate the new address based on the
|
||
|
* difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
|
||
|
* modificationt because it's based on our ainsn.insn address.
|
||
|
*/
|
||
|
|
||
|
if (p->post_handler)
|
||
|
p->post_handler(p, regs, 0);
|
||
|
|
||
|
switch (regs->iir >> 26) {
|
||
|
case 0x38: /* BE */
|
||
|
case 0x39: /* BE,L */
|
||
|
case 0x3a: /* BV */
|
||
|
case 0x3b: /* BVE */
|
||
|
/* for absolute branches, regs->iaoq[1] has already the right
|
||
|
* address
|
||
|
*/
|
||
|
regs->iaoq[0] = kcb->iaoq[1];
|
||
|
break;
|
||
|
default:
|
||
|
regs->iaoq[1] = kcb->iaoq[0];
|
||
|
regs->iaoq[1] += (regs->iaoq[1] - regs->iaoq[0]) + 4;
|
||
|
regs->iaoq[0] = kcb->iaoq[1];
|
||
|
break;
|
||
|
}
|
||
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||
|
reset_current_kprobe();
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
bool arch_kprobe_on_func_entry(unsigned long offset)
|
||
|
{
|
||
|
return !offset;
|
||
|
}
|
||
|
|
||
|
int __init arch_init_kprobes(void)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|