2008-07-14 20:08:37 +04:00
/*
* This file is part of UBIFS .
*
* Copyright ( C ) 2006 - 2008 Nokia Corporation
*
* This program is free software ; you can redistribute it and / or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation .
*
* This program is distributed in the hope that it will be useful , but WITHOUT
* ANY WARRANTY ; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Public License for
* more details .
*
* You should have received a copy of the GNU General Public License along with
* this program ; if not , write to the Free Software Foundation , Inc . , 51
* Franklin St , Fifth Floor , Boston , MA 02110 - 1301 USA
*
* Authors : Artem Bityutskiy ( Б и т ю ц к и й А р т ё м )
* Adrian Hunter
*/
# ifndef __UBIFS_H__
# define __UBIFS_H__
# include <asm/div64.h>
# include <linux/statfs.h>
# include <linux/fs.h>
# include <linux/err.h>
# include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
# include <linux/slab.h>
2008-07-14 20:08:37 +04:00
# include <linux/vmalloc.h>
# include <linux/spinlock.h>
# include <linux/mutex.h>
# include <linux/rwsem.h>
# include <linux/mtd/ubi.h>
# include <linux/pagemap.h>
# include <linux/backing-dev.h>
# include "ubifs-media.h"
/* Version of this UBIFS implementation */
# define UBIFS_VERSION 1
/* Normal UBIFS messages */
# define ubifs_msg(fmt, ...) \
printk ( KERN_NOTICE " UBIFS: " fmt " \n " , # # __VA_ARGS__ )
/* UBIFS error messages */
# define ubifs_err(fmt, ...) \
printk ( KERN_ERR " UBIFS error (pid %d): %s: " fmt " \n " , current - > pid , \
__func__ , # # __VA_ARGS__ )
/* UBIFS warning messages */
# define ubifs_warn(fmt, ...) \
printk ( KERN_WARNING " UBIFS warning (pid %d): %s: " fmt " \n " , \
current - > pid , __func__ , # # __VA_ARGS__ )
/* UBIFS file system VFS magic number */
# define UBIFS_SUPER_MAGIC 0x24051905
/* Number of UBIFS blocks per VFS page */
# define UBIFS_BLOCKS_PER_PAGE (PAGE_CACHE_SIZE / UBIFS_BLOCK_SIZE)
# define UBIFS_BLOCKS_PER_PAGE_SHIFT (PAGE_CACHE_SHIFT - UBIFS_BLOCK_SHIFT)
/* "File system end of life" sequence number watermark */
# define SQNUM_WARN_WATERMARK 0xFFFFFFFF00000000ULL
# define SQNUM_WATERMARK 0xFFFFFFFFFF000000ULL
2008-12-19 20:26:29 +03:00
/*
* Minimum amount of LEBs reserved for the index . At present the index needs at
* least 2 LEBs : one for the index head and one for in - the - gaps method ( which
* currently does not cater for the index head and so excludes it from
* consideration ) .
*/
# define MIN_INDEX_LEBS 2
2008-07-14 20:08:37 +04:00
/* Minimum amount of data UBIFS writes to the flash */
# define MIN_WRITE_SZ (UBIFS_DATA_NODE_SZ + 8)
/*
* Currently we do not support inode number overlapping and re - using , so this
* watermark defines dangerous inode number level . This should be fixed later ,
* although it is difficult to exceed current limit . Another option is to use
* 64 - bit inode numbers , but this means more overhead .
*/
# define INUM_WARN_WATERMARK 0xFFF00000
# define INUM_WATERMARK 0xFFFFFF00
/* Largest key size supported in this implementation */
# define CUR_MAX_KEY_LEN UBIFS_SK_LEN
/* Maximum number of entries in each LPT (LEB category) heap */
# define LPT_HEAP_SZ 256
/*
* Background thread name pattern . The numbers are UBI device and volume
* numbers .
*/
# define BGT_NAME_PATTERN "ubifs_bgt%d_%d"
2009-06-23 21:26:33 +04:00
/* Write-buffer synchronization timeout interval in seconds */
# define WBUF_TIMEOUT_SOFTLIMIT 3
# define WBUF_TIMEOUT_HARDLIMIT 5
2008-07-14 20:08:37 +04:00
/* Maximum possible inode number (only 32-bit inodes are supported now) */
# define MAX_INUM 0xFFFFFFFF
/* Number of non-data journal heads */
# define NONDATA_JHEADS_CNT 2
2009-09-15 15:44:06 +04:00
/* Shorter names for journal head numbers for internal usage */
# define GCHD UBIFS_GC_HEAD
# define BASEHD UBIFS_BASE_HEAD
# define DATAHD UBIFS_DATA_HEAD
2008-07-14 20:08:37 +04:00
/* 'No change' value for 'ubifs_change_lp()' */
# define LPROPS_NC 0x80000001
/*
* There is no notion of truncation key because truncation nodes do not exist
* in TNC . However , when replaying , it is handy to introduce fake " truncation "
* keys for truncation nodes because the code becomes simpler . So we define
* % UBIFS_TRUN_KEY type .
2010-08-22 08:10:12 +04:00
*
* But otherwise , out of the journal reply scope , the truncation keys are
* invalid .
2008-07-14 20:08:37 +04:00
*/
2010-08-22 08:10:12 +04:00
# define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT
# define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT
2008-07-14 20:08:37 +04:00
/*
* How much a directory entry / extended attribute entry adds to the parent / host
* inode .
*/
# define CALC_DENT_SIZE(name_len) ALIGN(UBIFS_DENT_NODE_SZ + (name_len) + 1, 8)
/* How much an extended attribute adds to the host inode */
# define CALC_XATTR_BYTES(data_len) ALIGN(UBIFS_INO_NODE_SZ + (data_len) + 1, 8)
/*
* Znodes which were not touched for ' OLD_ZNODE_AGE ' seconds are considered
* " old " , and znode which were touched last ' YOUNG_ZNODE_AGE ' seconds ago are
* considered " young " . This is used by shrinker when selecting znode to trim
* off .
*/
# define OLD_ZNODE_AGE 20
# define YOUNG_ZNODE_AGE 5
/*
* Some compressors , like LZO , may end up with more data then the input buffer .
* So UBIFS always allocates larger output buffer , to be sure the compressor
* will not corrupt memory in case of worst case compression .
*/
# define WORST_COMPR_FACTOR 2
/* Maximum expected tree height for use by bottom_up_buf */
# define BOTTOM_UP_HEIGHT 64
2008-09-02 17:29:46 +04:00
/* Maximum number of data nodes to bulk-read */
# define UBIFS_MAX_BULK_READ 32
2008-07-14 20:08:37 +04:00
/*
* Lockdep classes for UBIFS inode @ ui_mutex .
*/
enum {
WB_MUTEX_1 = 0 ,
WB_MUTEX_2 = 1 ,
WB_MUTEX_3 = 2 ,
} ;
/*
* Znode flags ( actually , bit numbers which store the flags ) .
*
* DIRTY_ZNODE : znode is dirty
* COW_ZNODE : znode is being committed and a new instance of this znode has to
* be created before changing this znode
* OBSOLETE_ZNODE : znode is obsolete , which means it was deleted , but it is
* still in the commit list and the ongoing commit operation
* will commit it , and delete this znode after it is done
*/
enum {
DIRTY_ZNODE = 0 ,
COW_ZNODE = 1 ,
OBSOLETE_ZNODE = 2 ,
} ;
/*
* Commit states .
*
* COMMIT_RESTING : commit is not wanted
* COMMIT_BACKGROUND : background commit has been requested
* COMMIT_REQUIRED : commit is required
* COMMIT_RUNNING_BACKGROUND : background commit is running
* COMMIT_RUNNING_REQUIRED : commit is running and it is required
* COMMIT_BROKEN : commit failed
*/
enum {
COMMIT_RESTING = 0 ,
COMMIT_BACKGROUND ,
COMMIT_REQUIRED ,
COMMIT_RUNNING_BACKGROUND ,
COMMIT_RUNNING_REQUIRED ,
COMMIT_BROKEN ,
} ;
/*
* ' ubifs_scan_a_node ( ) ' return values .
*
* SCANNED_GARBAGE : scanned garbage
* SCANNED_EMPTY_SPACE : scanned empty space
* SCANNED_A_NODE : scanned a valid node
* SCANNED_A_CORRUPT_NODE : scanned a corrupted node
* SCANNED_A_BAD_PAD_NODE : scanned a padding node with invalid pad length
*
* Greater than zero means : ' scanned that number of padding bytes '
*/
enum {
SCANNED_GARBAGE = 0 ,
SCANNED_EMPTY_SPACE = - 1 ,
SCANNED_A_NODE = - 2 ,
SCANNED_A_CORRUPT_NODE = - 3 ,
SCANNED_A_BAD_PAD_NODE = - 4 ,
} ;
/*
* LPT cnode flag bits .
*
* DIRTY_CNODE : cnode is dirty
* COW_CNODE : cnode is being committed and must be copied before writing
* OBSOLETE_CNODE : cnode is being committed and has been copied ( or deleted ) ,
* so it can ( and must ) be freed when the commit is finished
*/
enum {
DIRTY_CNODE = 0 ,
COW_CNODE = 1 ,
OBSOLETE_CNODE = 2 ,
} ;
/*
* Dirty flag bits ( lpt_drty_flgs ) for LPT special nodes .
*
* LTAB_DIRTY : ltab node is dirty
* LSAVE_DIRTY : lsave node is dirty
*/
enum {
LTAB_DIRTY = 1 ,
LSAVE_DIRTY = 2 ,
} ;
/*
* Return codes used by the garbage collector .
* @ LEB_FREED : the logical eraseblock was freed and is ready to use
* @ LEB_FREED_IDX : indexing LEB was freed and can be used only after the commit
* @ LEB_RETAINED : the logical eraseblock was freed and retained for GC purposes
*/
enum {
LEB_FREED ,
LEB_FREED_IDX ,
LEB_RETAINED ,
} ;
/**
* struct ubifs_old_idx - index node obsoleted since last commit start .
* @ rb : rb - tree node
* @ lnum : LEB number of obsoleted index node
* @ offs : offset of obsoleted index node
*/
struct ubifs_old_idx {
struct rb_node rb ;
int lnum ;
int offs ;
} ;
/* The below union makes it easier to deal with keys */
union ubifs_key {
uint8_t u8 [ CUR_MAX_KEY_LEN ] ;
uint32_t u32 [ CUR_MAX_KEY_LEN / 4 ] ;
uint64_t u64 [ CUR_MAX_KEY_LEN / 8 ] ;
__le32 j32 [ CUR_MAX_KEY_LEN / 4 ] ;
} ;
/**
* struct ubifs_scan_node - UBIFS scanned node information .
* @ list : list of scanned nodes
* @ key : key of node scanned ( if it has one )
* @ sqnum : sequence number
* @ type : type of node scanned
* @ offs : offset with LEB of node scanned
* @ len : length of node scanned
* @ node : raw node
*/
struct ubifs_scan_node {
struct list_head list ;
union ubifs_key key ;
unsigned long long sqnum ;
int type ;
int offs ;
int len ;
void * node ;
} ;
/**
* struct ubifs_scan_leb - UBIFS scanned LEB information .
* @ lnum : logical eraseblock number
* @ nodes_cnt : number of nodes scanned
* @ nodes : list of struct ubifs_scan_node
* @ endpt : end point ( and therefore the start of empty space )
* @ ecc : read returned - EBADMSG
* @ buf : buffer containing entire LEB scanned
*/
struct ubifs_scan_leb {
int lnum ;
int nodes_cnt ;
struct list_head nodes ;
int endpt ;
int ecc ;
void * buf ;
} ;
/**
* struct ubifs_gced_idx_leb - garbage - collected indexing LEB .
* @ list : list
* @ lnum : LEB number
* @ unmap : OK to unmap this LEB
*
* This data structure is used to temporary store garbage - collected indexing
* LEBs - they are not released immediately , but only after the next commit .
* This is needed to guarantee recoverability .
*/
struct ubifs_gced_idx_leb {
struct list_head list ;
int lnum ;
int unmap ;
} ;
/**
* struct ubifs_inode - UBIFS in - memory inode description .
* @ vfs_inode : VFS inode description object
* @ creat_sqnum : sequence number at time of creation
2008-07-22 14:06:20 +04:00
* @ del_cmtno : commit number corresponding to the time the inode was deleted ,
* protected by @ c - > commit_sem ;
2008-07-14 20:08:37 +04:00
* @ xattr_size : summarized size of all extended attributes in bytes
* @ xattr_cnt : count of extended attributes this inode has
* @ xattr_names : sum of lengths of all extended attribute names belonging to
* this inode
* @ dirty : non - zero if the inode is dirty
* @ xattr : non - zero if this is an extended attribute inode
2008-09-08 17:13:38 +04:00
* @ bulk_read : non - zero if bulk - read should be used
2008-07-14 20:08:37 +04:00
* @ ui_mutex : serializes inode write - back with the rest of VFS operations ,
2008-09-02 17:29:46 +04:00
* serializes " clean <-> dirty " state changes , serializes bulk - read ,
2008-09-08 17:38:01 +04:00
* protects @ dirty , @ bulk_read , @ ui_size , and @ xattr_size
2008-07-14 20:08:37 +04:00
* @ ui_lock : protects @ synced_i_size
* @ synced_i_size : synchronized size of inode , i . e . the value of inode size
* currently stored on the flash ; used only for regular file
* inodes
* @ ui_size : inode size used by UBIFS when writing to flash
* @ flags : inode flags ( @ UBIFS_COMPR_FL , etc )
* @ compr_type : default compression type used for this inode
2008-09-02 17:29:46 +04:00
* @ last_page_read : page number of last page read ( for bulk read )
* @ read_in_a_row : number of consecutive pages read in a row ( for bulk read )
2008-07-14 20:08:37 +04:00
* @ data_len : length of the data attached to the inode
* @ data : inode ' s data
*
* @ ui_mutex exists for two main reasons . At first it prevents inodes from
* being written back while UBIFS changing them , being in the middle of an VFS
* operation . This way UBIFS makes sure the inode fields are consistent . For
* example , in ' ubifs_rename ( ) ' we change 3 inodes simultaneously , and
* write - back must not write any of them before we have finished .
*
* The second reason is budgeting - UBIFS has to budget all operations . If an
* operation is going to mark an inode dirty , it has to allocate budget for
* this . It cannot just mark it dirty because there is no guarantee there will
* be enough flash space to write the inode back later . This means UBIFS has
* to have full control over inode " clean <-> dirty " transitions ( and pages
* actually ) . But unfortunately , VFS marks inodes dirty in many places , and it
* does not ask the file - system if it is allowed to do so ( there is a notifier ,
* but it is not enough ) , i . e . , there is no mechanism to synchronize with this .
* So UBIFS has its own inode dirty flag and its own mutex to serialize
* " clean <-> dirty " transitions .
*
* The @ synced_i_size field is used to make sure we never write pages which are
* beyond last synchronized inode size . See ' ubifs_writepage ( ) ' for more
* information .
*
* The @ ui_size is a " shadow " variable for @ inode - > i_size and UBIFS uses
* @ ui_size instead of @ inode - > i_size . The reason for this is that UBIFS cannot
* make sure @ inode - > i_size is always changed under @ ui_mutex , because it
2010-06-04 13:30:04 +04:00
* cannot call ' truncate_setsize ( ) ' with @ ui_mutex locked , because it would deadlock
2008-07-14 20:08:37 +04:00
* with ' ubifs_writepage ( ) ' ( see file . c ) . All the other inode fields are
* changed under @ ui_mutex , so they do not need " shadow " fields . Note , one
* could consider to rework locking and base it on " shadow " fields .
*/
struct ubifs_inode {
struct inode vfs_inode ;
2008-07-23 16:23:11 +04:00
unsigned long long creat_sqnum ;
unsigned long long del_cmtno ;
2008-07-14 20:08:37 +04:00
unsigned int xattr_size ;
unsigned int xattr_cnt ;
unsigned int xattr_names ;
unsigned int dirty : 1 ;
unsigned int xattr : 1 ;
2008-09-08 17:13:38 +04:00
unsigned int bulk_read : 1 ;
2008-11-01 15:20:50 +03:00
unsigned int compr_type : 2 ;
2008-07-14 20:08:37 +04:00
struct mutex ui_mutex ;
spinlock_t ui_lock ;
loff_t synced_i_size ;
loff_t ui_size ;
int flags ;
2008-09-02 17:29:46 +04:00
pgoff_t last_page_read ;
pgoff_t read_in_a_row ;
2008-07-14 20:08:37 +04:00
int data_len ;
void * data ;
} ;
/**
* struct ubifs_unclean_leb - records a LEB recovered under read - only mode .
* @ list : list
* @ lnum : LEB number of recovered LEB
* @ endpt : offset where recovery ended
*
* This structure records a LEB identified during recovery that needs to be
* cleaned but was not because UBIFS was mounted read - only . The information
* is used to clean the LEB when remounting to read - write mode .
*/
struct ubifs_unclean_leb {
struct list_head list ;
int lnum ;
int endpt ;
} ;
/*
* LEB properties flags .
*
* LPROPS_UNCAT : not categorized
2009-01-19 20:57:27 +03:00
* LPROPS_DIRTY : dirty > free , dirty > = @ c - > dead_wm , not index
2008-12-12 19:13:17 +03:00
* LPROPS_DIRTY_IDX : dirty + free > @ c - > min_idx_node_sze and index
2009-01-19 20:57:27 +03:00
* LPROPS_FREE : free > 0 , dirty < @ c - > dead_wm , not empty , not index
2008-07-14 20:08:37 +04:00
* LPROPS_HEAP_CNT : number of heaps used for storing categorized LEBs
* LPROPS_EMPTY : LEB is empty , not taken
* LPROPS_FREEABLE : free + dirty = = leb_size , not index , not taken
* LPROPS_FRDI_IDX : free + dirty = = leb_size and index , may be taken
* LPROPS_CAT_MASK : mask for the LEB categories above
* LPROPS_TAKEN : LEB was taken ( this flag is not saved on the media )
* LPROPS_INDEX : LEB contains indexing nodes ( this flag also exists on flash )
*/
enum {
LPROPS_UNCAT = 0 ,
LPROPS_DIRTY = 1 ,
LPROPS_DIRTY_IDX = 2 ,
LPROPS_FREE = 3 ,
LPROPS_HEAP_CNT = 3 ,
LPROPS_EMPTY = 4 ,
LPROPS_FREEABLE = 5 ,
LPROPS_FRDI_IDX = 6 ,
LPROPS_CAT_MASK = 15 ,
LPROPS_TAKEN = 16 ,
LPROPS_INDEX = 32 ,
} ;
/**
* struct ubifs_lprops - logical eraseblock properties .
* @ free : amount of free space in bytes
* @ dirty : amount of dirty space in bytes
* @ flags : LEB properties flags ( see above )
* @ lnum : LEB number
* @ list : list of same - category lprops ( for LPROPS_EMPTY and LPROPS_FREEABLE )
* @ hpos : heap position in heap of same - category lprops ( other categories )
*/
struct ubifs_lprops {
int free ;
int dirty ;
int flags ;
int lnum ;
union {
struct list_head list ;
int hpos ;
} ;
} ;
/**
* struct ubifs_lpt_lprops - LPT logical eraseblock properties .
* @ free : amount of free space in bytes
* @ dirty : amount of dirty space in bytes
* @ tgc : trivial GC flag ( 1 = > unmap after commit end )
* @ cmt : commit flag ( 1 = > reserved for commit )
*/
struct ubifs_lpt_lprops {
int free ;
int dirty ;
2008-12-28 12:34:26 +03:00
unsigned tgc : 1 ;
unsigned cmt : 1 ;
2008-07-14 20:08:37 +04:00
} ;
/**
* struct ubifs_lp_stats - statistics of eraseblocks in the main area .
* @ empty_lebs : number of empty LEBs
* @ taken_empty_lebs : number of taken LEBs
* @ idx_lebs : number of indexing LEBs
2008-12-16 18:52:35 +03:00
* @ total_free : total free space in bytes ( includes all LEBs )
* @ total_dirty : total dirty space in bytes ( includes all LEBs )
* @ total_used : total used space in bytes ( does not include index LEBs )
* @ total_dead : total dead space in bytes ( does not include index LEBs )
* @ total_dark : total dark space in bytes ( does not include index LEBs )
2008-07-14 20:08:37 +04:00
*
2008-12-16 18:52:35 +03:00
* The @ taken_empty_lebs field counts the LEBs that are in the transient state
* of having been " taken " for use but not yet written to . @ taken_empty_lebs is
* needed to account correctly for @ gc_lnum , otherwise @ empty_lebs could be
* used by itself ( in which case ' unused_lebs ' would be a better name ) . In the
* case of @ gc_lnum , it is " taken " at mount time or whenever a LEB is retained
* by GC , but unlike other empty LEBs that are " taken " , it may not be written
* straight away ( i . e . before the next commit start or unmount ) , so either
* @ gc_lnum must be specially accounted for , or the current approach followed
* i . e . count it under @ taken_empty_lebs .
2008-07-14 20:08:37 +04:00
*
2008-12-16 18:52:35 +03:00
* @ empty_lebs includes @ taken_empty_lebs .
*
* @ total_used , @ total_dead and @ total_dark fields do not account indexing
* LEBs .
2008-07-14 20:08:37 +04:00
*/
struct ubifs_lp_stats {
int empty_lebs ;
int taken_empty_lebs ;
int idx_lebs ;
long long total_free ;
long long total_dirty ;
long long total_used ;
long long total_dead ;
long long total_dark ;
} ;
struct ubifs_nnode ;
/**
* struct ubifs_cnode - LEB Properties Tree common node .
* @ parent : parent nnode
* @ cnext : next cnode to commit
* @ flags : flags ( % DIRTY_LPT_NODE or % OBSOLETE_LPT_NODE )
* @ iip : index in parent
* @ level : level in the tree ( zero for pnodes , greater than zero for nnodes )
* @ num : node number
*/
struct ubifs_cnode {
struct ubifs_nnode * parent ;
struct ubifs_cnode * cnext ;
unsigned long flags ;
int iip ;
int level ;
int num ;
} ;
/**
* struct ubifs_pnode - LEB Properties Tree leaf node .
* @ parent : parent nnode
* @ cnext : next cnode to commit
* @ flags : flags ( % DIRTY_LPT_NODE or % OBSOLETE_LPT_NODE )
* @ iip : index in parent
* @ level : level in the tree ( always zero for pnodes )
* @ num : node number
* @ lprops : LEB properties array
*/
struct ubifs_pnode {
struct ubifs_nnode * parent ;
struct ubifs_cnode * cnext ;
unsigned long flags ;
int iip ;
int level ;
int num ;
struct ubifs_lprops lprops [ UBIFS_LPT_FANOUT ] ;
} ;
/**
* struct ubifs_nbranch - LEB Properties Tree internal node branch .
* @ lnum : LEB number of child
* @ offs : offset of child
* @ nnode : nnode child
* @ pnode : pnode child
* @ cnode : cnode child
*/
struct ubifs_nbranch {
int lnum ;
int offs ;
union {
struct ubifs_nnode * nnode ;
struct ubifs_pnode * pnode ;
struct ubifs_cnode * cnode ;
} ;
} ;
/**
* struct ubifs_nnode - LEB Properties Tree internal node .
* @ parent : parent nnode
* @ cnext : next cnode to commit
* @ flags : flags ( % DIRTY_LPT_NODE or % OBSOLETE_LPT_NODE )
* @ iip : index in parent
* @ level : level in the tree ( always greater than zero for nnodes )
* @ num : node number
* @ nbranch : branches to child nodes
*/
struct ubifs_nnode {
struct ubifs_nnode * parent ;
struct ubifs_cnode * cnext ;
unsigned long flags ;
int iip ;
int level ;
int num ;
struct ubifs_nbranch nbranch [ UBIFS_LPT_FANOUT ] ;
} ;
/**
* struct ubifs_lpt_heap - heap of categorized lprops .
* @ arr : heap array
* @ cnt : number in heap
* @ max_cnt : maximum number allowed in heap
*
* There are % LPROPS_HEAP_CNT heaps .
*/
struct ubifs_lpt_heap {
struct ubifs_lprops * * arr ;
int cnt ;
int max_cnt ;
} ;
/*
* Return codes for LPT scan callback function .
*
* LPT_SCAN_CONTINUE : continue scanning
* LPT_SCAN_ADD : add the LEB properties scanned to the tree in memory
* LPT_SCAN_STOP : stop scanning
*/
enum {
LPT_SCAN_CONTINUE = 0 ,
LPT_SCAN_ADD = 1 ,
LPT_SCAN_STOP = 2 ,
} ;
struct ubifs_info ;
/* Callback used by the 'ubifs_lpt_scan_nolock()' function */
typedef int ( * ubifs_lpt_scan_callback ) ( struct ubifs_info * c ,
const struct ubifs_lprops * lprops ,
int in_tree , void * data ) ;
/**
* struct ubifs_wbuf - UBIFS write - buffer .
* @ c : UBIFS file - system description object
* @ buf : write - buffer ( of min . flash I / O unit size )
* @ lnum : logical eraseblock number the write - buffer points to
* @ offs : write - buffer offset in this logical eraseblock
* @ avail : number of bytes available in the write - buffer
* @ used : number of used bytes in the write - buffer
* @ dtype : type of data stored in this LEB ( % UBI_LONGTERM , % UBI_SHORTTERM ,
* % UBI_UNKNOWN )
* @ jhead : journal head the mutex belongs to ( note , needed only to shut lockdep
* up by ' mutex_lock_nested ( ) ) .
* @ sync_callback : write - buffer synchronization callback
* @ io_mutex : serializes write - buffer I / O
* @ lock : serializes @ buf , @ lnum , @ offs , @ avail , @ used , @ next_ino and @ inodes
* fields
2009-05-28 17:24:15 +04:00
* @ softlimit : soft write - buffer timeout interval
* @ delta : hard and soft timeouts delta ( the timer expire inteval is @ softlimit
* and @ softlimit + @ delta )
2008-07-14 20:08:37 +04:00
* @ timer : write - buffer timer
2009-06-24 10:59:38 +04:00
* @ no_timer : non - zero if this write - buffer does not have a timer
* @ need_sync : non - zero if the timer expired and the wbuf needs sync ' ing
2008-07-14 20:08:37 +04:00
* @ next_ino : points to the next position of the following inode number
* @ inodes : stores the inode numbers of the nodes which are in wbuf
*
* The write - buffer synchronization callback is called when the write - buffer is
* synchronized in order to notify how much space was wasted due to
* write - buffer padding and how much free space is left in the LEB .
*
* Note : the fields @ buf , @ lnum , @ offs , @ avail and @ used can be read under
* spin - lock or mutex because they are written under both mutex and spin - lock .
* @ buf is appended to under mutex but overwritten under both mutex and
* spin - lock . Thus the data between @ buf and @ buf + @ used can be read under
* spinlock .
*/
struct ubifs_wbuf {
struct ubifs_info * c ;
void * buf ;
int lnum ;
int offs ;
int avail ;
int used ;
int dtype ;
int jhead ;
int ( * sync_callback ) ( struct ubifs_info * c , int lnum , int free , int pad ) ;
struct mutex io_mutex ;
spinlock_t lock ;
2009-05-28 17:24:15 +04:00
ktime_t softlimit ;
unsigned long long delta ;
struct hrtimer timer ;
2009-06-23 13:30:43 +04:00
unsigned int no_timer : 1 ;
unsigned int need_sync : 1 ;
2008-07-14 20:08:37 +04:00
int next_ino ;
ino_t * inodes ;
} ;
/**
* struct ubifs_bud - bud logical eraseblock .
* @ lnum : logical eraseblock number
* @ start : where the ( uncommitted ) bud data starts
* @ jhead : journal head number this bud belongs to
* @ list : link in the list buds belonging to the same journal head
* @ rb : link in the tree of all buds
*/
struct ubifs_bud {
int lnum ;
int start ;
int jhead ;
struct list_head list ;
struct rb_node rb ;
} ;
/**
* struct ubifs_jhead - journal head .
* @ wbuf : head ' s write - buffer
* @ buds_list : list of bud LEBs belonging to this journal head
*
* Note , the @ buds list is protected by the @ c - > buds_lock .
*/
struct ubifs_jhead {
struct ubifs_wbuf wbuf ;
struct list_head buds_list ;
} ;
/**
* struct ubifs_zbranch - key / coordinate / length branch stored in znodes .
* @ key : key
* @ znode : znode address in memory
2008-09-08 19:08:39 +04:00
* @ lnum : LEB number of the target node ( indexing node or data node )
* @ offs : target node offset within @ lnum
2008-07-14 20:08:37 +04:00
* @ len : target node length
*/
struct ubifs_zbranch {
union ubifs_key key ;
union {
struct ubifs_znode * znode ;
void * leaf ;
} ;
int lnum ;
int offs ;
int len ;
} ;
/**
* struct ubifs_znode - in - memory representation of an indexing node .
* @ parent : parent znode or NULL if it is the root
* @ cnext : next znode to commit
* @ flags : znode flags ( % DIRTY_ZNODE , % COW_ZNODE or % OBSOLETE_ZNODE )
* @ time : last access time ( seconds )
* @ level : level of the entry in the TNC tree
* @ child_cnt : count of child znodes
* @ iip : index in parent ' s zbranch array
* @ alt : lower bound of key range has altered i . e . child inserted at slot 0
* @ lnum : LEB number of the corresponding indexing node
* @ offs : offset of the corresponding indexing node
* @ len : length of the corresponding indexing node
* @ zbranch : array of znode branches ( @ c - > fanout elements )
*/
struct ubifs_znode {
struct ubifs_znode * parent ;
struct ubifs_znode * cnext ;
unsigned long flags ;
unsigned long time ;
int level ;
int child_cnt ;
int iip ;
int alt ;
# ifdef CONFIG_UBIFS_FS_DEBUG
int lnum , offs , len ;
# endif
struct ubifs_zbranch zbranch [ ] ;
} ;
2008-09-02 17:29:46 +04:00
/**
2008-11-18 19:09:49 +03:00
* struct bu_info - bulk - read information .
2008-09-02 17:29:46 +04:00
* @ key : first data node key
* @ zbranch : zbranches of data nodes to bulk read
* @ buf : buffer to read into
* @ buf_len : buffer length
* @ gc_seq : GC sequence number to detect races with GC
* @ cnt : number of data nodes for bulk read
* @ blk_cnt : number of data blocks including holes
* @ oef : end of file reached
*/
struct bu_info {
union ubifs_key key ;
struct ubifs_zbranch zbranch [ UBIFS_MAX_BULK_READ ] ;
void * buf ;
int buf_len ;
int gc_seq ;
int cnt ;
int blk_cnt ;
int eof ;
} ;
2008-07-14 20:08:37 +04:00
/**
* struct ubifs_node_range - node length range description data structure .
* @ len : fixed node length
* @ min_len : minimum possible node length
* @ max_len : maximum possible node length
*
* If @ max_len is % 0 , the node has fixed length @ len .
*/
struct ubifs_node_range {
union {
int len ;
int min_len ;
} ;
int max_len ;
} ;
/**
* struct ubifs_compressor - UBIFS compressor description structure .
* @ compr_type : compressor type ( % UBIFS_COMPR_LZO , etc )
* @ cc : cryptoapi compressor handle
* @ comp_mutex : mutex used during compression
* @ decomp_mutex : mutex used during decompression
* @ name : compressor name
* @ capi_name : cryptoapi compressor name
*/
struct ubifs_compressor {
int compr_type ;
struct crypto_comp * cc ;
struct mutex * comp_mutex ;
struct mutex * decomp_mutex ;
const char * name ;
const char * capi_name ;
} ;
/**
* struct ubifs_budget_req - budget requirements of an operation .
*
2008-07-22 14:06:20 +04:00
* @ fast : non - zero if the budgeting should try to acquire budget quickly and
2008-07-14 20:08:37 +04:00
* should not try to call write - back
* @ recalculate : non - zero if @ idx_growth , @ data_growth , and @ dd_growth fields
* have to be re - calculated
* @ new_page : non - zero if the operation adds a new page
* @ dirtied_page : non - zero if the operation makes a page dirty
* @ new_dent : non - zero if the operation adds a new directory entry
* @ mod_dent : non - zero if the operation removes or modifies an existing
* directory entry
* @ new_ino : non - zero if the operation adds a new inode
* @ new_ino_d : now much data newly created inode contains
* @ dirtied_ino : how many inodes the operation makes dirty
* @ dirtied_ino_d : now much data dirtied inode contains
* @ idx_growth : how much the index will supposedly grow
* @ data_growth : how much new data the operation will supposedly add
* @ dd_growth : how much data that makes other data dirty the operation will
* supposedly add
*
* @ idx_growth , @ data_growth and @ dd_growth are not used in budget request . The
* budgeting subsystem caches index and data growth values there to avoid
* re - calculating them when the budget is released . However , if @ idx_growth is
* % - 1 , it is calculated by the release function using other fields .
*
* An inode may contain 4 KiB of data at max . , thus the widths of @ new_ino_d
* is 13 bits , and @ dirtied_ino_d - 15 , because up to 4 inodes may be made
* dirty by the re - name operation .
2008-07-24 15:52:45 +04:00
*
* Note , UBIFS aligns node lengths to 8 - bytes boundary , so the requester has to
* make sure the amount of inode data which contribute to @ new_ino_d and
* @ dirtied_ino_d fields are aligned .
2008-07-14 20:08:37 +04:00
*/
struct ubifs_budget_req {
unsigned int fast : 1 ;
unsigned int recalculate : 1 ;
2008-07-24 15:42:05 +04:00
# ifndef UBIFS_DEBUG
2008-07-14 20:08:37 +04:00
unsigned int new_page : 1 ;
unsigned int dirtied_page : 1 ;
unsigned int new_dent : 1 ;
unsigned int mod_dent : 1 ;
unsigned int new_ino : 1 ;
unsigned int new_ino_d : 13 ;
unsigned int dirtied_ino : 4 ;
unsigned int dirtied_ino_d : 15 ;
# else
/* Not bit-fields to check for overflows */
2008-07-24 15:42:05 +04:00
unsigned int new_page ;
unsigned int dirtied_page ;
unsigned int new_dent ;
unsigned int mod_dent ;
unsigned int new_ino ;
unsigned int new_ino_d ;
2008-07-14 20:08:37 +04:00
unsigned int dirtied_ino ;
unsigned int dirtied_ino_d ;
# endif
int idx_growth ;
int data_growth ;
int dd_growth ;
} ;
/**
* struct ubifs_orphan - stores the inode number of an orphan .
* @ rb : rb - tree node of rb - tree of orphans sorted by inode number
* @ list : list head of list of orphans in order added
* @ new_list : list head of list of orphans added since the last commit
* @ cnext : next orphan to commit
* @ dnext : next orphan to delete
* @ inum : inode number
* @ new : % 1 = > added since the last commit , otherwise % 0
*/
struct ubifs_orphan {
struct rb_node rb ;
struct list_head list ;
struct list_head new_list ;
struct ubifs_orphan * cnext ;
struct ubifs_orphan * dnext ;
ino_t inum ;
int new ;
} ;
/**
* struct ubifs_mount_opts - UBIFS - specific mount options information .
* @ unmount_mode : selected unmount mode ( % 0 default , % 1 normal , % 2 fast )
2008-11-01 15:57:49 +03:00
* @ bulk_read : enable / disable bulk - reads ( % 0 default , % 1 disabe , % 2 enable )
* @ chk_data_crc : enable / disable CRC data checking when reading data nodes
* ( % 0 default , % 1 disabe , % 2 enable )
* @ override_compr : override default compressor ( % 0 - do not override and use
* superblock compressor , % 1 - override and use compressor
* specified in @ compr_type )
* @ compr_type : compressor type to override the superblock compressor with
* ( % UBIFS_COMPR_NONE , etc )
2008-07-14 20:08:37 +04:00
*/
struct ubifs_mount_opts {
unsigned int unmount_mode : 2 ;
2008-09-02 17:29:46 +04:00
unsigned int bulk_read : 2 ;
2008-09-04 17:26:00 +04:00
unsigned int chk_data_crc : 2 ;
2008-11-01 15:57:49 +03:00
unsigned int override_compr : 1 ;
unsigned int compr_type : 2 ;
2008-07-14 20:08:37 +04:00
} ;
2008-10-17 14:31:39 +04:00
struct ubifs_debug_info ;
2008-07-14 20:08:37 +04:00
/**
* struct ubifs_info - UBIFS file - system description data structure
* ( per - superblock ) .
* @ vfs_sb : VFS @ struct super_block object
2008-07-22 14:06:20 +04:00
* @ bdi : backing device info object to make VFS happy and disable read - ahead
2008-07-14 20:08:37 +04:00
*
* @ highest_inum : highest used inode number
* @ max_sqnum : current global sequence number
2008-07-21 18:14:29 +04:00
* @ cmt_no : commit number of the last successfully completed commit , protected
* by @ commit_sem
2008-08-01 16:35:08 +04:00
* @ cnt_lock : protects @ highest_inum and @ max_sqnum counters
2008-07-14 20:08:37 +04:00
* @ fmt_version : UBIFS on - flash format version
2009-03-26 13:51:21 +03:00
* @ ro_compat_version : R / O compatibility version
2008-07-14 20:08:37 +04:00
* @ uuid : UUID from super block
*
* @ lhead_lnum : log head logical eraseblock number
* @ lhead_offs : log head offset
* @ ltail_lnum : log tail logical eraseblock number ( offset is always 0 )
* @ log_mutex : protects the log , @ lhead_lnum , @ lhead_offs , @ ltail_lnum , and
* @ bud_bytes
* @ min_log_bytes : minimum required number of bytes in the log
* @ cmt_bud_bytes : used during commit to temporarily amount of bytes in
* committed buds
*
* @ buds : tree of all buds indexed by bud LEB number
* @ bud_bytes : how many bytes of flash is used by buds
* @ buds_lock : protects the @ buds tree , @ bud_bytes , and per - journal head bud
* lists
* @ jhead_cnt : count of journal heads
* @ jheads : journal heads ( head zero is base head )
* @ max_bud_bytes : maximum number of bytes allowed in buds
* @ bg_bud_bytes : number of bud bytes when background commit is initiated
* @ old_buds : buds to be released after commit ends
* @ max_bud_cnt : maximum number of buds
*
* @ commit_sem : synchronizes committer with other processes
* @ cmt_state : commit state
* @ cs_lock : commit state lock
* @ cmt_wq : wait queue to sleep on if the log is full and a commit is running
2008-09-08 17:13:38 +04:00
*
2008-07-14 20:08:37 +04:00
* @ big_lpt : flag that LPT is too big to write whole during commit
2008-09-08 17:13:38 +04:00
* @ no_chk_data_crc : do not check CRCs when reading data nodes ( except during
* recovery )
* @ bulk_read : enable bulk - reads
2008-11-01 15:20:50 +03:00
* @ default_compr : default compression algorithm ( % UBIFS_COMPR_LZO , etc )
2009-03-26 13:51:21 +03:00
* @ rw_incompat : the media is not R / W compatible
2008-07-14 20:08:37 +04:00
*
* @ tnc_mutex : protects the Tree Node Cache ( TNC ) , @ zroot , @ cnext , @ enext , and
* @ calc_idx_sz
* @ zroot : zbranch which points to the root index node and znode
* @ cnext : next znode to commit
* @ enext : next znode to commit to empty space
* @ gap_lebs : array of LEBs used by the in - gaps commit method
* @ cbuf : commit buffer
* @ ileb_buf : buffer for commit in - the - gaps method
* @ ileb_len : length of data in ileb_buf
* @ ihead_lnum : LEB number of index head
* @ ihead_offs : offset of index head
* @ ilebs : pre - allocated index LEBs
* @ ileb_cnt : number of pre - allocated index LEBs
* @ ileb_nxt : next pre - allocated index LEBs
* @ old_idx : tree of index nodes obsoleted since the last commit start
* @ bottom_up_buf : a buffer which is used by ' dirty_cow_bottom_up ( ) ' in tnc . c
*
* @ mst_node : master node
* @ mst_offs : offset of valid master node
* @ mst_mutex : protects the master node area , @ mst_node , and @ mst_offs
2008-11-19 12:53:15 +03:00
*
2008-11-18 21:20:05 +03:00
* @ max_bu_buf_len : maximum bulk - read buffer length
2008-11-19 12:53:15 +03:00
* @ bu_mutex : protects the pre - allocated bulk - read buffer and @ c - > bu
* @ bu : pre - allocated bulk - read information
2008-07-14 20:08:37 +04:00
*
* @ log_lebs : number of logical eraseblocks in the log
* @ log_bytes : log size in bytes
* @ log_last : last LEB of the log
* @ lpt_lebs : number of LEBs used for lprops table
* @ lpt_first : first LEB of the lprops table area
* @ lpt_last : last LEB of the lprops table area
* @ orph_lebs : number of LEBs used for the orphan area
* @ orph_first : first LEB of the orphan area
* @ orph_last : last LEB of the orphan area
* @ main_lebs : count of LEBs in the main area
* @ main_first : first LEB of the main area
* @ main_bytes : main area size in bytes
*
* @ key_hash_type : type of the key hash
* @ key_hash : direntry key hash function
* @ key_fmt : key format
* @ key_len : key length
* @ fanout : fanout of the index tree ( number of links per indexing node )
*
* @ min_io_size : minimal input / output unit size
* @ min_io_shift : number of bits in @ min_io_size minus one
* @ leb_size : logical eraseblock size in bytes
* @ half_leb_size : half LEB size
2009-03-16 10:56:57 +03:00
* @ idx_leb_size : how many bytes of an LEB are effectively available when it is
* used to store indexing nodes ( @ leb_size - @ max_idx_node_sz )
2008-07-14 20:08:37 +04:00
* @ leb_cnt : count of logical eraseblocks
* @ max_leb_cnt : maximum count of logical eraseblocks
* @ old_leb_cnt : count of logical eraseblocks before re - size
* @ ro_media : the underlying UBI volume is read - only
2010-09-19 19:34:26 +04:00
* @ ro_mount : the file - system was mounted as read - only
UBIFS: introduce new flag for RO due to errors
The R/O state may have various reasons:
1. The UBI volume is R/O
2. The FS is mounted R/O
3. The FS switched to R/O mode because of an error
However, in UBIFS we have only one variable which represents cases
1 and 3 - 'c->ro_media'. Indeed, we set this to 1 if we switch to
R/O mode due to an error, and then we test it in many places to
make sure that we stop writing as soon as the error happens.
But this is very unclean. One consequence of this, for example, is
that in 'ubifs_remount_fs()' we use 'c->ro_media' to check whether
we are in R/O mode because on an error, and we print a message
in this case. However, if we are in R/O mode because the media
is R/O, our message is bogus.
This patch introduces new flag - 'c->ro_error' which is set when
we switch to R/O mode because of an error. It also changes all
"if (c->ro_media)" checks to "if (c->ro_error)" checks, because
this is what the checks actually mean. We do not need to check
for 'c->ro_media' because if the UBI volume is in R/O mode, we
do not allow R/W mounting, and now writes can happen. This is
guaranteed by VFS. But it is good to double-check this, so this
patch also adds many "ubifs_assert(!c->ro_media)" checks.
In the 'ubifs_remount_fs()' function this patch makes a bit more
changes - it fixes the error messages as well.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2010-09-17 17:44:28 +04:00
* @ ro_error : UBIFS switched to R / O mode because an error happened
2008-07-14 20:08:37 +04:00
*
* @ dirty_pg_cnt : number of dirty pages ( not used )
* @ dirty_zn_cnt : number of dirty znodes
* @ clean_zn_cnt : number of clean znodes
*
* @ budg_idx_growth : amount of bytes budgeted for index growth
* @ budg_data_growth : amount of bytes budgeted for cached data
* @ budg_dd_growth : amount of bytes budgeted for cached data that will make
* other data dirty
* @ budg_uncommitted_idx : amount of bytes were budgeted for growth of the index ,
* but which still have to be taken into account because
* the index has not been committed so far
* @ space_lock : protects @ budg_idx_growth , @ budg_data_growth , @ budg_dd_growth ,
2008-09-08 17:38:01 +04:00
* @ budg_uncommited_idx , @ min_idx_lebs , @ old_idx_sz , @ lst ,
* @ nospace , and @ nospace_rp ;
2008-07-14 20:08:37 +04:00
* @ min_idx_lebs : minimum number of LEBs required for the index
* @ old_idx_sz : size of index on flash
* @ calc_idx_sz : temporary variable which is used to calculate new index size
* ( contains accurate new index size at end of TNC commit start )
* @ lst : lprops statistics
2008-09-08 17:38:01 +04:00
* @ nospace : non - zero if the file - system does not have flash space ( used as
* optimization )
* @ nospace_rp : the same as @ nospace , but additionally means that even reserved
* pool is full
2008-07-14 20:08:37 +04:00
*
* @ page_budget : budget for a page
* @ inode_budget : budget for an inode
* @ dent_budget : budget for a directory entry
*
* @ ref_node_alsz : size of the LEB reference node aligned to the min . flash
* I / O unit
* @ mst_node_alsz : master node aligned size
* @ min_idx_node_sz : minimum indexing node aligned on 8 - bytes boundary
* @ max_idx_node_sz : maximum indexing node aligned on 8 - bytes boundary
* @ max_inode_sz : maximum possible inode size in bytes
* @ max_znode_sz : size of znode in bytes
2008-08-22 19:23:22 +04:00
*
* @ leb_overhead : how many bytes are wasted in an LEB when it is filled with
* data nodes of maximum size - used in free space reporting
2008-07-14 20:08:37 +04:00
* @ dead_wm : LEB dead space watermark
* @ dark_wm : LEB dark space watermark
* @ block_cnt : count of 4 KiB blocks on the FS
*
* @ ranges : UBIFS node length ranges
* @ ubi : UBI volume descriptor
* @ di : UBI device information
* @ vi : UBI volume information
*
* @ orph_tree : rb - tree of orphan inode numbers
* @ orph_list : list of orphan inode numbers in order added
* @ orph_new : list of orphan inode numbers added since last commit
* @ orph_cnext : next orphan to commit
* @ orph_dnext : next orphan to delete
* @ orphan_lock : lock for orph_tree and orph_new
* @ orph_buf : buffer for orphan nodes
* @ new_orphans : number of orphans since last commit
* @ cmt_orphans : number of orphans being committed
* @ tot_orphans : number of orphans in the rb_tree
* @ max_orphans : maximum number of orphans allowed
* @ ohead_lnum : orphan head LEB number
* @ ohead_offs : orphan head offset
* @ no_orphs : non - zero if there are no orphans
*
* @ bgt : UBIFS background thread
* @ bgt_name : background thread name
* @ need_bgt : if background thread should run
* @ need_wbuf_sync : if write - buffers have to be synchronized
*
* @ gc_lnum : LEB number used for garbage collection
* @ sbuf : a buffer of LEB size used by GC and replay for scanning
* @ idx_gc : list of index LEBs that have been garbage collected
* @ idx_gc_cnt : number of elements on the idx_gc list
2008-08-22 15:23:35 +04:00
* @ gc_seq : incremented for every non - index LEB garbage collected
* @ gced_lnum : last non - index LEB that was garbage collected
2008-07-14 20:08:37 +04:00
*
* @ infos_list : links all ' ubifs_info ' objects
* @ umount_mutex : serializes shrinker and un - mount
* @ shrinker_run_no : shrinker run number
*
* @ space_bits : number of bits needed to record free or dirty space
* @ lpt_lnum_bits : number of bits needed to record a LEB number in the LPT
* @ lpt_offs_bits : number of bits needed to record an offset in the LPT
* @ lpt_spc_bits : number of bits needed to space in the LPT
* @ pcnt_bits : number of bits needed to record pnode or nnode number
* @ lnum_bits : number of bits needed to record LEB number
* @ nnode_sz : size of on - flash nnode
* @ pnode_sz : size of on - flash pnode
* @ ltab_sz : size of on - flash LPT lprops table
* @ lsave_sz : size of on - flash LPT save table
* @ pnode_cnt : number of pnodes
* @ nnode_cnt : number of nnodes
* @ lpt_hght : height of the LPT
* @ pnodes_have : number of pnodes in memory
*
* @ lp_mutex : protects lprops table and all the other lprops - related fields
* @ lpt_lnum : LEB number of the root nnode of the LPT
* @ lpt_offs : offset of the root nnode of the LPT
* @ nhead_lnum : LEB number of LPT head
* @ nhead_offs : offset of LPT head
* @ lpt_drty_flgs : dirty flags for LPT special nodes e . g . ltab
* @ dirty_nn_cnt : number of dirty nnodes
* @ dirty_pn_cnt : number of dirty pnodes
2008-09-12 19:13:31 +04:00
* @ check_lpt_free : flag that indicates LPT GC may be needed
2008-07-14 20:08:37 +04:00
* @ lpt_sz : LPT size
* @ lpt_nod_buf : buffer for an on - flash nnode or pnode
* @ lpt_buf : buffer of LEB size used by LPT
* @ nroot : address in memory of the root nnode of the LPT
* @ lpt_cnext : next LPT node to commit
* @ lpt_heap : array of heaps of categorized lprops
* @ dirty_idx : a ( reverse sorted ) copy of the LPROPS_DIRTY_IDX heap as at
* previous commit start
* @ uncat_list : list of un - categorized LEBs
* @ empty_list : list of empty LEBs
2009-03-16 10:56:57 +03:00
* @ freeable_list : list of freeable non - index LEBs ( free + dirty = = @ leb_size )
* @ frdi_idx_list : list of freeable index LEBs ( free + dirty = = @ leb_size )
2008-07-14 20:08:37 +04:00
* @ freeable_cnt : number of freeable LEBs in @ freeable_list
*
* @ ltab_lnum : LEB number of LPT ' s own lprops table
* @ ltab_offs : offset of LPT ' s own lprops table
* @ ltab : LPT ' s own lprops table
* @ ltab_cmt : LPT ' s own lprops table ( commit copy )
* @ lsave_cnt : number of LEB numbers in LPT ' s save table
* @ lsave_lnum : LEB number of LPT ' s save table
* @ lsave_offs : offset of LPT ' s save table
* @ lsave : LPT ' s save table
* @ lscan_lnum : LEB number of last LPT scan
*
* @ rp_size : size of the reserved pool in bytes
* @ report_rp_size : size of the reserved pool reported to user - space
* @ rp_uid : reserved pool user ID
* @ rp_gid : reserved pool group ID
*
* @ empty : if the UBI device is empty
* @ replay_tree : temporary tree used during journal replay
* @ replay_list : temporary list used during journal replay
* @ replay_buds : list of buds to replay
* @ cs_sqnum : sequence number of first node in the log ( commit start node )
* @ replay_sqnum : sequence number of node currently being replayed
* @ need_recovery : file - system needs recovery
* @ replaying : set to % 1 during journal replay
2010-09-19 19:34:26 +04:00
* @ unclean_leb_list : LEBs to recover when re - mounting R / O mounted FS to R / W
* mode
* @ rcvrd_mst_node : recovered master node to write when re - mounting R / O mounted
* FS to R / W mode
2008-07-14 20:08:37 +04:00
* @ size_tree : inode size information for recovery
2010-09-19 19:34:26 +04:00
* @ remounting_rw : set while re - mounting from R / O mode to R / W mode
* @ always_chk_crc : always check CRCs ( while mounting and remounting to R / W
* mode )
2008-07-14 20:08:37 +04:00
* @ mount_opts : UBIFS - specific mount options
*
2008-10-17 14:31:39 +04:00
* @ dbg : debugging - related information
2008-07-14 20:08:37 +04:00
*/
struct ubifs_info {
struct super_block * vfs_sb ;
struct backing_dev_info bdi ;
ino_t highest_inum ;
unsigned long long max_sqnum ;
unsigned long long cmt_no ;
spinlock_t cnt_lock ;
int fmt_version ;
2009-03-26 13:51:21 +03:00
int ro_compat_version ;
2008-07-14 20:08:37 +04:00
unsigned char uuid [ 16 ] ;
int lhead_lnum ;
int lhead_offs ;
int ltail_lnum ;
struct mutex log_mutex ;
int min_log_bytes ;
long long cmt_bud_bytes ;
struct rb_root buds ;
long long bud_bytes ;
spinlock_t buds_lock ;
int jhead_cnt ;
struct ubifs_jhead * jheads ;
long long max_bud_bytes ;
long long bg_bud_bytes ;
struct list_head old_buds ;
int max_bud_cnt ;
struct rw_semaphore commit_sem ;
int cmt_state ;
spinlock_t cs_lock ;
wait_queue_head_t cmt_wq ;
2008-09-08 17:13:38 +04:00
2008-07-14 20:08:37 +04:00
unsigned int big_lpt : 1 ;
2008-09-08 17:13:38 +04:00
unsigned int no_chk_data_crc : 1 ;
unsigned int bulk_read : 1 ;
2008-11-01 15:20:50 +03:00
unsigned int default_compr : 2 ;
2009-03-26 13:51:21 +03:00
unsigned int rw_incompat : 1 ;
2008-07-14 20:08:37 +04:00
struct mutex tnc_mutex ;
struct ubifs_zbranch zroot ;
struct ubifs_znode * cnext ;
struct ubifs_znode * enext ;
int * gap_lebs ;
void * cbuf ;
void * ileb_buf ;
int ileb_len ;
int ihead_lnum ;
int ihead_offs ;
int * ilebs ;
int ileb_cnt ;
int ileb_nxt ;
struct rb_root old_idx ;
int * bottom_up_buf ;
struct ubifs_mst_node * mst_node ;
int mst_offs ;
struct mutex mst_mutex ;
2008-11-19 12:53:15 +03:00
2008-11-18 21:20:05 +03:00
int max_bu_buf_len ;
2008-11-19 12:53:15 +03:00
struct mutex bu_mutex ;
struct bu_info bu ;
2008-07-14 20:08:37 +04:00
int log_lebs ;
long long log_bytes ;
int log_last ;
int lpt_lebs ;
int lpt_first ;
int lpt_last ;
int orph_lebs ;
int orph_first ;
int orph_last ;
int main_lebs ;
int main_first ;
long long main_bytes ;
uint8_t key_hash_type ;
uint32_t ( * key_hash ) ( const char * str , int len ) ;
int key_fmt ;
int key_len ;
int fanout ;
int min_io_size ;
int min_io_shift ;
int leb_size ;
int half_leb_size ;
2009-03-16 10:56:57 +03:00
int idx_leb_size ;
2008-07-14 20:08:37 +04:00
int leb_cnt ;
int max_leb_cnt ;
int old_leb_cnt ;
UBIFS: introduce new flag for RO due to errors
The R/O state may have various reasons:
1. The UBI volume is R/O
2. The FS is mounted R/O
3. The FS switched to R/O mode because of an error
However, in UBIFS we have only one variable which represents cases
1 and 3 - 'c->ro_media'. Indeed, we set this to 1 if we switch to
R/O mode due to an error, and then we test it in many places to
make sure that we stop writing as soon as the error happens.
But this is very unclean. One consequence of this, for example, is
that in 'ubifs_remount_fs()' we use 'c->ro_media' to check whether
we are in R/O mode because on an error, and we print a message
in this case. However, if we are in R/O mode because the media
is R/O, our message is bogus.
This patch introduces new flag - 'c->ro_error' which is set when
we switch to R/O mode because of an error. It also changes all
"if (c->ro_media)" checks to "if (c->ro_error)" checks, because
this is what the checks actually mean. We do not need to check
for 'c->ro_media' because if the UBI volume is in R/O mode, we
do not allow R/W mounting, and now writes can happen. This is
guaranteed by VFS. But it is good to double-check this, so this
patch also adds many "ubifs_assert(!c->ro_media)" checks.
In the 'ubifs_remount_fs()' function this patch makes a bit more
changes - it fixes the error messages as well.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2010-09-17 17:44:28 +04:00
unsigned int ro_media : 1 ;
2010-09-19 19:34:26 +04:00
unsigned int ro_mount : 1 ;
UBIFS: introduce new flag for RO due to errors
The R/O state may have various reasons:
1. The UBI volume is R/O
2. The FS is mounted R/O
3. The FS switched to R/O mode because of an error
However, in UBIFS we have only one variable which represents cases
1 and 3 - 'c->ro_media'. Indeed, we set this to 1 if we switch to
R/O mode due to an error, and then we test it in many places to
make sure that we stop writing as soon as the error happens.
But this is very unclean. One consequence of this, for example, is
that in 'ubifs_remount_fs()' we use 'c->ro_media' to check whether
we are in R/O mode because on an error, and we print a message
in this case. However, if we are in R/O mode because the media
is R/O, our message is bogus.
This patch introduces new flag - 'c->ro_error' which is set when
we switch to R/O mode because of an error. It also changes all
"if (c->ro_media)" checks to "if (c->ro_error)" checks, because
this is what the checks actually mean. We do not need to check
for 'c->ro_media' because if the UBI volume is in R/O mode, we
do not allow R/W mounting, and now writes can happen. This is
guaranteed by VFS. But it is good to double-check this, so this
patch also adds many "ubifs_assert(!c->ro_media)" checks.
In the 'ubifs_remount_fs()' function this patch makes a bit more
changes - it fixes the error messages as well.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2010-09-17 17:44:28 +04:00
unsigned int ro_error : 1 ;
2008-07-14 20:08:37 +04:00
atomic_long_t dirty_pg_cnt ;
atomic_long_t dirty_zn_cnt ;
atomic_long_t clean_zn_cnt ;
long long budg_idx_growth ;
long long budg_data_growth ;
long long budg_dd_growth ;
long long budg_uncommitted_idx ;
spinlock_t space_lock ;
int min_idx_lebs ;
unsigned long long old_idx_sz ;
unsigned long long calc_idx_sz ;
struct ubifs_lp_stats lst ;
2008-09-08 17:38:01 +04:00
unsigned int nospace : 1 ;
unsigned int nospace_rp : 1 ;
2008-07-14 20:08:37 +04:00
int page_budget ;
int inode_budget ;
int dent_budget ;
int ref_node_alsz ;
int mst_node_alsz ;
int min_idx_node_sz ;
int max_idx_node_sz ;
long long max_inode_sz ;
int max_znode_sz ;
2008-08-22 19:23:22 +04:00
int leb_overhead ;
2008-07-14 20:08:37 +04:00
int dead_wm ;
int dark_wm ;
int block_cnt ;
struct ubifs_node_range ranges [ UBIFS_NODE_TYPES_CNT ] ;
struct ubi_volume_desc * ubi ;
struct ubi_device_info di ;
struct ubi_volume_info vi ;
struct rb_root orph_tree ;
struct list_head orph_list ;
struct list_head orph_new ;
struct ubifs_orphan * orph_cnext ;
struct ubifs_orphan * orph_dnext ;
spinlock_t orphan_lock ;
void * orph_buf ;
int new_orphans ;
int cmt_orphans ;
int tot_orphans ;
int max_orphans ;
int ohead_lnum ;
int ohead_offs ;
int no_orphs ;
struct task_struct * bgt ;
char bgt_name [ sizeof ( BGT_NAME_PATTERN ) + 9 ] ;
int need_bgt ;
int need_wbuf_sync ;
int gc_lnum ;
void * sbuf ;
struct list_head idx_gc ;
int idx_gc_cnt ;
2008-12-28 12:34:26 +03:00
int gc_seq ;
int gced_lnum ;
2008-07-14 20:08:37 +04:00
struct list_head infos_list ;
struct mutex umount_mutex ;
unsigned int shrinker_run_no ;
int space_bits ;
int lpt_lnum_bits ;
int lpt_offs_bits ;
int lpt_spc_bits ;
int pcnt_bits ;
int lnum_bits ;
int nnode_sz ;
int pnode_sz ;
int ltab_sz ;
int lsave_sz ;
int pnode_cnt ;
int nnode_cnt ;
int lpt_hght ;
int pnodes_have ;
struct mutex lp_mutex ;
int lpt_lnum ;
int lpt_offs ;
int nhead_lnum ;
int nhead_offs ;
int lpt_drty_flgs ;
int dirty_nn_cnt ;
int dirty_pn_cnt ;
2008-09-12 19:13:31 +04:00
int check_lpt_free ;
2008-07-14 20:08:37 +04:00
long long lpt_sz ;
void * lpt_nod_buf ;
void * lpt_buf ;
struct ubifs_nnode * nroot ;
struct ubifs_cnode * lpt_cnext ;
struct ubifs_lpt_heap lpt_heap [ LPROPS_HEAP_CNT ] ;
struct ubifs_lpt_heap dirty_idx ;
struct list_head uncat_list ;
struct list_head empty_list ;
struct list_head freeable_list ;
struct list_head frdi_idx_list ;
int freeable_cnt ;
int ltab_lnum ;
int ltab_offs ;
struct ubifs_lpt_lprops * ltab ;
struct ubifs_lpt_lprops * ltab_cmt ;
int lsave_cnt ;
int lsave_lnum ;
int lsave_offs ;
int * lsave ;
int lscan_lnum ;
long long rp_size ;
long long report_rp_size ;
uid_t rp_uid ;
gid_t rp_gid ;
/* The below fields are used only during mounting and re-mounting */
int empty ;
struct rb_root replay_tree ;
struct list_head replay_list ;
struct list_head replay_buds ;
unsigned long long cs_sqnum ;
unsigned long long replay_sqnum ;
int need_recovery ;
int replaying ;
struct list_head unclean_leb_list ;
struct ubifs_mst_node * rcvrd_mst_node ;
struct rb_root size_tree ;
int remounting_rw ;
2008-09-04 17:26:00 +04:00
int always_chk_crc ;
2008-07-14 20:08:37 +04:00
struct ubifs_mount_opts mount_opts ;
# ifdef CONFIG_UBIFS_FS_DEBUG
2008-10-17 14:31:39 +04:00
struct ubifs_debug_info * dbg ;
2008-07-14 20:08:37 +04:00
# endif
} ;
extern struct list_head ubifs_infos ;
extern spinlock_t ubifs_infos_lock ;
extern atomic_long_t ubifs_clean_zn_cnt ;
extern struct kmem_cache * ubifs_inode_slab ;
2009-01-15 18:43:23 +03:00
extern const struct super_operations ubifs_super_operations ;
extern const struct address_space_operations ubifs_file_address_operations ;
extern const struct file_operations ubifs_file_operations ;
extern const struct inode_operations ubifs_file_inode_operations ;
extern const struct file_operations ubifs_dir_operations ;
extern const struct inode_operations ubifs_dir_inode_operations ;
extern const struct inode_operations ubifs_symlink_inode_operations ;
2008-07-14 20:08:37 +04:00
extern struct backing_dev_info ubifs_backing_dev_info ;
extern struct ubifs_compressor * ubifs_compressors [ UBIFS_COMPR_TYPES_CNT ] ;
/* io.c */
2008-07-21 16:39:05 +04:00
void ubifs_ro_mode ( struct ubifs_info * c , int err ) ;
2008-07-14 20:08:37 +04:00
int ubifs_wbuf_write_nolock ( struct ubifs_wbuf * wbuf , void * buf , int len ) ;
int ubifs_wbuf_seek_nolock ( struct ubifs_wbuf * wbuf , int lnum , int offs ,
int dtype ) ;
int ubifs_wbuf_init ( struct ubifs_info * c , struct ubifs_wbuf * wbuf ) ;
int ubifs_read_node ( const struct ubifs_info * c , void * buf , int type , int len ,
int lnum , int offs ) ;
int ubifs_read_node_wbuf ( struct ubifs_wbuf * wbuf , void * buf , int type , int len ,
int lnum , int offs ) ;
int ubifs_write_node ( struct ubifs_info * c , void * node , int len , int lnum ,
int offs , int dtype ) ;
int ubifs_check_node ( const struct ubifs_info * c , const void * buf , int lnum ,
2009-01-27 17:12:31 +03:00
int offs , int quiet , int must_chk_crc ) ;
2008-07-14 20:08:37 +04:00
void ubifs_prepare_node ( struct ubifs_info * c , void * buf , int len , int pad ) ;
void ubifs_prep_grp_node ( struct ubifs_info * c , void * node , int len , int last ) ;
int ubifs_io_init ( struct ubifs_info * c ) ;
void ubifs_pad ( const struct ubifs_info * c , void * buf , int pad ) ;
int ubifs_wbuf_sync_nolock ( struct ubifs_wbuf * wbuf ) ;
int ubifs_bg_wbufs_sync ( struct ubifs_info * c ) ;
void ubifs_wbuf_add_ino_nolock ( struct ubifs_wbuf * wbuf , ino_t inum ) ;
int ubifs_sync_wbufs_by_inode ( struct ubifs_info * c , struct inode * inode ) ;
/* scan.c */
struct ubifs_scan_leb * ubifs_scan ( const struct ubifs_info * c , int lnum ,
2009-08-25 16:00:55 +04:00
int offs , void * sbuf , int quiet ) ;
2008-07-14 20:08:37 +04:00
void ubifs_scan_destroy ( struct ubifs_scan_leb * sleb ) ;
int ubifs_scan_a_node ( const struct ubifs_info * c , void * buf , int len , int lnum ,
int offs , int quiet ) ;
struct ubifs_scan_leb * ubifs_start_scan ( const struct ubifs_info * c , int lnum ,
int offs , void * sbuf ) ;
void ubifs_end_scan ( const struct ubifs_info * c , struct ubifs_scan_leb * sleb ,
int lnum , int offs ) ;
int ubifs_add_snod ( const struct ubifs_info * c , struct ubifs_scan_leb * sleb ,
void * buf , int offs ) ;
void ubifs_scanned_corruption ( const struct ubifs_info * c , int lnum , int offs ,
void * buf ) ;
/* log.c */
void ubifs_add_bud ( struct ubifs_info * c , struct ubifs_bud * bud ) ;
void ubifs_create_buds_lists ( struct ubifs_info * c ) ;
int ubifs_add_bud_to_log ( struct ubifs_info * c , int jhead , int lnum , int offs ) ;
struct ubifs_bud * ubifs_search_bud ( struct ubifs_info * c , int lnum ) ;
struct ubifs_wbuf * ubifs_get_wbuf ( struct ubifs_info * c , int lnum ) ;
int ubifs_log_start_commit ( struct ubifs_info * c , int * ltail_lnum ) ;
int ubifs_log_end_commit ( struct ubifs_info * c , int new_ltail_lnum ) ;
int ubifs_log_post_commit ( struct ubifs_info * c , int old_ltail_lnum ) ;
int ubifs_consolidate_log ( struct ubifs_info * c ) ;
/* journal.c */
int ubifs_jnl_update ( struct ubifs_info * c , const struct inode * dir ,
const struct qstr * nm , const struct inode * inode ,
int deletion , int xent ) ;
int ubifs_jnl_write_data ( struct ubifs_info * c , const struct inode * inode ,
const union ubifs_key * key , const void * buf , int len ) ;
2008-07-22 13:06:13 +04:00
int ubifs_jnl_write_inode ( struct ubifs_info * c , const struct inode * inode ) ;
2008-07-22 14:06:20 +04:00
int ubifs_jnl_delete_inode ( struct ubifs_info * c , const struct inode * inode ) ;
2008-07-14 20:08:37 +04:00
int ubifs_jnl_rename ( struct ubifs_info * c , const struct inode * old_dir ,
const struct dentry * old_dentry ,
const struct inode * new_dir ,
const struct dentry * new_dentry , int sync ) ;
int ubifs_jnl_truncate ( struct ubifs_info * c , const struct inode * inode ,
loff_t old_size , loff_t new_size ) ;
int ubifs_jnl_delete_xattr ( struct ubifs_info * c , const struct inode * host ,
const struct inode * inode , const struct qstr * nm ) ;
int ubifs_jnl_change_xattr ( struct ubifs_info * c , const struct inode * inode1 ,
const struct inode * inode2 ) ;
/* budget.c */
int ubifs_budget_space ( struct ubifs_info * c , struct ubifs_budget_req * req ) ;
void ubifs_release_budget ( struct ubifs_info * c , struct ubifs_budget_req * req ) ;
void ubifs_release_dirty_inode_budget ( struct ubifs_info * c ,
struct ubifs_inode * ui ) ;
int ubifs_budget_inode_op ( struct ubifs_info * c , struct inode * inode ,
struct ubifs_budget_req * req ) ;
void ubifs_release_ino_dirty ( struct ubifs_info * c , struct inode * inode ,
struct ubifs_budget_req * req ) ;
void ubifs_cancel_ino_op ( struct ubifs_info * c , struct inode * inode ,
struct ubifs_budget_req * req ) ;
UBIFS: improve statfs reporting even more
Since free space we report in statfs is file size which should
fit to the FS - change the way we calculate free space and use
leb_overhead instead of dark_wm in calculations.
Results of "freespace" test (120MiB volume, 16KiB LEB size,
512 bytes page size). Before the change:
freespace: Test 1: fill the space we have 3 times
freespace: was free: 85204992 bytes 81.3 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 11284480 bytes 10.8 MiB, wrote 13.2% more than predicted
freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 12935168 bytes 12.3 MiB, wrote 15.5% more than predicted
freespace: was free: 83554304 bytes 79.7 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 12939264 bytes 12.3 MiB, wrote 15.5% more than predicted
freespace: Test 1 finished
freespace: Test 2: gradually lessen amount of free space and fill the FS
freespace: do 10 steps, lessen free space by 7596218 bytes 7.2 MiB each time
freespace: was free: 78675968 bytes 75.0 MiB, wrote: 88903680 bytes 84.8 MiB, delta: 10227712 bytes 9.8 MiB, wrote 13.0% more than predicted
freespace: was free: 72015872 bytes 68.7 MiB, wrote: 81514496 bytes 77.7 MiB, delta: 9498624 bytes 9.1 MiB, wrote 13.2% more than predicted
freespace: was free: 63938560 bytes 61.0 MiB, wrote: 72589312 bytes 69.2 MiB, delta: 8650752 bytes 8.2 MiB, wrote 13.5% more than predicted
freespace: was free: 56127488 bytes 53.5 MiB, wrote: 63762432 bytes 60.8 MiB, delta: 7634944 bytes 7.3 MiB, wrote 13.6% more than predicted
freespace: was free: 48336896 bytes 46.1 MiB, wrote: 54935552 bytes 52.4 MiB, delta: 6598656 bytes 6.3 MiB, wrote 13.7% more than predicted
freespace: was free: 40587264 bytes 38.7 MiB, wrote: 46157824 bytes 44.0 MiB, delta: 5570560 bytes 5.3 MiB, wrote 13.7% more than predicted
freespace: was free: 32841728 bytes 31.3 MiB, wrote: 37384192 bytes 35.7 MiB, delta: 4542464 bytes 4.3 MiB, wrote 13.8% more than predicted
freespace: was free: 25100288 bytes 23.9 MiB, wrote: 28618752 bytes 27.3 MiB, delta: 3518464 bytes 3.4 MiB, wrote 14.0% more than predicted
freespace: was free: 17342464 bytes 16.5 MiB, wrote: 19841024 bytes 18.9 MiB, delta: 2498560 bytes 2.4 MiB, wrote 14.4% more than predicted
freespace: was free: 9605120 bytes 9.2 MiB, wrote: 11063296 bytes 10.6 MiB, delta: 1458176 bytes 1.4 MiB, wrote 15.2% more than predicted
freespace: Test 2 finished
freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS
freespace: do 10 steps, lessen free space by 7606272 bytes 7.3 MiB each time
freespace: trashing: was free: 83668992 bytes 79.8 MiB, need free: 7606272 bytes 7.3 MiB, files created: 248297, delete 225724 (90.9% of them)
freespace: was free: 70803456 bytes 67.5 MiB, wrote: 82485248 bytes 78.7 MiB, delta: 11681792 bytes 11.1 MiB, wrote 16.5% more than predicted
freespace: trashing: was free: 81080320 bytes 77.3 MiB, need free: 15212544 bytes 14.5 MiB, files created: 248711, delete 202047 (81.2% of them)
freespace: was free: 59867136 bytes 57.1 MiB, wrote: 71897088 bytes 68.6 MiB, delta: 12029952 bytes 11.5 MiB, wrote 20.1% more than predicted
freespace: trashing: was free: 82243584 bytes 78.4 MiB, need free: 22818816 bytes 21.8 MiB, files created: 248866, delete 179817 (72.3% of them)
freespace: was free: 50905088 bytes 48.5 MiB, wrote: 63168512 bytes 60.2 MiB, delta: 12263424 bytes 11.7 MiB, wrote 24.1% more than predicted
freespace: trashing: was free: 83402752 bytes 79.5 MiB, need free: 30425088 bytes 29.0 MiB, files created: 248920, delete 158114 (63.5% of them)
freespace: was free: 42651648 bytes 40.7 MiB, wrote: 55406592 bytes 52.8 MiB, delta: 12754944 bytes 12.2 MiB, wrote 29.9% more than predicted
freespace: trashing: was free: 84402176 bytes 80.5 MiB, need free: 38031360 bytes 36.3 MiB, files created: 248709, delete 136641 (54.9% of them)
freespace: was free: 35233792 bytes 33.6 MiB, wrote: 48250880 bytes 46.0 MiB, delta: 13017088 bytes 12.4 MiB, wrote 36.9% more than predicted
freespace: trashing: was free: 82530304 bytes 78.7 MiB, need free: 45637632 bytes 43.5 MiB, files created: 248778, delete 111208 (44.7% of them)
freespace: was free: 27287552 bytes 26.0 MiB, wrote: 40267776 bytes 38.4 MiB, delta: 12980224 bytes 12.4 MiB, wrote 47.6% more than predicted
freespace: trashing: was free: 85114880 bytes 81.2 MiB, need free: 53243904 bytes 50.8 MiB, files created: 248508, delete 93052 (37.4% of them)
freespace: was free: 22437888 bytes 21.4 MiB, wrote: 35328000 bytes 33.7 MiB, delta: 12890112 bytes 12.3 MiB, wrote 57.4% more than predicted
freespace: trashing: was free: 84103168 bytes 80.2 MiB, need free: 60850176 bytes 58.0 MiB, files created: 248637, delete 68743 (27.6% of them)
freespace: was free: 15536128 bytes 14.8 MiB, wrote: 28319744 bytes 27.0 MiB, delta: 12783616 bytes 12.2 MiB, wrote 82.3% more than predicted
freespace: trashing: was free: 84357120 bytes 80.4 MiB, need free: 68456448 bytes 65.3 MiB, files created: 248567, delete 46852 (18.8% of them)
freespace: was free: 9015296 bytes 8.6 MiB, wrote: 22044672 bytes 21.0 MiB, delta: 13029376 bytes 12.4 MiB, wrote 144.5% more than predicted
freespace: trashing: was free: 84942848 bytes 81.0 MiB, need free: 76062720 bytes 72.5 MiB, files created: 248636, delete 25993 (10.5% of them)
freespace: was free: 6086656 bytes 5.8 MiB, wrote: 8331264 bytes 7.9 MiB, delta: 2244608 bytes 2.1 MiB, wrote 36.9% more than predicted
freespace: Test 3 finished
freespace: finished successfully
After the change:
freespace: Test 1: fill the space we have 3 times
freespace: was free: 94048256 bytes 89.7 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 2441216 bytes 2.3 MiB, wrote 2.6% more than predicted
freespace: was free: 92246016 bytes 88.0 MiB, wrote: 96493568 bytes 92.0 MiB, delta: 4247552 bytes 4.1 MiB, wrote 4.6% more than predicted
freespace: was free: 92254208 bytes 88.0 MiB, wrote: 96489472 bytes 92.0 MiB, delta: 4235264 bytes 4.0 MiB, wrote 4.6% more than predicted
freespace: Test 1 finished
freespace: Test 2: gradually lessen amount of free space and fill the FS
freespace: do 10 steps, lessen free space by 8386001 bytes 8.0 MiB each time
freespace: was free: 86605824 bytes 82.6 MiB, wrote: 88252416 bytes 84.2 MiB, delta: 1646592 bytes 1.6 MiB, wrote 1.9% more than predicted
freespace: was free: 78667776 bytes 75.0 MiB, wrote: 80715776 bytes 77.0 MiB, delta: 2048000 bytes 2.0 MiB, wrote 2.6% more than predicted
freespace: was free: 69615616 bytes 66.4 MiB, wrote: 71630848 bytes 68.3 MiB, delta: 2015232 bytes 1.9 MiB, wrote 2.9% more than predicted
freespace: was free: 61018112 bytes 58.2 MiB, wrote: 62783488 bytes 59.9 MiB, delta: 1765376 bytes 1.7 MiB, wrote 2.9% more than predicted
freespace: was free: 52424704 bytes 50.0 MiB, wrote: 53968896 bytes 51.5 MiB, delta: 1544192 bytes 1.5 MiB, wrote 2.9% more than predicted
freespace: was free: 43880448 bytes 41.8 MiB, wrote: 45199360 bytes 43.1 MiB, delta: 1318912 bytes 1.3 MiB, wrote 3.0% more than predicted
freespace: was free: 35332096 bytes 33.7 MiB, wrote: 36425728 bytes 34.7 MiB, delta: 1093632 bytes 1.0 MiB, wrote 3.1% more than predicted
freespace: was free: 26771456 bytes 25.5 MiB, wrote: 27643904 bytes 26.4 MiB, delta: 872448 bytes 852.0 KiB, wrote 3.3% more than predicted
freespace: was free: 18231296 bytes 17.4 MiB, wrote: 18878464 bytes 18.0 MiB, delta: 647168 bytes 632.0 KiB, wrote 3.5% more than predicted
freespace: was free: 9674752 bytes 9.2 MiB, wrote: 10088448 bytes 9.6 MiB, delta: 413696 bytes 404.0 KiB, wrote 4.3% more than predicted
freespace: Test 2 finished
freespace: Test 3: gradually lessen amount of free space by trashing and fill the FS
freespace: do 10 steps, lessen free space by 8397544 bytes 8.0 MiB each time
freespace: trashing: was free: 92372992 bytes 88.1 MiB, need free: 8397552 bytes 8.0 MiB, files created: 248296, delete 225723 (90.9% of them)
freespace: was free: 71909376 bytes 68.6 MiB, wrote: 82472960 bytes 78.7 MiB, delta: 10563584 bytes 10.1 MiB, wrote 14.7% more than predicted
freespace: trashing: was free: 88989696 bytes 84.9 MiB, need free: 16795096 bytes 16.0 MiB, files created: 248794, delete 201838 (81.1% of them)
freespace: was free: 60354560 bytes 57.6 MiB, wrote: 71782400 bytes 68.5 MiB, delta: 11427840 bytes 10.9 MiB, wrote 18.9% more than predicted
freespace: trashing: was free: 90304512 bytes 86.1 MiB, need free: 25192640 bytes 24.0 MiB, files created: 248733, delete 179342 (72.1% of them)
freespace: was free: 51187712 bytes 48.8 MiB, wrote: 62943232 bytes 60.0 MiB, delta: 11755520 bytes 11.2 MiB, wrote 23.0% more than predicted
freespace: trashing: was free: 91209728 bytes 87.0 MiB, need free: 33590184 bytes 32.0 MiB, files created: 248779, delete 157160 (63.2% of them)
freespace: was free: 42704896 bytes 40.7 MiB, wrote: 55050240 bytes 52.5 MiB, delta: 12345344 bytes 11.8 MiB, wrote 28.9% more than predicted
freespace: trashing: was free: 92700672 bytes 88.4 MiB, need free: 41987728 bytes 40.0 MiB, files created: 248848, delete 136135 (54.7% of them)
freespace: was free: 35250176 bytes 33.6 MiB, wrote: 48115712 bytes 45.9 MiB, delta: 12865536 bytes 12.3 MiB, wrote 36.5% more than predicted
freespace: trashing: was free: 93986816 bytes 89.6 MiB, need free: 50385272 bytes 48.1 MiB, files created: 248723, delete 115385 (46.4% of them)
freespace: was free: 29995008 bytes 28.6 MiB, wrote: 41582592 bytes 39.7 MiB, delta: 11587584 bytes 11.1 MiB, wrote 38.6% more than predicted
freespace: trashing: was free: 91881472 bytes 87.6 MiB, need free: 58782816 bytes 56.1 MiB, files created: 248645, delete 89569 (36.0% of them)
freespace: was free: 22511616 bytes 21.5 MiB, wrote: 34705408 bytes 33.1 MiB, delta: 12193792 bytes 11.6 MiB, wrote 54.2% more than predicted
freespace: trashing: was free: 91774976 bytes 87.5 MiB, need free: 67180360 bytes 64.1 MiB, files created: 248580, delete 66616 (26.8% of them)
freespace: was free: 16908288 bytes 16.1 MiB, wrote: 26898432 bytes 25.7 MiB, delta: 9990144 bytes 9.5 MiB, wrote 59.1% more than predicted
freespace: trashing: was free: 92450816 bytes 88.2 MiB, need free: 75577904 bytes 72.1 MiB, files created: 248654, delete 45381 (18.3% of them)
freespace: was free: 10170368 bytes 9.7 MiB, wrote: 19111936 bytes 18.2 MiB, delta: 8941568 bytes 8.5 MiB, wrote 87.9% more than predicted
freespace: trashing: was free: 93282304 bytes 89.0 MiB, need free: 83975448 bytes 80.1 MiB, files created: 248513, delete 24794 (10.0% of them)
freespace: was free: 3911680 bytes 3.7 MiB, wrote: 7872512 bytes 7.5 MiB, delta: 3960832 bytes 3.8 MiB, wrote 101.3% more than predicted
freespace: Test 3 finished
freespace: finished successfully
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-08-25 19:58:19 +04:00
long long ubifs_get_free_space ( struct ubifs_info * c ) ;
2009-01-23 15:54:59 +03:00
long long ubifs_get_free_space_nolock ( struct ubifs_info * c ) ;
2008-07-14 20:08:37 +04:00
int ubifs_calc_min_idx_lebs ( struct ubifs_info * c ) ;
void ubifs_convert_page_budget ( struct ubifs_info * c ) ;
2008-12-18 15:06:51 +03:00
long long ubifs_reported_space ( const struct ubifs_info * c , long long free ) ;
2008-07-14 20:08:37 +04:00
long long ubifs_calc_available ( const struct ubifs_info * c , int min_idx_lebs ) ;
/* find.c */
2009-03-03 20:22:53 +03:00
int ubifs_find_free_space ( struct ubifs_info * c , int min_space , int * offs ,
2008-07-14 20:08:37 +04:00
int squeeze ) ;
int ubifs_find_free_leb_for_idx ( struct ubifs_info * c ) ;
int ubifs_find_dirty_leb ( struct ubifs_info * c , struct ubifs_lprops * ret_lp ,
int min_space , int pick_free ) ;
int ubifs_find_dirty_idx_leb ( struct ubifs_info * c ) ;
int ubifs_save_dirty_idx_lnums ( struct ubifs_info * c ) ;
/* tnc.c */
int ubifs_lookup_level0 ( struct ubifs_info * c , const union ubifs_key * key ,
struct ubifs_znode * * zn , int * n ) ;
int ubifs_tnc_lookup_nm ( struct ubifs_info * c , const union ubifs_key * key ,
void * node , const struct qstr * nm ) ;
int ubifs_tnc_locate ( struct ubifs_info * c , const union ubifs_key * key ,
void * node , int * lnum , int * offs ) ;
int ubifs_tnc_add ( struct ubifs_info * c , const union ubifs_key * key , int lnum ,
int offs , int len ) ;
int ubifs_tnc_replace ( struct ubifs_info * c , const union ubifs_key * key ,
int old_lnum , int old_offs , int lnum , int offs , int len ) ;
int ubifs_tnc_add_nm ( struct ubifs_info * c , const union ubifs_key * key ,
int lnum , int offs , int len , const struct qstr * nm ) ;
int ubifs_tnc_remove ( struct ubifs_info * c , const union ubifs_key * key ) ;
int ubifs_tnc_remove_nm ( struct ubifs_info * c , const union ubifs_key * key ,
const struct qstr * nm ) ;
int ubifs_tnc_remove_range ( struct ubifs_info * c , union ubifs_key * from_key ,
union ubifs_key * to_key ) ;
int ubifs_tnc_remove_ino ( struct ubifs_info * c , ino_t inum ) ;
struct ubifs_dent_node * ubifs_tnc_next_ent ( struct ubifs_info * c ,
union ubifs_key * key ,
const struct qstr * nm ) ;
void ubifs_tnc_close ( struct ubifs_info * c ) ;
int ubifs_tnc_has_node ( struct ubifs_info * c , union ubifs_key * key , int level ,
int lnum , int offs , int is_idx ) ;
int ubifs_dirty_idx_node ( struct ubifs_info * c , union ubifs_key * key , int level ,
int lnum , int offs ) ;
/* Shared by tnc.c for tnc_commit.c */
void destroy_old_idx ( struct ubifs_info * c ) ;
int is_idx_node_in_tnc ( struct ubifs_info * c , union ubifs_key * key , int level ,
int lnum , int offs ) ;
int insert_old_idx_znode ( struct ubifs_info * c , struct ubifs_znode * znode ) ;
2008-09-02 17:29:46 +04:00
int ubifs_tnc_get_bu_keys ( struct ubifs_info * c , struct bu_info * bu ) ;
int ubifs_tnc_bulk_read ( struct ubifs_info * c , struct bu_info * bu ) ;
2008-07-14 20:08:37 +04:00
/* tnc_misc.c */
struct ubifs_znode * ubifs_tnc_levelorder_next ( struct ubifs_znode * zr ,
struct ubifs_znode * znode ) ;
int ubifs_search_zbranch ( const struct ubifs_info * c ,
const struct ubifs_znode * znode ,
const union ubifs_key * key , int * n ) ;
struct ubifs_znode * ubifs_tnc_postorder_first ( struct ubifs_znode * znode ) ;
struct ubifs_znode * ubifs_tnc_postorder_next ( struct ubifs_znode * znode ) ;
long ubifs_destroy_tnc_subtree ( struct ubifs_znode * zr ) ;
struct ubifs_znode * ubifs_load_znode ( struct ubifs_info * c ,
struct ubifs_zbranch * zbr ,
struct ubifs_znode * parent , int iip ) ;
int ubifs_tnc_read_node ( struct ubifs_info * c , struct ubifs_zbranch * zbr ,
void * node ) ;
/* tnc_commit.c */
int ubifs_tnc_start_commit ( struct ubifs_info * c , struct ubifs_zbranch * zroot ) ;
int ubifs_tnc_end_commit ( struct ubifs_info * c ) ;
/* shrinker.c */
2010-07-19 08:56:17 +04:00
int ubifs_shrinker ( struct shrinker * shrink , int nr_to_scan , gfp_t gfp_mask ) ;
2008-07-14 20:08:37 +04:00
/* commit.c */
int ubifs_bg_thread ( void * info ) ;
void ubifs_commit_required ( struct ubifs_info * c ) ;
void ubifs_request_bg_commit ( struct ubifs_info * c ) ;
int ubifs_run_commit ( struct ubifs_info * c ) ;
void ubifs_recovery_commit ( struct ubifs_info * c ) ;
int ubifs_gc_should_commit ( struct ubifs_info * c ) ;
void ubifs_wait_for_commit ( struct ubifs_info * c ) ;
/* master.c */
int ubifs_read_master ( struct ubifs_info * c ) ;
int ubifs_write_master ( struct ubifs_info * c ) ;
/* sb.c */
int ubifs_read_superblock ( struct ubifs_info * c ) ;
struct ubifs_sb_node * ubifs_read_sb_node ( struct ubifs_info * c ) ;
int ubifs_write_sb_node ( struct ubifs_info * c , struct ubifs_sb_node * sup ) ;
/* replay.c */
int ubifs_validate_entry ( struct ubifs_info * c ,
const struct ubifs_dent_node * dent ) ;
int ubifs_replay_journal ( struct ubifs_info * c ) ;
/* gc.c */
int ubifs_garbage_collect ( struct ubifs_info * c , int anyway ) ;
int ubifs_gc_start_commit ( struct ubifs_info * c ) ;
int ubifs_gc_end_commit ( struct ubifs_info * c ) ;
2009-01-29 13:59:33 +03:00
void ubifs_destroy_idx_gc ( struct ubifs_info * c ) ;
2008-07-14 20:08:37 +04:00
int ubifs_get_idx_gc_leb ( struct ubifs_info * c ) ;
int ubifs_garbage_collect_leb ( struct ubifs_info * c , struct ubifs_lprops * lp ) ;
/* orphan.c */
int ubifs_add_orphan ( struct ubifs_info * c , ino_t inum ) ;
void ubifs_delete_orphan ( struct ubifs_info * c , ino_t inum ) ;
int ubifs_orphan_start_commit ( struct ubifs_info * c ) ;
int ubifs_orphan_end_commit ( struct ubifs_info * c ) ;
int ubifs_mount_orphans ( struct ubifs_info * c , int unclean , int read_only ) ;
2009-01-26 11:55:40 +03:00
int ubifs_clear_orphans ( struct ubifs_info * c ) ;
2008-07-14 20:08:37 +04:00
/* lpt.c */
int ubifs_calc_lpt_geom ( struct ubifs_info * c ) ;
int ubifs_create_dflt_lpt ( struct ubifs_info * c , int * main_lebs , int lpt_first ,
int * lpt_lebs , int * big_lpt ) ;
int ubifs_lpt_init ( struct ubifs_info * c , int rd , int wr ) ;
struct ubifs_lprops * ubifs_lpt_lookup ( struct ubifs_info * c , int lnum ) ;
struct ubifs_lprops * ubifs_lpt_lookup_dirty ( struct ubifs_info * c , int lnum ) ;
int ubifs_lpt_scan_nolock ( struct ubifs_info * c , int start_lnum , int end_lnum ,
ubifs_lpt_scan_callback scan_cb , void * data ) ;
/* Shared by lpt.c for lpt_commit.c */
void ubifs_pack_lsave ( struct ubifs_info * c , void * buf , int * lsave ) ;
void ubifs_pack_ltab ( struct ubifs_info * c , void * buf ,
struct ubifs_lpt_lprops * ltab ) ;
void ubifs_pack_pnode ( struct ubifs_info * c , void * buf ,
struct ubifs_pnode * pnode ) ;
void ubifs_pack_nnode ( struct ubifs_info * c , void * buf ,
struct ubifs_nnode * nnode ) ;
struct ubifs_pnode * ubifs_get_pnode ( struct ubifs_info * c ,
struct ubifs_nnode * parent , int iip ) ;
struct ubifs_nnode * ubifs_get_nnode ( struct ubifs_info * c ,
struct ubifs_nnode * parent , int iip ) ;
int ubifs_read_nnode ( struct ubifs_info * c , struct ubifs_nnode * parent , int iip ) ;
void ubifs_add_lpt_dirt ( struct ubifs_info * c , int lnum , int dirty ) ;
void ubifs_add_nnode_dirt ( struct ubifs_info * c , struct ubifs_nnode * nnode ) ;
uint32_t ubifs_unpack_bits ( uint8_t * * addr , int * pos , int nrbits ) ;
struct ubifs_nnode * ubifs_first_nnode ( struct ubifs_info * c , int * hght ) ;
2008-10-31 18:32:30 +03:00
/* Needed only in debugging code in lpt_commit.c */
int ubifs_unpack_nnode ( const struct ubifs_info * c , void * buf ,
struct ubifs_nnode * nnode ) ;
2008-07-14 20:08:37 +04:00
/* lpt_commit.c */
int ubifs_lpt_start_commit ( struct ubifs_info * c ) ;
int ubifs_lpt_end_commit ( struct ubifs_info * c ) ;
int ubifs_lpt_post_commit ( struct ubifs_info * c ) ;
void ubifs_lpt_free ( struct ubifs_info * c , int wr_only ) ;
/* lprops.c */
const struct ubifs_lprops * ubifs_change_lp ( struct ubifs_info * c ,
const struct ubifs_lprops * lp ,
int free , int dirty , int flags ,
int idx_gc_cnt ) ;
2009-01-23 15:54:59 +03:00
void ubifs_get_lp_stats ( struct ubifs_info * c , struct ubifs_lp_stats * lst ) ;
2008-07-14 20:08:37 +04:00
void ubifs_add_to_cat ( struct ubifs_info * c , struct ubifs_lprops * lprops ,
int cat ) ;
void ubifs_replace_cat ( struct ubifs_info * c , struct ubifs_lprops * old_lprops ,
struct ubifs_lprops * new_lprops ) ;
void ubifs_ensure_cat ( struct ubifs_info * c , struct ubifs_lprops * lprops ) ;
int ubifs_categorize_lprops ( const struct ubifs_info * c ,
const struct ubifs_lprops * lprops ) ;
int ubifs_change_one_lp ( struct ubifs_info * c , int lnum , int free , int dirty ,
int flags_set , int flags_clean , int idx_gc_cnt ) ;
int ubifs_update_one_lp ( struct ubifs_info * c , int lnum , int free , int dirty ,
int flags_set , int flags_clean ) ;
int ubifs_read_one_lp ( struct ubifs_info * c , int lnum , struct ubifs_lprops * lp ) ;
const struct ubifs_lprops * ubifs_fast_find_free ( struct ubifs_info * c ) ;
const struct ubifs_lprops * ubifs_fast_find_empty ( struct ubifs_info * c ) ;
const struct ubifs_lprops * ubifs_fast_find_freeable ( struct ubifs_info * c ) ;
const struct ubifs_lprops * ubifs_fast_find_frdi_idx ( struct ubifs_info * c ) ;
2008-12-28 11:17:23 +03:00
int ubifs_calc_dark ( const struct ubifs_info * c , int spc ) ;
2008-07-14 20:08:37 +04:00
/* file.c */
2010-05-26 19:53:25 +04:00
int ubifs_fsync ( struct file * file , int datasync ) ;
2008-07-14 20:08:37 +04:00
int ubifs_setattr ( struct dentry * dentry , struct iattr * attr ) ;
/* dir.c */
struct inode * ubifs_new_inode ( struct ubifs_info * c , const struct inode * dir ,
int mode ) ;
int ubifs_getattr ( struct vfsmount * mnt , struct dentry * dentry ,
struct kstat * stat ) ;
/* xattr.c */
int ubifs_setxattr ( struct dentry * dentry , const char * name ,
const void * value , size_t size , int flags ) ;
ssize_t ubifs_getxattr ( struct dentry * dentry , const char * name , void * buf ,
size_t size ) ;
ssize_t ubifs_listxattr ( struct dentry * dentry , char * buffer , size_t size ) ;
int ubifs_removexattr ( struct dentry * dentry , const char * name ) ;
/* super.c */
struct inode * ubifs_iget ( struct super_block * sb , unsigned long inum ) ;
/* recovery.c */
int ubifs_recover_master_node ( struct ubifs_info * c ) ;
int ubifs_write_rcvrd_mst_node ( struct ubifs_info * c ) ;
struct ubifs_scan_leb * ubifs_recover_leb ( struct ubifs_info * c , int lnum ,
int offs , void * sbuf , int grouped ) ;
struct ubifs_scan_leb * ubifs_recover_log_leb ( struct ubifs_info * c , int lnum ,
int offs , void * sbuf ) ;
int ubifs_recover_inl_heads ( const struct ubifs_info * c , void * sbuf ) ;
int ubifs_clean_lebs ( const struct ubifs_info * c , void * sbuf ) ;
int ubifs_rcvry_gc_commit ( struct ubifs_info * c ) ;
int ubifs_recover_size_accum ( struct ubifs_info * c , union ubifs_key * key ,
int deletion , loff_t new_size ) ;
int ubifs_recover_size ( struct ubifs_info * c ) ;
void ubifs_destroy_size_tree ( struct ubifs_info * c ) ;
/* ioctl.c */
long ubifs_ioctl ( struct file * file , unsigned int cmd , unsigned long arg ) ;
void ubifs_set_inode_flags ( struct inode * inode ) ;
# ifdef CONFIG_COMPAT
long ubifs_compat_ioctl ( struct file * file , unsigned int cmd , unsigned long arg ) ;
# endif
/* compressor.c */
int __init ubifs_compressors_init ( void ) ;
2008-12-04 17:04:18 +03:00
void ubifs_compressors_exit ( void ) ;
2008-07-14 20:08:37 +04:00
void ubifs_compress ( const void * in_buf , int in_len , void * out_buf , int * out_len ,
int * compr_type ) ;
int ubifs_decompress ( const void * buf , int len , void * out , int * out_len ,
int compr_type ) ;
# include "debug.h"
# include "misc.h"
# include "key.h"
# endif /* !__UBIFS_H__ */