2008-03-03 14:12:55 -03:00
/*
* Intel SMP support routines .
*
2009-01-05 14:08:04 +00:00
* ( c ) 1995 Alan Cox , Building # 3 < alan @ lxorguk . ukuu . org . uk >
2009-01-31 02:03:42 +01:00
* ( c ) 1998 - 99 , 2000 , 2009 Ingo Molnar < mingo @ redhat . com >
2008-03-03 14:12:55 -03:00
* ( c ) 2002 , 2003 Andi Kleen , SuSE Labs .
*
* i386 and x86_64 integration by Glauber Costa < gcosta @ redhat . com >
*
* This code is released under the GNU General Public License version 2 or
* later .
*/
2008-03-03 14:12:52 -03:00
# include <linux/init.h>
# include <linux/mm.h>
# include <linux/delay.h>
# include <linux/spinlock.h>
2011-05-26 12:22:53 -04:00
# include <linux/export.h>
2008-03-03 14:12:52 -03:00
# include <linux/kernel_stat.h>
# include <linux/mc146818rtc.h>
# include <linux/cache.h>
# include <linux/interrupt.h>
# include <linux/cpu.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
# include <linux/gfp.h>
2008-03-03 14:12:52 -03:00
# include <asm/mtrr.h>
# include <asm/tlbflush.h>
# include <asm/mmu_context.h>
# include <asm/proto.h>
2009-02-17 13:58:15 +01:00
# include <asm/apic.h>
2011-10-13 15:14:25 -04:00
# include <asm/nmi.h>
2008-03-03 14:12:55 -03:00
/*
* Some notes on x86 processor bugs affecting SMP operation :
*
* Pentium , Pentium Pro , II , III ( and all CPUs ) have bugs .
* The Linux implications for SMP are handled as follows :
*
* Pentium III / [ Xeon ]
* None of the E1AP - E3AP errata are visible to the user .
*
* E1AP . see PII A1AP
* E2AP . see PII A2AP
* E3AP . see PII A3AP
*
* Pentium II / [ Xeon ]
* None of the A1AP - A3AP errata are visible to the user .
*
* A1AP . see PPro 1 AP
* A2AP . see PPro 2 AP
* A3AP . see PPro 7 AP
*
* Pentium Pro
* None of 1 AP - 9 AP errata are visible to the normal user ,
* except occasional delivery of ' spurious interrupt ' as trap # 15.
* This is very rare and a non - problem .
*
* 1 AP . Linux maps APIC as non - cacheable
* 2 AP . worked around in hardware
* 3 AP . fixed in C0 and above steppings microcode update .
* Linux does not use excessive STARTUP_IPIs .
* 4 AP . worked around in hardware
* 5 AP . symmetric IO mode ( normal Linux operation ) not affected .
* ' noapic ' mode has vector 0xf filled out properly .
* 6 AP . ' noapic ' mode might be affected - fixed in later steppings
* 7 AP . We do not assume writes to the LVT deassering IRQs
* 8 AP . We do not enable low power mode ( deep sleep ) during MP bootup
* 9 AP . We do not use mixed mode
*
* Pentium
* There is a marginal case where REP MOVS on 100 MHz SMP
* machines with B stepping processors can fail . XXX should provide
* an L1cache = Writethrough or L1cache = off option .
*
* B stepping CPUs may hang . There are hardware work arounds
* for this . We warn about it in case your board doesn ' t have the work
* arounds . Basically that ' s so I can tell anyone with a B stepping
* CPU and SMP problems " tough " .
*
* Specific items [ From Pentium Processor Specification Update ]
*
* 1 AP . Linux doesn ' t use remote read
* 2 AP . Linux doesn ' t trust APIC errors
* 3 AP . We work around this
* 4 AP . Linux never generated 3 interrupts of the same priority
* to cause a lost local interrupt .
* 5 AP . Remote read is never used
* 6 AP . not affected - worked around in hardware
* 7 AP . not affected - worked around in hardware
* 8 AP . worked around in hardware - we get explicit CS errors if not
* 9 AP . only ' noapic ' mode affected . Might generate spurious
* interrupts , we log only the first one and count the
* rest silently .
* 10 AP . not affected - worked around in hardware
* 11 AP . Linux reads the APIC between writes to avoid this , as per
* the documentation . Make sure you preserve this as it affects
* the C stepping chips too .
* 12 AP . not affected - worked around in hardware
* 13 AP . not affected - worked around in hardware
* 14 AP . we always deassert INIT during bootup
* 15 AP . not affected - worked around in hardware
* 16 AP . not affected - worked around in hardware
* 17 AP . not affected - worked around in hardware
* 18 AP . not affected - worked around in hardware
* 19 AP . not affected - worked around in BIOS
*
* If this sounds worrying believe me these bugs are either ___RARE___ ,
* or are signal timing bugs worked around in hardware and there ' s
* about nothing of note with C stepping upwards .
*/
2008-03-03 14:12:52 -03:00
/*
* this function sends a ' reschedule ' IPI to another CPU .
* it goes straight through and wastes no time serializing
* anything . Worst case is that we lose a reschedule . . .
*/
static void native_smp_send_reschedule ( int cpu )
{
2008-03-10 17:44:03 +05:30
if ( unlikely ( cpu_is_offline ( cpu ) ) ) {
WARN_ON ( 1 ) ;
return ;
}
2009-01-28 15:42:24 +01:00
apic - > send_IPI_mask ( cpumask_of ( cpu ) , RESCHEDULE_VECTOR ) ;
2008-03-03 14:12:52 -03:00
}
2008-06-26 11:21:54 +02:00
void native_send_call_func_single_ipi ( int cpu )
2008-03-03 14:12:52 -03:00
{
2009-01-28 15:42:24 +01:00
apic - > send_IPI_mask ( cpumask_of ( cpu ) , CALL_FUNCTION_SINGLE_VECTOR ) ;
2008-03-03 14:12:52 -03:00
}
2008-12-16 17:33:59 -08:00
void native_send_call_func_ipi ( const struct cpumask * mask )
2008-03-03 14:12:52 -03:00
{
2009-01-04 05:18:03 -08:00
cpumask_var_t allbutself ;
2008-03-03 14:12:52 -03:00
2009-01-04 05:18:03 -08:00
if ( ! alloc_cpumask_var ( & allbutself , GFP_ATOMIC ) ) {
2009-01-28 15:42:24 +01:00
apic - > send_IPI_mask ( mask , CALL_FUNCTION_VECTOR ) ;
2009-01-04 05:18:03 -08:00
return ;
}
2008-03-03 14:12:52 -03:00
2009-01-04 05:18:03 -08:00
cpumask_copy ( allbutself , cpu_online_mask ) ;
cpumask_clear_cpu ( smp_processor_id ( ) , allbutself ) ;
if ( cpumask_equal ( mask , allbutself ) & &
cpumask_equal ( cpu_online_mask , cpu_callout_mask ) )
2009-01-28 15:42:24 +01:00
apic - > send_IPI_allbutself ( CALL_FUNCTION_VECTOR ) ;
2008-03-03 14:12:52 -03:00
else
2009-01-28 15:42:24 +01:00
apic - > send_IPI_mask ( mask , CALL_FUNCTION_VECTOR ) ;
2009-01-04 05:18:03 -08:00
free_cpumask_var ( allbutself ) ;
2008-03-03 14:12:52 -03:00
}
2011-10-13 15:14:25 -04:00
static atomic_t stopping_cpu = ATOMIC_INIT ( - 1 ) ;
static int smp_stop_nmi_callback ( unsigned int val , struct pt_regs * regs )
{
/* We are registered on stopping cpu too, avoid spurious NMI */
if ( raw_smp_processor_id ( ) = = atomic_read ( & stopping_cpu ) )
return NMI_HANDLED ;
stop_this_cpu ( NULL ) ;
return NMI_HANDLED ;
}
static void native_nmi_stop_other_cpus ( int wait )
{
unsigned long flags ;
unsigned long timeout ;
if ( reboot_force )
return ;
/*
* Use an own vector here because smp_call_function
* does lots of things not suitable in a panic situation .
*/
if ( num_online_cpus ( ) > 1 ) {
/* did someone beat us here? */
2012-01-06 11:17:51 -05:00
if ( atomic_cmpxchg ( & stopping_cpu , - 1 , safe_smp_processor_id ( ) ) ! = - 1 )
2011-10-13 15:14:25 -04:00
return ;
if ( register_nmi_handler ( NMI_LOCAL , smp_stop_nmi_callback ,
NMI_FLAG_FIRST , " smp_stop " ) )
/* Note: we ignore failures here */
return ;
/* sync above data before sending NMI */
wmb ( ) ;
apic - > send_IPI_allbutself ( NMI_VECTOR ) ;
/*
* Don ' t wait longer than a second if the caller
* didn ' t ask us to wait .
*/
timeout = USEC_PER_SEC ;
while ( num_online_cpus ( ) > 1 & & ( wait | | timeout - - ) )
udelay ( 1 ) ;
}
local_irq_save ( flags ) ;
disable_local_APIC ( ) ;
local_irq_restore ( flags ) ;
}
2008-03-03 14:12:52 -03:00
/*
* this function calls the ' stop ' function on all other CPUs in the system .
*/
x86: fix panic with interrupts off (needed for MCE)
For some time each panic() called with interrupts disabled
triggered the !irqs_disabled() WARN_ON in smp_call_function(),
producing ugly backtraces and confusing users.
This is a common situation with machine checks for example which
tend to call panic with interrupts disabled, but will also hit
in other situations e.g. panic during early boot. In fact it
means that panic cannot be called in many circumstances, which
would be bad.
This all started with the new fancy queued smp_call_function,
which is then used by the shutdown path to shut down the other
CPUs.
On closer examination it turned out that the fancy RCU
smp_call_function() does lots of things not suitable in a panic
situation anyways, like allocating memory and relying on complex
system state.
I originally tried to patch this over by checking for panic
there, but it was quite complicated and the original patch
was also not very popular. This also didn't fix some of the
underlying complexity problems.
The new code in post 2.6.29 tries to patch around this by
checking for oops_in_progress, but that is not enough to make
this fully safe and I don't think that's a real solution
because panic has to be reliable.
So instead use an own vector to reboot. This makes the reboot
code extremly straight forward, which is definitely a big plus
in a panic situation where it is important to avoid relying on
too much kernel state. The new simple code is also safe to be
called from interupts off region because it is very very simple.
There can be situations where it is important that panic
is reliable. For example on a fatal machine check the panic
is needed to get the system up again and running as quickly
as possible. So it's important that panic is reliable and
all function it calls simple.
This is why I came up with this simple vector scheme.
It's very hard to beat in simplicity. Vectors are not
particularly precious anymore since all big systems are
using per CPU vectors.
Another possibility would have been to use an NMI similar
to kdump, but there is still the problem that NMIs don't
work reliably on some systems due to BIOS issues. NMIs
would have been able to stop CPUs running with interrupts
off too. In the sake of universal reliability I opted for
using a non NMI vector for now.
I put the reboot vector into the highest priority bucket of
the APIC vectors and moved the 64bit UV_BAU message down
instead into the next lower priority.
[ Impact: bug fix, fixes an old regression ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-05-27 21:56:52 +02:00
asmlinkage void smp_reboot_interrupt ( void )
{
ack_APIC_irq ( ) ;
irq_enter ( ) ;
stop_this_cpu ( NULL ) ;
irq_exit ( ) ;
}
2011-10-13 15:14:25 -04:00
static void native_irq_stop_other_cpus ( int wait )
2008-03-03 14:12:52 -03:00
{
unsigned long flags ;
2010-10-11 14:37:08 -07:00
unsigned long timeout ;
2008-03-03 14:12:52 -03:00
if ( reboot_force )
return ;
x86: fix panic with interrupts off (needed for MCE)
For some time each panic() called with interrupts disabled
triggered the !irqs_disabled() WARN_ON in smp_call_function(),
producing ugly backtraces and confusing users.
This is a common situation with machine checks for example which
tend to call panic with interrupts disabled, but will also hit
in other situations e.g. panic during early boot. In fact it
means that panic cannot be called in many circumstances, which
would be bad.
This all started with the new fancy queued smp_call_function,
which is then used by the shutdown path to shut down the other
CPUs.
On closer examination it turned out that the fancy RCU
smp_call_function() does lots of things not suitable in a panic
situation anyways, like allocating memory and relying on complex
system state.
I originally tried to patch this over by checking for panic
there, but it was quite complicated and the original patch
was also not very popular. This also didn't fix some of the
underlying complexity problems.
The new code in post 2.6.29 tries to patch around this by
checking for oops_in_progress, but that is not enough to make
this fully safe and I don't think that's a real solution
because panic has to be reliable.
So instead use an own vector to reboot. This makes the reboot
code extremly straight forward, which is definitely a big plus
in a panic situation where it is important to avoid relying on
too much kernel state. The new simple code is also safe to be
called from interupts off region because it is very very simple.
There can be situations where it is important that panic
is reliable. For example on a fatal machine check the panic
is needed to get the system up again and running as quickly
as possible. So it's important that panic is reliable and
all function it calls simple.
This is why I came up with this simple vector scheme.
It's very hard to beat in simplicity. Vectors are not
particularly precious anymore since all big systems are
using per CPU vectors.
Another possibility would have been to use an NMI similar
to kdump, but there is still the problem that NMIs don't
work reliably on some systems due to BIOS issues. NMIs
would have been able to stop CPUs running with interrupts
off too. In the sake of universal reliability I opted for
using a non NMI vector for now.
I put the reboot vector into the highest priority bucket of
the APIC vectors and moved the 64bit UV_BAU message down
instead into the next lower priority.
[ Impact: bug fix, fixes an old regression ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-05-27 21:56:52 +02:00
/*
* Use an own vector here because smp_call_function
* does lots of things not suitable in a panic situation .
* On most systems we could also use an NMI here ,
* but there are a few systems around where NMI
* is problematic so stay with an non NMI for now
* ( this implies we cannot stop CPUs spinning with irq off
* currently )
*/
if ( num_online_cpus ( ) > 1 ) {
apic - > send_IPI_allbutself ( REBOOT_VECTOR ) ;
2010-10-11 14:37:08 -07:00
/*
* Don ' t wait longer than a second if the caller
* didn ' t ask us to wait .
*/
timeout = USEC_PER_SEC ;
while ( num_online_cpus ( ) > 1 & & ( wait | | timeout - - ) )
x86: fix panic with interrupts off (needed for MCE)
For some time each panic() called with interrupts disabled
triggered the !irqs_disabled() WARN_ON in smp_call_function(),
producing ugly backtraces and confusing users.
This is a common situation with machine checks for example which
tend to call panic with interrupts disabled, but will also hit
in other situations e.g. panic during early boot. In fact it
means that panic cannot be called in many circumstances, which
would be bad.
This all started with the new fancy queued smp_call_function,
which is then used by the shutdown path to shut down the other
CPUs.
On closer examination it turned out that the fancy RCU
smp_call_function() does lots of things not suitable in a panic
situation anyways, like allocating memory and relying on complex
system state.
I originally tried to patch this over by checking for panic
there, but it was quite complicated and the original patch
was also not very popular. This also didn't fix some of the
underlying complexity problems.
The new code in post 2.6.29 tries to patch around this by
checking for oops_in_progress, but that is not enough to make
this fully safe and I don't think that's a real solution
because panic has to be reliable.
So instead use an own vector to reboot. This makes the reboot
code extremly straight forward, which is definitely a big plus
in a panic situation where it is important to avoid relying on
too much kernel state. The new simple code is also safe to be
called from interupts off region because it is very very simple.
There can be situations where it is important that panic
is reliable. For example on a fatal machine check the panic
is needed to get the system up again and running as quickly
as possible. So it's important that panic is reliable and
all function it calls simple.
This is why I came up with this simple vector scheme.
It's very hard to beat in simplicity. Vectors are not
particularly precious anymore since all big systems are
using per CPU vectors.
Another possibility would have been to use an NMI similar
to kdump, but there is still the problem that NMIs don't
work reliably on some systems due to BIOS issues. NMIs
would have been able to stop CPUs running with interrupts
off too. In the sake of universal reliability I opted for
using a non NMI vector for now.
I put the reboot vector into the highest priority bucket of
the APIC vectors and moved the 64bit UV_BAU message down
instead into the next lower priority.
[ Impact: bug fix, fixes an old regression ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-05-27 21:56:52 +02:00
udelay ( 1 ) ;
}
2008-03-03 14:12:52 -03:00
local_irq_save ( flags ) ;
disable_local_APIC ( ) ;
local_irq_restore ( flags ) ;
}
2011-10-13 15:14:27 -04:00
static void native_smp_disable_nmi_ipi ( void )
{
smp_ops . stop_other_cpus = native_irq_stop_other_cpus ;
}
2008-03-03 14:12:52 -03:00
/*
2011-04-05 17:23:39 +02:00
* Reschedule call back .
2008-03-03 14:12:52 -03:00
*/
void smp_reschedule_interrupt ( struct pt_regs * regs )
{
ack_APIC_irq ( ) ;
2008-12-08 19:19:26 -08:00
inc_irq_stat ( irq_resched_count ) ;
2011-04-05 17:23:39 +02:00
scheduler_ipi ( ) ;
2009-05-07 17:55:12 -03:00
/*
* KVM uses this interrupt to force a cpu out of guest mode
*/
2008-03-03 14:12:52 -03:00
}
void smp_call_function_interrupt ( struct pt_regs * regs )
{
ack_APIC_irq ( ) ;
irq_enter ( ) ;
2008-06-26 11:21:54 +02:00
generic_smp_call_function_interrupt ( ) ;
2008-12-08 19:19:26 -08:00
inc_irq_stat ( irq_call_count ) ;
2008-03-03 14:12:52 -03:00
irq_exit ( ) ;
2008-06-26 11:21:54 +02:00
}
2008-03-03 14:12:52 -03:00
2008-07-01 13:12:04 +02:00
void smp_call_function_single_interrupt ( struct pt_regs * regs )
2008-06-26 11:21:54 +02:00
{
ack_APIC_irq ( ) ;
irq_enter ( ) ;
generic_smp_call_function_single_interrupt ( ) ;
2008-12-08 19:19:26 -08:00
inc_irq_stat ( irq_call_count ) ;
2008-06-26 11:21:54 +02:00
irq_exit ( ) ;
2008-03-03 14:12:52 -03:00
}
2011-10-13 15:14:27 -04:00
static int __init nonmi_ipi_setup ( char * str )
{
native_smp_disable_nmi_ipi ( ) ;
return 1 ;
}
__setup ( " nonmi_ipi " , nonmi_ipi_setup ) ;
2008-03-03 14:12:52 -03:00
struct smp_ops smp_ops = {
2009-04-12 20:47:42 +04:00
. smp_prepare_boot_cpu = native_smp_prepare_boot_cpu ,
. smp_prepare_cpus = native_smp_prepare_cpus ,
. smp_cpus_done = native_smp_cpus_done ,
2008-03-03 14:12:52 -03:00
2011-10-13 15:14:25 -04:00
. stop_other_cpus = native_nmi_stop_other_cpus ,
2009-04-12 20:47:42 +04:00
. smp_send_reschedule = native_smp_send_reschedule ,
2008-06-26 11:21:54 +02:00
2009-04-12 20:47:42 +04:00
. cpu_up = native_cpu_up ,
. cpu_die = native_cpu_die ,
. cpu_disable = native_cpu_disable ,
. play_dead = native_play_dead ,
2008-08-22 11:52:11 +01:00
2009-04-12 20:47:42 +04:00
. send_call_func_ipi = native_send_call_func_ipi ,
2008-06-26 11:21:54 +02:00
. send_call_func_single_ipi = native_send_call_func_single_ipi ,
2008-03-03 14:12:52 -03:00
} ;
EXPORT_SYMBOL_GPL ( smp_ops ) ;