2008-07-28 22:05:35 +04:00
/*
* Jack abstraction layer
*
* Copyright 2008 Wolfson Microelectronics
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*
*/
# include <linux/input.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
# include <linux/slab.h>
2008-07-28 22:05:35 +04:00
# include <sound/jack.h>
# include <sound/core.h>
2010-03-17 18:36:38 +03:00
static int jack_switch_types [ ] = {
2009-01-03 19:56:56 +03:00
SW_HEADPHONE_INSERT ,
SW_MICROPHONE_INSERT ,
SW_LINEOUT_INSERT ,
SW_JACK_PHYSICAL_INSERT ,
2009-01-07 12:54:25 +03:00
SW_VIDEOOUT_INSERT ,
2009-01-03 19:56:56 +03:00
} ;
2008-07-28 22:05:35 +04:00
static int snd_jack_dev_free ( struct snd_device * device )
{
struct snd_jack * jack = device - > device_data ;
2009-04-14 18:13:58 +04:00
if ( jack - > private_free )
jack - > private_free ( jack ) ;
2008-07-28 22:05:35 +04:00
/* If the input device is registered with the input subsystem
* then we need to use a different deallocator . */
if ( jack - > registered )
input_unregister_device ( jack - > input_dev ) ;
else
input_free_device ( jack - > input_dev ) ;
2008-10-25 09:05:29 +04:00
kfree ( jack - > id ) ;
2008-07-28 22:05:35 +04:00
kfree ( jack ) ;
return 0 ;
}
static int snd_jack_dev_register ( struct snd_device * device )
{
struct snd_jack * jack = device - > device_data ;
struct snd_card * card = device - > card ;
2010-03-17 21:07:12 +03:00
int err , i ;
2008-07-28 22:05:35 +04:00
snprintf ( jack - > name , sizeof ( jack - > name ) , " %s %s " ,
2009-02-18 18:46:27 +03:00
card - > shortname , jack - > id ) ;
2008-07-28 22:05:35 +04:00
jack - > input_dev - > name = jack - > name ;
/* Default to the sound card device. */
if ( ! jack - > input_dev - > dev . parent )
2009-06-10 21:50:33 +04:00
jack - > input_dev - > dev . parent = snd_card_get_device_link ( card ) ;
2008-07-28 22:05:35 +04:00
2010-03-17 21:07:12 +03:00
/* Add capabilities for any keys that are enabled */
for ( i = 0 ; i < ARRAY_SIZE ( jack - > key ) ; i + + ) {
int testbit = SND_JACK_BTN_0 > > i ;
if ( ! ( jack - > type & testbit ) )
continue ;
if ( ! jack - > key [ i ] )
jack - > key [ i ] = BTN_0 + i ;
input_set_capability ( jack - > input_dev , EV_KEY , jack - > key [ i ] ) ;
}
2008-07-28 22:05:35 +04:00
err = input_register_device ( jack - > input_dev ) ;
if ( err = = 0 )
jack - > registered = 1 ;
return err ;
}
/**
* snd_jack_new - Create a new jack
* @ card : the card instance
* @ id : an identifying string for this jack
* @ type : a bitmask of enum snd_jack_type values that can be detected by
* this jack
* @ jjack : Used to provide the allocated jack object to the caller .
*
* Creates a new jack object .
*
* Returns zero if successful , or a negative error code on failure .
* On success jjack will be initialised .
*/
int snd_jack_new ( struct snd_card * card , const char * id , int type ,
struct snd_jack * * jjack )
{
struct snd_jack * jack ;
int err ;
2009-01-03 19:56:56 +03:00
int i ;
2008-07-28 22:05:35 +04:00
static struct snd_device_ops ops = {
. dev_free = snd_jack_dev_free ,
. dev_register = snd_jack_dev_register ,
} ;
jack = kzalloc ( sizeof ( struct snd_jack ) , GFP_KERNEL ) ;
if ( jack = = NULL )
return - ENOMEM ;
2008-10-25 09:05:29 +04:00
jack - > id = kstrdup ( id , GFP_KERNEL ) ;
2008-07-28 22:05:35 +04:00
jack - > input_dev = input_allocate_device ( ) ;
if ( jack - > input_dev = = NULL ) {
err = - ENOMEM ;
goto fail_input ;
}
jack - > input_dev - > phys = " ALSA " ;
jack - > type = type ;
2010-03-17 18:36:38 +03:00
for ( i = 0 ; i < ARRAY_SIZE ( jack_switch_types ) ; i + + )
2009-01-03 19:56:56 +03:00
if ( type & ( 1 < < i ) )
input_set_capability ( jack - > input_dev , EV_SW ,
2010-03-17 18:36:38 +03:00
jack_switch_types [ i ] ) ;
2008-07-28 22:05:35 +04:00
err = snd_device_new ( card , SNDRV_DEV_JACK , jack , & ops ) ;
if ( err < 0 )
goto fail_input ;
* jjack = jack ;
return 0 ;
fail_input :
input_free_device ( jack - > input_dev ) ;
kfree ( jack ) ;
return err ;
}
EXPORT_SYMBOL ( snd_jack_new ) ;
/**
* snd_jack_set_parent - Set the parent device for a jack
*
* @ jack : The jack to configure
* @ parent : The device to set as parent for the jack .
*
* Set the parent for the jack input device in the device tree . This
* function is only valid prior to registration of the jack . If no
* parent is configured then the parent device will be the sound card .
*/
void snd_jack_set_parent ( struct snd_jack * jack , struct device * parent )
{
WARN_ON ( jack - > registered ) ;
jack - > input_dev - > dev . parent = parent ;
}
EXPORT_SYMBOL ( snd_jack_set_parent ) ;
2010-03-17 21:07:12 +03:00
/**
* snd_jack_set_key - Set a key mapping on a jack
*
* @ jack : The jack to configure
* @ type : Jack report type for this key
* @ keytype : Input layer key type to be reported
*
* Map a SND_JACK_BTN_ button type to an input layer key , allowing
* reporting of keys on accessories via the jack abstraction . If no
* mapping is provided but keys are enabled in the jack type then
* BTN_n numeric buttons will be reported .
*
* Note that this is intended to be use by simple devices with small
* numbers of keys that can be reported . It is also possible to
* access the input device directly - devices with complex input
* capabilities on accessories should consider doing this rather than
* using this abstraction .
*
* This function may only be called prior to registration of the jack .
*/
int snd_jack_set_key ( struct snd_jack * jack , enum snd_jack_types type ,
int keytype )
{
int key = fls ( SND_JACK_BTN_0 ) - fls ( type ) ;
WARN_ON ( jack - > registered ) ;
if ( ! keytype | | key > = ARRAY_SIZE ( jack - > key ) )
return - EINVAL ;
jack - > type | = type ;
jack - > key [ key ] = keytype ;
return 0 ;
}
EXPORT_SYMBOL ( snd_jack_set_key ) ;
2008-07-28 22:05:35 +04:00
/**
* snd_jack_report - Report the current status of a jack
*
* @ jack : The jack to report status for
* @ status : The current status of the jack
*/
void snd_jack_report ( struct snd_jack * jack , int status )
{
2009-01-03 19:56:56 +03:00
int i ;
2008-10-15 20:07:47 +04:00
if ( ! jack )
return ;
2010-03-17 21:07:12 +03:00
for ( i = 0 ; i < ARRAY_SIZE ( jack - > key ) ; i + + ) {
int testbit = SND_JACK_BTN_0 > > i ;
if ( jack - > type & testbit )
input_report_key ( jack - > input_dev , jack - > key [ i ] ,
status & testbit ) ;
}
2010-03-17 18:36:38 +03:00
for ( i = 0 ; i < ARRAY_SIZE ( jack_switch_types ) ; i + + ) {
2009-01-03 19:56:56 +03:00
int testbit = 1 < < i ;
if ( jack - > type & testbit )
2010-03-17 18:36:38 +03:00
input_report_switch ( jack - > input_dev ,
jack_switch_types [ i ] ,
2009-01-03 19:56:56 +03:00
status & testbit ) ;
}
2008-07-28 22:05:35 +04:00
input_sync ( jack - > input_dev ) ;
}
EXPORT_SYMBOL ( snd_jack_report ) ;
MODULE_AUTHOR ( " Mark Brown <broonie@opensource.wolfsonmicro.com> " ) ;
MODULE_DESCRIPTION ( " Jack detection support for ALSA " ) ;
MODULE_LICENSE ( " GPL " ) ;