linux/fs/overlayfs/super.c

2219 lines
54 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
/*
*
* Copyright (C) 2011 Novell Inc.
*/
#include <uapi/linux/magic.h>
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/xattr.h>
#include <linux/mount.h>
#include <linux/parser.h>
#include <linux/module.h>
#include <linux/statfs.h>
#include <linux/seq_file.h>
#include <linux/posix_acl_xattr.h>
#include <linux/exportfs.h>
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
#include "overlayfs.h"
MODULE_AUTHOR("Miklos Szeredi <miklos@szeredi.hu>");
MODULE_DESCRIPTION("Overlay filesystem");
MODULE_LICENSE("GPL");
struct ovl_dir_cache;
#define OVL_MAX_STACK 500
static bool ovl_redirect_dir_def = IS_ENABLED(CONFIG_OVERLAY_FS_REDIRECT_DIR);
module_param_named(redirect_dir, ovl_redirect_dir_def, bool, 0644);
ovl: fix typo in MODULE_PARM_DESC Change first argument to MODULE_PARM_DESC() calls, that each of them matched the actual module parameter name. The matching results in changing (the 'parm' section from) the output of `modinfo overlay` from: parm: ovl_check_copy_up:Obsolete; does nothing parm: redirect_max:ushort parm: ovl_redirect_max:Maximum length of absolute redirect xattr value parm: redirect_dir:bool parm: ovl_redirect_dir_def:Default to on or off for the redirect_dir feature parm: redirect_always_follow:bool parm: ovl_redirect_always_follow:Follow redirects even if redirect_dir feature is turned off parm: index:bool parm: ovl_index_def:Default to on or off for the inodes index feature parm: nfs_export:bool parm: ovl_nfs_export_def:Default to on or off for the NFS export feature parm: xino_auto:bool parm: ovl_xino_auto_def:Auto enable xino feature parm: metacopy:bool parm: ovl_metacopy_def:Default to on or off for the metadata only copy up feature into: parm: check_copy_up:Obsolete; does nothing parm: redirect_max:Maximum length of absolute redirect xattr value (ushort) parm: redirect_dir:Default to on or off for the redirect_dir feature (bool) parm: redirect_always_follow:Follow redirects even if redirect_dir feature is turned off (bool) parm: index:Default to on or off for the inodes index feature (bool) parm: nfs_export:Default to on or off for the NFS export feature (bool) parm: xino_auto:Auto enable xino feature (bool) parm: metacopy:Default to on or off for the metadata only copy up feature (bool) Signed-off-by: Nicolas Schier <n.schier@avm.de> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-06-17 10:39:00 +03:00
MODULE_PARM_DESC(redirect_dir,
"Default to on or off for the redirect_dir feature");
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static bool ovl_redirect_always_follow =
IS_ENABLED(CONFIG_OVERLAY_FS_REDIRECT_ALWAYS_FOLLOW);
module_param_named(redirect_always_follow, ovl_redirect_always_follow,
bool, 0644);
ovl: fix typo in MODULE_PARM_DESC Change first argument to MODULE_PARM_DESC() calls, that each of them matched the actual module parameter name. The matching results in changing (the 'parm' section from) the output of `modinfo overlay` from: parm: ovl_check_copy_up:Obsolete; does nothing parm: redirect_max:ushort parm: ovl_redirect_max:Maximum length of absolute redirect xattr value parm: redirect_dir:bool parm: ovl_redirect_dir_def:Default to on or off for the redirect_dir feature parm: redirect_always_follow:bool parm: ovl_redirect_always_follow:Follow redirects even if redirect_dir feature is turned off parm: index:bool parm: ovl_index_def:Default to on or off for the inodes index feature parm: nfs_export:bool parm: ovl_nfs_export_def:Default to on or off for the NFS export feature parm: xino_auto:bool parm: ovl_xino_auto_def:Auto enable xino feature parm: metacopy:bool parm: ovl_metacopy_def:Default to on or off for the metadata only copy up feature into: parm: check_copy_up:Obsolete; does nothing parm: redirect_max:Maximum length of absolute redirect xattr value (ushort) parm: redirect_dir:Default to on or off for the redirect_dir feature (bool) parm: redirect_always_follow:Follow redirects even if redirect_dir feature is turned off (bool) parm: index:Default to on or off for the inodes index feature (bool) parm: nfs_export:Default to on or off for the NFS export feature (bool) parm: xino_auto:Auto enable xino feature (bool) parm: metacopy:Default to on or off for the metadata only copy up feature (bool) Signed-off-by: Nicolas Schier <n.schier@avm.de> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-06-17 10:39:00 +03:00
MODULE_PARM_DESC(redirect_always_follow,
"Follow redirects even if redirect_dir feature is turned off");
static bool ovl_index_def = IS_ENABLED(CONFIG_OVERLAY_FS_INDEX);
module_param_named(index, ovl_index_def, bool, 0644);
ovl: fix typo in MODULE_PARM_DESC Change first argument to MODULE_PARM_DESC() calls, that each of them matched the actual module parameter name. The matching results in changing (the 'parm' section from) the output of `modinfo overlay` from: parm: ovl_check_copy_up:Obsolete; does nothing parm: redirect_max:ushort parm: ovl_redirect_max:Maximum length of absolute redirect xattr value parm: redirect_dir:bool parm: ovl_redirect_dir_def:Default to on or off for the redirect_dir feature parm: redirect_always_follow:bool parm: ovl_redirect_always_follow:Follow redirects even if redirect_dir feature is turned off parm: index:bool parm: ovl_index_def:Default to on or off for the inodes index feature parm: nfs_export:bool parm: ovl_nfs_export_def:Default to on or off for the NFS export feature parm: xino_auto:bool parm: ovl_xino_auto_def:Auto enable xino feature parm: metacopy:bool parm: ovl_metacopy_def:Default to on or off for the metadata only copy up feature into: parm: check_copy_up:Obsolete; does nothing parm: redirect_max:Maximum length of absolute redirect xattr value (ushort) parm: redirect_dir:Default to on or off for the redirect_dir feature (bool) parm: redirect_always_follow:Follow redirects even if redirect_dir feature is turned off (bool) parm: index:Default to on or off for the inodes index feature (bool) parm: nfs_export:Default to on or off for the NFS export feature (bool) parm: xino_auto:Auto enable xino feature (bool) parm: metacopy:Default to on or off for the metadata only copy up feature (bool) Signed-off-by: Nicolas Schier <n.schier@avm.de> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-06-17 10:39:00 +03:00
MODULE_PARM_DESC(index,
"Default to on or off for the inodes index feature");
static bool ovl_nfs_export_def = IS_ENABLED(CONFIG_OVERLAY_FS_NFS_EXPORT);
module_param_named(nfs_export, ovl_nfs_export_def, bool, 0644);
ovl: fix typo in MODULE_PARM_DESC Change first argument to MODULE_PARM_DESC() calls, that each of them matched the actual module parameter name. The matching results in changing (the 'parm' section from) the output of `modinfo overlay` from: parm: ovl_check_copy_up:Obsolete; does nothing parm: redirect_max:ushort parm: ovl_redirect_max:Maximum length of absolute redirect xattr value parm: redirect_dir:bool parm: ovl_redirect_dir_def:Default to on or off for the redirect_dir feature parm: redirect_always_follow:bool parm: ovl_redirect_always_follow:Follow redirects even if redirect_dir feature is turned off parm: index:bool parm: ovl_index_def:Default to on or off for the inodes index feature parm: nfs_export:bool parm: ovl_nfs_export_def:Default to on or off for the NFS export feature parm: xino_auto:bool parm: ovl_xino_auto_def:Auto enable xino feature parm: metacopy:bool parm: ovl_metacopy_def:Default to on or off for the metadata only copy up feature into: parm: check_copy_up:Obsolete; does nothing parm: redirect_max:Maximum length of absolute redirect xattr value (ushort) parm: redirect_dir:Default to on or off for the redirect_dir feature (bool) parm: redirect_always_follow:Follow redirects even if redirect_dir feature is turned off (bool) parm: index:Default to on or off for the inodes index feature (bool) parm: nfs_export:Default to on or off for the NFS export feature (bool) parm: xino_auto:Auto enable xino feature (bool) parm: metacopy:Default to on or off for the metadata only copy up feature (bool) Signed-off-by: Nicolas Schier <n.schier@avm.de> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-06-17 10:39:00 +03:00
MODULE_PARM_DESC(nfs_export,
"Default to on or off for the NFS export feature");
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
static bool ovl_xino_auto_def = IS_ENABLED(CONFIG_OVERLAY_FS_XINO_AUTO);
module_param_named(xino_auto, ovl_xino_auto_def, bool, 0644);
ovl: fix typo in MODULE_PARM_DESC Change first argument to MODULE_PARM_DESC() calls, that each of them matched the actual module parameter name. The matching results in changing (the 'parm' section from) the output of `modinfo overlay` from: parm: ovl_check_copy_up:Obsolete; does nothing parm: redirect_max:ushort parm: ovl_redirect_max:Maximum length of absolute redirect xattr value parm: redirect_dir:bool parm: ovl_redirect_dir_def:Default to on or off for the redirect_dir feature parm: redirect_always_follow:bool parm: ovl_redirect_always_follow:Follow redirects even if redirect_dir feature is turned off parm: index:bool parm: ovl_index_def:Default to on or off for the inodes index feature parm: nfs_export:bool parm: ovl_nfs_export_def:Default to on or off for the NFS export feature parm: xino_auto:bool parm: ovl_xino_auto_def:Auto enable xino feature parm: metacopy:bool parm: ovl_metacopy_def:Default to on or off for the metadata only copy up feature into: parm: check_copy_up:Obsolete; does nothing parm: redirect_max:Maximum length of absolute redirect xattr value (ushort) parm: redirect_dir:Default to on or off for the redirect_dir feature (bool) parm: redirect_always_follow:Follow redirects even if redirect_dir feature is turned off (bool) parm: index:Default to on or off for the inodes index feature (bool) parm: nfs_export:Default to on or off for the NFS export feature (bool) parm: xino_auto:Auto enable xino feature (bool) parm: metacopy:Default to on or off for the metadata only copy up feature (bool) Signed-off-by: Nicolas Schier <n.schier@avm.de> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-06-17 10:39:00 +03:00
MODULE_PARM_DESC(xino_auto,
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
"Auto enable xino feature");
static void ovl_entry_stack_free(struct ovl_entry *oe)
{
unsigned int i;
for (i = 0; i < oe->numlower; i++)
dput(oe->lowerstack[i].dentry);
}
static bool ovl_metacopy_def = IS_ENABLED(CONFIG_OVERLAY_FS_METACOPY);
module_param_named(metacopy, ovl_metacopy_def, bool, 0644);
ovl: fix typo in MODULE_PARM_DESC Change first argument to MODULE_PARM_DESC() calls, that each of them matched the actual module parameter name. The matching results in changing (the 'parm' section from) the output of `modinfo overlay` from: parm: ovl_check_copy_up:Obsolete; does nothing parm: redirect_max:ushort parm: ovl_redirect_max:Maximum length of absolute redirect xattr value parm: redirect_dir:bool parm: ovl_redirect_dir_def:Default to on or off for the redirect_dir feature parm: redirect_always_follow:bool parm: ovl_redirect_always_follow:Follow redirects even if redirect_dir feature is turned off parm: index:bool parm: ovl_index_def:Default to on or off for the inodes index feature parm: nfs_export:bool parm: ovl_nfs_export_def:Default to on or off for the NFS export feature parm: xino_auto:bool parm: ovl_xino_auto_def:Auto enable xino feature parm: metacopy:bool parm: ovl_metacopy_def:Default to on or off for the metadata only copy up feature into: parm: check_copy_up:Obsolete; does nothing parm: redirect_max:Maximum length of absolute redirect xattr value (ushort) parm: redirect_dir:Default to on or off for the redirect_dir feature (bool) parm: redirect_always_follow:Follow redirects even if redirect_dir feature is turned off (bool) parm: index:Default to on or off for the inodes index feature (bool) parm: nfs_export:Default to on or off for the NFS export feature (bool) parm: xino_auto:Auto enable xino feature (bool) parm: metacopy:Default to on or off for the metadata only copy up feature (bool) Signed-off-by: Nicolas Schier <n.schier@avm.de> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-06-17 10:39:00 +03:00
MODULE_PARM_DESC(metacopy,
"Default to on or off for the metadata only copy up feature");
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static void ovl_dentry_release(struct dentry *dentry)
{
struct ovl_entry *oe = dentry->d_fsdata;
if (oe) {
ovl_entry_stack_free(oe);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
kfree_rcu(oe, rcu);
}
}
static struct dentry *ovl_d_real(struct dentry *dentry,
const struct inode *inode)
{
struct dentry *real = NULL, *lower;
/* It's an overlay file */
if (inode && d_inode(dentry) == inode)
return dentry;
if (!d_is_reg(dentry)) {
if (!inode || inode == d_inode(dentry))
return dentry;
goto bug;
}
real = ovl_dentry_upper(dentry);
if (real && (inode == d_inode(real)))
return real;
if (real && !inode && ovl_has_upperdata(d_inode(dentry)))
return real;
lower = ovl_dentry_lowerdata(dentry);
if (!lower)
goto bug;
real = lower;
/* Handle recursion */
real = d_real(real, inode);
if (!inode || inode == d_inode(real))
return real;
bug:
WARN(1, "%s(%pd4, %s:%lu): real dentry (%p/%lu) not found\n",
__func__, dentry, inode ? inode->i_sb->s_id : "NULL",
inode ? inode->i_ino : 0, real,
real && d_inode(real) ? d_inode(real)->i_ino : 0);
return dentry;
}
static int ovl_revalidate_real(struct dentry *d, unsigned int flags, bool weak)
{
int ret = 1;
if (weak) {
if (d->d_flags & DCACHE_OP_WEAK_REVALIDATE)
ret = d->d_op->d_weak_revalidate(d, flags);
} else if (d->d_flags & DCACHE_OP_REVALIDATE) {
ret = d->d_op->d_revalidate(d, flags);
if (!ret) {
if (!(flags & LOOKUP_RCU))
d_invalidate(d);
ret = -ESTALE;
}
}
return ret;
}
static int ovl_dentry_revalidate_common(struct dentry *dentry,
unsigned int flags, bool weak)
{
struct ovl_entry *oe = dentry->d_fsdata;
struct dentry *upper;
unsigned int i;
int ret = 1;
upper = ovl_dentry_upper(dentry);
if (upper)
ret = ovl_revalidate_real(upper, flags, weak);
for (i = 0; ret > 0 && i < oe->numlower; i++) {
ret = ovl_revalidate_real(oe->lowerstack[i].dentry, flags,
weak);
}
return ret;
}
static int ovl_dentry_revalidate(struct dentry *dentry, unsigned int flags)
{
return ovl_dentry_revalidate_common(dentry, flags, false);
}
static int ovl_dentry_weak_revalidate(struct dentry *dentry, unsigned int flags)
{
return ovl_dentry_revalidate_common(dentry, flags, true);
}
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static const struct dentry_operations ovl_dentry_operations = {
.d_release = ovl_dentry_release,
.d_real = ovl_d_real,
.d_revalidate = ovl_dentry_revalidate,
.d_weak_revalidate = ovl_dentry_weak_revalidate,
};
static struct kmem_cache *ovl_inode_cachep;
static struct inode *ovl_alloc_inode(struct super_block *sb)
{
struct ovl_inode *oi = kmem_cache_alloc(ovl_inode_cachep, GFP_KERNEL);
if (!oi)
return NULL;
oi->cache = NULL;
oi->redirect = NULL;
oi->version = 0;
oi->flags = 0;
oi->__upperdentry = NULL;
oi->lower = NULL;
oi->lowerdata = NULL;
mutex_init(&oi->lock);
return &oi->vfs_inode;
}
static void ovl_free_inode(struct inode *inode)
{
struct ovl_inode *oi = OVL_I(inode);
kfree(oi->redirect);
mutex_destroy(&oi->lock);
kmem_cache_free(ovl_inode_cachep, oi);
}
static void ovl_destroy_inode(struct inode *inode)
{
struct ovl_inode *oi = OVL_I(inode);
dput(oi->__upperdentry);
iput(oi->lower);
if (S_ISDIR(inode->i_mode))
ovl_dir_cache_free(inode);
else
iput(oi->lowerdata);
}
static void ovl_free_fs(struct ovl_fs *ofs)
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
{
struct vfsmount **mounts;
unsigned i;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
iput(ofs->workbasedir_trap);
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
iput(ofs->indexdir_trap);
iput(ofs->workdir_trap);
dput(ofs->whiteout);
dput(ofs->indexdir);
dput(ofs->workdir);
if (ofs->workdir_locked)
ovl_inuse_unlock(ofs->workbasedir);
dput(ofs->workbasedir);
if (ofs->upperdir_locked)
ovl_inuse_unlock(ovl_upper_mnt(ofs)->mnt_root);
/* Hack! Reuse ofs->layers as a vfsmount array before freeing it */
mounts = (struct vfsmount **) ofs->layers;
for (i = 0; i < ofs->numlayer; i++) {
iput(ofs->layers[i].trap);
mounts[i] = ofs->layers[i].mnt;
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
}
kern_unmount_array(mounts, ofs->numlayer);
kfree(ofs->layers);
for (i = 0; i < ofs->numfs; i++)
free_anon_bdev(ofs->fs[i].pseudo_dev);
kfree(ofs->fs);
kfree(ofs->config.lowerdir);
kfree(ofs->config.upperdir);
kfree(ofs->config.workdir);
kfree(ofs->config.redirect_mode);
if (ofs->creator_cred)
put_cred(ofs->creator_cred);
kfree(ofs);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
}
static void ovl_put_super(struct super_block *sb)
{
struct ovl_fs *ofs = sb->s_fs_info;
ovl_free_fs(ofs);
}
/* Sync real dirty inodes in upper filesystem (if it exists) */
static int ovl_sync_fs(struct super_block *sb, int wait)
{
struct ovl_fs *ofs = sb->s_fs_info;
struct super_block *upper_sb;
int ret;
ovl: implement volatile-specific fsync error behaviour Overlayfs's volatile option allows the user to bypass all forced sync calls to the upperdir filesystem. This comes at the cost of safety. We can never ensure that the user's data is intact, but we can make a best effort to expose whether or not the data is likely to be in a bad state. The best way to handle this in the time being is that if an overlayfs's upperdir experiences an error after a volatile mount occurs, that error will be returned on fsync, fdatasync, sync, and syncfs. This is contradictory to the traditional behaviour of VFS which fails the call once, and only raises an error if a subsequent fsync error has occurred, and been raised by the filesystem. One awkward aspect of the patch is that we have to manually set the superblock's errseq_t after the sync_fs callback as opposed to just returning an error from syncfs. This is because the call chain looks something like this: sys_syncfs -> sync_filesystem -> __sync_filesystem -> /* The return value is ignored here sb->s_op->sync_fs(sb) _sync_blockdev /* Where the VFS fetches the error to raise to userspace */ errseq_check_and_advance Because of this we call errseq_set every time the sync_fs callback occurs. Due to the nature of this seen / unseen dichotomy, if the upperdir is an inconsistent state at the initial mount time, overlayfs will refuse to mount, as overlayfs cannot get a snapshot of the upperdir's errseq that will increment on error until the user calls syncfs. Signed-off-by: Sargun Dhillon <sargun@sargun.me> Suggested-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Fixes: c86243b090bc ("ovl: provide a mount option "volatile"") Cc: stable@vger.kernel.org Reviewed-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-01-08 03:10:43 +03:00
ret = ovl_sync_status(ofs);
/*
* We have to always set the err, because the return value isn't
* checked in syncfs, and instead indirectly return an error via
* the sb's writeback errseq, which VFS inspects after this call.
*/
if (ret < 0) {
errseq_set(&sb->s_wb_err, -EIO);
return -EIO;
}
if (!ret)
return ret;
/*
* Not called for sync(2) call or an emergency sync (SB_I_SKIP_SYNC).
* All the super blocks will be iterated, including upper_sb.
*
* If this is a syncfs(2) call, then we do need to call
* sync_filesystem() on upper_sb, but enough if we do it when being
* called with wait == 1.
*/
if (!wait)
return 0;
upper_sb = ovl_upper_mnt(ofs)->mnt_sb;
down_read(&upper_sb->s_umount);
ret = sync_filesystem(upper_sb);
up_read(&upper_sb->s_umount);
return ret;
}
/**
* ovl_statfs
* @sb: The overlayfs super block
* @buf: The struct kstatfs to fill in with stats
*
* Get the filesystem statistics. As writes always target the upper layer
* filesystem pass the statfs to the upper filesystem (if it exists)
*/
static int ovl_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct ovl_fs *ofs = dentry->d_sb->s_fs_info;
struct dentry *root_dentry = dentry->d_sb->s_root;
struct path path;
int err;
ovl_path_real(root_dentry, &path);
err = vfs_statfs(&path, buf);
if (!err) {
buf->f_namelen = ofs->namelen;
buf->f_type = OVERLAYFS_SUPER_MAGIC;
}
return err;
}
/* Will this overlay be forced to mount/remount ro? */
static bool ovl_force_readonly(struct ovl_fs *ofs)
{
return (!ovl_upper_mnt(ofs) || !ofs->workdir);
}
static const char *ovl_redirect_mode_def(void)
{
return ovl_redirect_dir_def ? "on" : "off";
}
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
static const char * const ovl_xino_str[] = {
"off",
"auto",
"on",
};
static inline int ovl_xino_def(void)
{
return ovl_xino_auto_def ? OVL_XINO_AUTO : OVL_XINO_OFF;
}
/**
* ovl_show_options
*
* Prints the mount options for a given superblock.
* Returns zero; does not fail.
*/
static int ovl_show_options(struct seq_file *m, struct dentry *dentry)
{
struct super_block *sb = dentry->d_sb;
struct ovl_fs *ofs = sb->s_fs_info;
seq_show_option(m, "lowerdir", ofs->config.lowerdir);
if (ofs->config.upperdir) {
seq_show_option(m, "upperdir", ofs->config.upperdir);
seq_show_option(m, "workdir", ofs->config.workdir);
}
if (ofs->config.default_permissions)
seq_puts(m, ",default_permissions");
if (strcmp(ofs->config.redirect_mode, ovl_redirect_mode_def()) != 0)
seq_printf(m, ",redirect_dir=%s", ofs->config.redirect_mode);
if (ofs->config.index != ovl_index_def)
seq_printf(m, ",index=%s", ofs->config.index ? "on" : "off");
ovl: introduce new "uuid=off" option for inodes index feature This replaces uuid with null in overlayfs file handles and thus relaxes uuid checks for overlay index feature. It is only possible in case there is only one filesystem for all the work/upper/lower directories and bare file handles from this backing filesystem are unique. In other case when we have multiple filesystems lets just fallback to "uuid=on" which is and equivalent of how it worked before with all uuid checks. This is needed when overlayfs is/was mounted in a container with index enabled (e.g.: to be able to resolve inotify watch file handles on it to paths in CRIU), and this container is copied and started alongside with the original one. This way the "copy" container can't have the same uuid on the superblock and mounting the overlayfs from it later would fail. That is an example of the problem on top of loop+ext4: dd if=/dev/zero of=loopbackfile.img bs=100M count=10 losetup -fP loopbackfile.img losetup -a #/dev/loop0: [64768]:35 (/loop-test/loopbackfile.img) mkfs.ext4 loopbackfile.img mkdir loop-mp mount -o loop /dev/loop0 loop-mp mkdir loop-mp/{lower,upper,work,merged} mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged umount loop-mp/merged umount loop-mp e2fsck -f /dev/loop0 tune2fs -U random /dev/loop0 mount -o loop /dev/loop0 loop-mp mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged #mount: /loop-test/loop-mp/merged: #mount(2) system call failed: Stale file handle. If you just change the uuid of the backing filesystem, overlay is not mounting any more. In Virtuozzo we copy container disks (ploops) when create the copy of container and we require fs uuid to be unique for a new container. Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-13 17:59:54 +03:00
if (!ofs->config.uuid)
seq_puts(m, ",uuid=off");
if (ofs->config.nfs_export != ovl_nfs_export_def)
seq_printf(m, ",nfs_export=%s", ofs->config.nfs_export ?
"on" : "off");
if (ofs->config.xino != ovl_xino_def() && !ovl_same_fs(sb))
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
seq_printf(m, ",xino=%s", ovl_xino_str[ofs->config.xino]);
if (ofs->config.metacopy != ovl_metacopy_def)
seq_printf(m, ",metacopy=%s",
ofs->config.metacopy ? "on" : "off");
ovl: provide a mount option "volatile" Container folks are complaining that dnf/yum issues too many sync while installing packages and this slows down the image build. Build requirement is such that they don't care if a node goes down while build was still going on. In that case, they will simply throw away unfinished layer and start new build. So they don't care about syncing intermediate state to the disk and hence don't want to pay the price associated with sync. So they are asking for mount options where they can disable sync on overlay mount point. They primarily seem to have two use cases. - For building images, they will mount overlay with nosync and then sync upper layer after unmounting overlay and reuse upper as lower for next layer. - For running containers, they don't seem to care about syncing upper layer because if node goes down, they will simply throw away upper layer and create a fresh one. So this patch provides a mount option "volatile" which disables all forms of sync. Now it is caller's responsibility to throw away upper if system crashes or shuts down and start fresh. With "volatile", I am seeing roughly 20% speed up in my VM where I am just installing emacs in an image. Installation time drops from 31 seconds to 25 seconds when nosync option is used. This is for the case of building on top of an image where all packages are already cached. That way I take out the network operations latency out of the measurement. Giuseppe is also looking to cut down on number of iops done on the disk. He is complaining that often in cloud their VMs are throttled if they cross the limit. This option can help them where they reduce number of iops (by cutting down on frequent sync and writebacks). Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-08-31 21:15:29 +03:00
if (ofs->config.ovl_volatile)
seq_puts(m, ",volatile");
if (ofs->config.userxattr)
seq_puts(m, ",userxattr");
return 0;
}
static int ovl_remount(struct super_block *sb, int *flags, char *data)
{
struct ovl_fs *ofs = sb->s_fs_info;
struct super_block *upper_sb;
int ret = 0;
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-28 00:05:09 +03:00
if (!(*flags & SB_RDONLY) && ovl_force_readonly(ofs))
return -EROFS;
if (*flags & SB_RDONLY && !sb_rdonly(sb)) {
upper_sb = ovl_upper_mnt(ofs)->mnt_sb;
ovl: provide a mount option "volatile" Container folks are complaining that dnf/yum issues too many sync while installing packages and this slows down the image build. Build requirement is such that they don't care if a node goes down while build was still going on. In that case, they will simply throw away unfinished layer and start new build. So they don't care about syncing intermediate state to the disk and hence don't want to pay the price associated with sync. So they are asking for mount options where they can disable sync on overlay mount point. They primarily seem to have two use cases. - For building images, they will mount overlay with nosync and then sync upper layer after unmounting overlay and reuse upper as lower for next layer. - For running containers, they don't seem to care about syncing upper layer because if node goes down, they will simply throw away upper layer and create a fresh one. So this patch provides a mount option "volatile" which disables all forms of sync. Now it is caller's responsibility to throw away upper if system crashes or shuts down and start fresh. With "volatile", I am seeing roughly 20% speed up in my VM where I am just installing emacs in an image. Installation time drops from 31 seconds to 25 seconds when nosync option is used. This is for the case of building on top of an image where all packages are already cached. That way I take out the network operations latency out of the measurement. Giuseppe is also looking to cut down on number of iops done on the disk. He is complaining that often in cloud their VMs are throttled if they cross the limit. This option can help them where they reduce number of iops (by cutting down on frequent sync and writebacks). Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-08-31 21:15:29 +03:00
if (ovl_should_sync(ofs)) {
down_read(&upper_sb->s_umount);
ret = sync_filesystem(upper_sb);
up_read(&upper_sb->s_umount);
}
}
return ret;
}
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static const struct super_operations ovl_super_operations = {
.alloc_inode = ovl_alloc_inode,
.free_inode = ovl_free_inode,
.destroy_inode = ovl_destroy_inode,
.drop_inode = generic_delete_inode,
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
.put_super = ovl_put_super,
.sync_fs = ovl_sync_fs,
.statfs = ovl_statfs,
.show_options = ovl_show_options,
.remount_fs = ovl_remount,
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
};
enum {
OPT_LOWERDIR,
OPT_UPPERDIR,
OPT_WORKDIR,
OPT_DEFAULT_PERMISSIONS,
OPT_REDIRECT_DIR,
OPT_INDEX_ON,
OPT_INDEX_OFF,
ovl: introduce new "uuid=off" option for inodes index feature This replaces uuid with null in overlayfs file handles and thus relaxes uuid checks for overlay index feature. It is only possible in case there is only one filesystem for all the work/upper/lower directories and bare file handles from this backing filesystem are unique. In other case when we have multiple filesystems lets just fallback to "uuid=on" which is and equivalent of how it worked before with all uuid checks. This is needed when overlayfs is/was mounted in a container with index enabled (e.g.: to be able to resolve inotify watch file handles on it to paths in CRIU), and this container is copied and started alongside with the original one. This way the "copy" container can't have the same uuid on the superblock and mounting the overlayfs from it later would fail. That is an example of the problem on top of loop+ext4: dd if=/dev/zero of=loopbackfile.img bs=100M count=10 losetup -fP loopbackfile.img losetup -a #/dev/loop0: [64768]:35 (/loop-test/loopbackfile.img) mkfs.ext4 loopbackfile.img mkdir loop-mp mount -o loop /dev/loop0 loop-mp mkdir loop-mp/{lower,upper,work,merged} mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged umount loop-mp/merged umount loop-mp e2fsck -f /dev/loop0 tune2fs -U random /dev/loop0 mount -o loop /dev/loop0 loop-mp mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged #mount: /loop-test/loop-mp/merged: #mount(2) system call failed: Stale file handle. If you just change the uuid of the backing filesystem, overlay is not mounting any more. In Virtuozzo we copy container disks (ploops) when create the copy of container and we require fs uuid to be unique for a new container. Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-13 17:59:54 +03:00
OPT_UUID_ON,
OPT_UUID_OFF,
OPT_NFS_EXPORT_ON,
OPT_USERXATTR,
OPT_NFS_EXPORT_OFF,
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
OPT_XINO_ON,
OPT_XINO_OFF,
OPT_XINO_AUTO,
OPT_METACOPY_ON,
OPT_METACOPY_OFF,
ovl: provide a mount option "volatile" Container folks are complaining that dnf/yum issues too many sync while installing packages and this slows down the image build. Build requirement is such that they don't care if a node goes down while build was still going on. In that case, they will simply throw away unfinished layer and start new build. So they don't care about syncing intermediate state to the disk and hence don't want to pay the price associated with sync. So they are asking for mount options where they can disable sync on overlay mount point. They primarily seem to have two use cases. - For building images, they will mount overlay with nosync and then sync upper layer after unmounting overlay and reuse upper as lower for next layer. - For running containers, they don't seem to care about syncing upper layer because if node goes down, they will simply throw away upper layer and create a fresh one. So this patch provides a mount option "volatile" which disables all forms of sync. Now it is caller's responsibility to throw away upper if system crashes or shuts down and start fresh. With "volatile", I am seeing roughly 20% speed up in my VM where I am just installing emacs in an image. Installation time drops from 31 seconds to 25 seconds when nosync option is used. This is for the case of building on top of an image where all packages are already cached. That way I take out the network operations latency out of the measurement. Giuseppe is also looking to cut down on number of iops done on the disk. He is complaining that often in cloud their VMs are throttled if they cross the limit. This option can help them where they reduce number of iops (by cutting down on frequent sync and writebacks). Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-08-31 21:15:29 +03:00
OPT_VOLATILE,
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
OPT_ERR,
};
static const match_table_t ovl_tokens = {
{OPT_LOWERDIR, "lowerdir=%s"},
{OPT_UPPERDIR, "upperdir=%s"},
{OPT_WORKDIR, "workdir=%s"},
{OPT_DEFAULT_PERMISSIONS, "default_permissions"},
{OPT_REDIRECT_DIR, "redirect_dir=%s"},
{OPT_INDEX_ON, "index=on"},
{OPT_INDEX_OFF, "index=off"},
{OPT_USERXATTR, "userxattr"},
ovl: introduce new "uuid=off" option for inodes index feature This replaces uuid with null in overlayfs file handles and thus relaxes uuid checks for overlay index feature. It is only possible in case there is only one filesystem for all the work/upper/lower directories and bare file handles from this backing filesystem are unique. In other case when we have multiple filesystems lets just fallback to "uuid=on" which is and equivalent of how it worked before with all uuid checks. This is needed when overlayfs is/was mounted in a container with index enabled (e.g.: to be able to resolve inotify watch file handles on it to paths in CRIU), and this container is copied and started alongside with the original one. This way the "copy" container can't have the same uuid on the superblock and mounting the overlayfs from it later would fail. That is an example of the problem on top of loop+ext4: dd if=/dev/zero of=loopbackfile.img bs=100M count=10 losetup -fP loopbackfile.img losetup -a #/dev/loop0: [64768]:35 (/loop-test/loopbackfile.img) mkfs.ext4 loopbackfile.img mkdir loop-mp mount -o loop /dev/loop0 loop-mp mkdir loop-mp/{lower,upper,work,merged} mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged umount loop-mp/merged umount loop-mp e2fsck -f /dev/loop0 tune2fs -U random /dev/loop0 mount -o loop /dev/loop0 loop-mp mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged #mount: /loop-test/loop-mp/merged: #mount(2) system call failed: Stale file handle. If you just change the uuid of the backing filesystem, overlay is not mounting any more. In Virtuozzo we copy container disks (ploops) when create the copy of container and we require fs uuid to be unique for a new container. Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-13 17:59:54 +03:00
{OPT_UUID_ON, "uuid=on"},
{OPT_UUID_OFF, "uuid=off"},
{OPT_NFS_EXPORT_ON, "nfs_export=on"},
{OPT_NFS_EXPORT_OFF, "nfs_export=off"},
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
{OPT_XINO_ON, "xino=on"},
{OPT_XINO_OFF, "xino=off"},
{OPT_XINO_AUTO, "xino=auto"},
{OPT_METACOPY_ON, "metacopy=on"},
{OPT_METACOPY_OFF, "metacopy=off"},
ovl: provide a mount option "volatile" Container folks are complaining that dnf/yum issues too many sync while installing packages and this slows down the image build. Build requirement is such that they don't care if a node goes down while build was still going on. In that case, they will simply throw away unfinished layer and start new build. So they don't care about syncing intermediate state to the disk and hence don't want to pay the price associated with sync. So they are asking for mount options where they can disable sync on overlay mount point. They primarily seem to have two use cases. - For building images, they will mount overlay with nosync and then sync upper layer after unmounting overlay and reuse upper as lower for next layer. - For running containers, they don't seem to care about syncing upper layer because if node goes down, they will simply throw away upper layer and create a fresh one. So this patch provides a mount option "volatile" which disables all forms of sync. Now it is caller's responsibility to throw away upper if system crashes or shuts down and start fresh. With "volatile", I am seeing roughly 20% speed up in my VM where I am just installing emacs in an image. Installation time drops from 31 seconds to 25 seconds when nosync option is used. This is for the case of building on top of an image where all packages are already cached. That way I take out the network operations latency out of the measurement. Giuseppe is also looking to cut down on number of iops done on the disk. He is complaining that often in cloud their VMs are throttled if they cross the limit. This option can help them where they reduce number of iops (by cutting down on frequent sync and writebacks). Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-08-31 21:15:29 +03:00
{OPT_VOLATILE, "volatile"},
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
{OPT_ERR, NULL}
};
static char *ovl_next_opt(char **s)
{
char *sbegin = *s;
char *p;
if (sbegin == NULL)
return NULL;
for (p = sbegin; *p; p++) {
if (*p == '\\') {
p++;
if (!*p)
break;
} else if (*p == ',') {
*p = '\0';
*s = p + 1;
return sbegin;
}
}
*s = NULL;
return sbegin;
}
static int ovl_parse_redirect_mode(struct ovl_config *config, const char *mode)
{
if (strcmp(mode, "on") == 0) {
config->redirect_dir = true;
/*
* Does not make sense to have redirect creation without
* redirect following.
*/
config->redirect_follow = true;
} else if (strcmp(mode, "follow") == 0) {
config->redirect_follow = true;
} else if (strcmp(mode, "off") == 0) {
if (ovl_redirect_always_follow)
config->redirect_follow = true;
} else if (strcmp(mode, "nofollow") != 0) {
pr_err("bad mount option \"redirect_dir=%s\"\n",
mode);
return -EINVAL;
}
return 0;
}
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static int ovl_parse_opt(char *opt, struct ovl_config *config)
{
char *p;
int err;
bool metacopy_opt = false, redirect_opt = false;
bool nfs_export_opt = false, index_opt = false;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
config->redirect_mode = kstrdup(ovl_redirect_mode_def(), GFP_KERNEL);
if (!config->redirect_mode)
return -ENOMEM;
while ((p = ovl_next_opt(&opt)) != NULL) {
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
int token;
substring_t args[MAX_OPT_ARGS];
if (!*p)
continue;
token = match_token(p, ovl_tokens, args);
switch (token) {
case OPT_UPPERDIR:
kfree(config->upperdir);
config->upperdir = match_strdup(&args[0]);
if (!config->upperdir)
return -ENOMEM;
break;
case OPT_LOWERDIR:
kfree(config->lowerdir);
config->lowerdir = match_strdup(&args[0]);
if (!config->lowerdir)
return -ENOMEM;
break;
case OPT_WORKDIR:
kfree(config->workdir);
config->workdir = match_strdup(&args[0]);
if (!config->workdir)
return -ENOMEM;
break;
case OPT_DEFAULT_PERMISSIONS:
config->default_permissions = true;
break;
case OPT_REDIRECT_DIR:
kfree(config->redirect_mode);
config->redirect_mode = match_strdup(&args[0]);
if (!config->redirect_mode)
return -ENOMEM;
redirect_opt = true;
break;
case OPT_INDEX_ON:
config->index = true;
index_opt = true;
break;
case OPT_INDEX_OFF:
config->index = false;
index_opt = true;
break;
ovl: introduce new "uuid=off" option for inodes index feature This replaces uuid with null in overlayfs file handles and thus relaxes uuid checks for overlay index feature. It is only possible in case there is only one filesystem for all the work/upper/lower directories and bare file handles from this backing filesystem are unique. In other case when we have multiple filesystems lets just fallback to "uuid=on" which is and equivalent of how it worked before with all uuid checks. This is needed when overlayfs is/was mounted in a container with index enabled (e.g.: to be able to resolve inotify watch file handles on it to paths in CRIU), and this container is copied and started alongside with the original one. This way the "copy" container can't have the same uuid on the superblock and mounting the overlayfs from it later would fail. That is an example of the problem on top of loop+ext4: dd if=/dev/zero of=loopbackfile.img bs=100M count=10 losetup -fP loopbackfile.img losetup -a #/dev/loop0: [64768]:35 (/loop-test/loopbackfile.img) mkfs.ext4 loopbackfile.img mkdir loop-mp mount -o loop /dev/loop0 loop-mp mkdir loop-mp/{lower,upper,work,merged} mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged umount loop-mp/merged umount loop-mp e2fsck -f /dev/loop0 tune2fs -U random /dev/loop0 mount -o loop /dev/loop0 loop-mp mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged #mount: /loop-test/loop-mp/merged: #mount(2) system call failed: Stale file handle. If you just change the uuid of the backing filesystem, overlay is not mounting any more. In Virtuozzo we copy container disks (ploops) when create the copy of container and we require fs uuid to be unique for a new container. Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-13 17:59:54 +03:00
case OPT_UUID_ON:
config->uuid = true;
break;
case OPT_UUID_OFF:
config->uuid = false;
break;
case OPT_NFS_EXPORT_ON:
config->nfs_export = true;
nfs_export_opt = true;
break;
case OPT_NFS_EXPORT_OFF:
config->nfs_export = false;
nfs_export_opt = true;
break;
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
case OPT_XINO_ON:
config->xino = OVL_XINO_ON;
break;
case OPT_XINO_OFF:
config->xino = OVL_XINO_OFF;
break;
case OPT_XINO_AUTO:
config->xino = OVL_XINO_AUTO;
break;
case OPT_METACOPY_ON:
config->metacopy = true;
metacopy_opt = true;
break;
case OPT_METACOPY_OFF:
config->metacopy = false;
metacopy_opt = true;
break;
ovl: provide a mount option "volatile" Container folks are complaining that dnf/yum issues too many sync while installing packages and this slows down the image build. Build requirement is such that they don't care if a node goes down while build was still going on. In that case, they will simply throw away unfinished layer and start new build. So they don't care about syncing intermediate state to the disk and hence don't want to pay the price associated with sync. So they are asking for mount options where they can disable sync on overlay mount point. They primarily seem to have two use cases. - For building images, they will mount overlay with nosync and then sync upper layer after unmounting overlay and reuse upper as lower for next layer. - For running containers, they don't seem to care about syncing upper layer because if node goes down, they will simply throw away upper layer and create a fresh one. So this patch provides a mount option "volatile" which disables all forms of sync. Now it is caller's responsibility to throw away upper if system crashes or shuts down and start fresh. With "volatile", I am seeing roughly 20% speed up in my VM where I am just installing emacs in an image. Installation time drops from 31 seconds to 25 seconds when nosync option is used. This is for the case of building on top of an image where all packages are already cached. That way I take out the network operations latency out of the measurement. Giuseppe is also looking to cut down on number of iops done on the disk. He is complaining that often in cloud their VMs are throttled if they cross the limit. This option can help them where they reduce number of iops (by cutting down on frequent sync and writebacks). Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-08-31 21:15:29 +03:00
case OPT_VOLATILE:
config->ovl_volatile = true;
break;
case OPT_USERXATTR:
config->userxattr = true;
break;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
default:
pr_err("unrecognized mount option \"%s\" or missing value\n",
p);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
return -EINVAL;
}
}
/* Workdir/index are useless in non-upper mount */
if (!config->upperdir) {
if (config->workdir) {
pr_info("option \"workdir=%s\" is useless in a non-upper mount, ignore\n",
config->workdir);
kfree(config->workdir);
config->workdir = NULL;
}
if (config->index && index_opt) {
pr_info("option \"index=on\" is useless in a non-upper mount, ignore\n");
index_opt = false;
}
config->index = false;
}
ovl: provide a mount option "volatile" Container folks are complaining that dnf/yum issues too many sync while installing packages and this slows down the image build. Build requirement is such that they don't care if a node goes down while build was still going on. In that case, they will simply throw away unfinished layer and start new build. So they don't care about syncing intermediate state to the disk and hence don't want to pay the price associated with sync. So they are asking for mount options where they can disable sync on overlay mount point. They primarily seem to have two use cases. - For building images, they will mount overlay with nosync and then sync upper layer after unmounting overlay and reuse upper as lower for next layer. - For running containers, they don't seem to care about syncing upper layer because if node goes down, they will simply throw away upper layer and create a fresh one. So this patch provides a mount option "volatile" which disables all forms of sync. Now it is caller's responsibility to throw away upper if system crashes or shuts down and start fresh. With "volatile", I am seeing roughly 20% speed up in my VM where I am just installing emacs in an image. Installation time drops from 31 seconds to 25 seconds when nosync option is used. This is for the case of building on top of an image where all packages are already cached. That way I take out the network operations latency out of the measurement. Giuseppe is also looking to cut down on number of iops done on the disk. He is complaining that often in cloud their VMs are throttled if they cross the limit. This option can help them where they reduce number of iops (by cutting down on frequent sync and writebacks). Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-08-31 21:15:29 +03:00
if (!config->upperdir && config->ovl_volatile) {
pr_info("option \"volatile\" is meaningless in a non-upper mount, ignoring it.\n");
config->ovl_volatile = false;
}
err = ovl_parse_redirect_mode(config, config->redirect_mode);
if (err)
return err;
/*
* This is to make the logic below simpler. It doesn't make any other
* difference, since config->redirect_dir is only used for upper.
*/
if (!config->upperdir && config->redirect_follow)
config->redirect_dir = true;
/* Resolve metacopy -> redirect_dir dependency */
if (config->metacopy && !config->redirect_dir) {
if (metacopy_opt && redirect_opt) {
pr_err("conflicting options: metacopy=on,redirect_dir=%s\n",
config->redirect_mode);
return -EINVAL;
}
if (redirect_opt) {
/*
* There was an explicit redirect_dir=... that resulted
* in this conflict.
*/
pr_info("disabling metacopy due to redirect_dir=%s\n",
config->redirect_mode);
config->metacopy = false;
} else {
/* Automatically enable redirect otherwise. */
config->redirect_follow = config->redirect_dir = true;
}
}
/* Resolve nfs_export -> index dependency */
if (config->nfs_export && !config->index) {
if (!config->upperdir && config->redirect_follow) {
pr_info("NFS export requires \"redirect_dir=nofollow\" on non-upper mount, falling back to nfs_export=off.\n");
config->nfs_export = false;
} else if (nfs_export_opt && index_opt) {
pr_err("conflicting options: nfs_export=on,index=off\n");
return -EINVAL;
} else if (index_opt) {
/*
* There was an explicit index=off that resulted
* in this conflict.
*/
pr_info("disabling nfs_export due to index=off\n");
config->nfs_export = false;
} else {
/* Automatically enable index otherwise. */
config->index = true;
}
}
/* Resolve nfs_export -> !metacopy dependency */
if (config->nfs_export && config->metacopy) {
if (nfs_export_opt && metacopy_opt) {
pr_err("conflicting options: nfs_export=on,metacopy=on\n");
return -EINVAL;
}
if (metacopy_opt) {
/*
* There was an explicit metacopy=on that resulted
* in this conflict.
*/
pr_info("disabling nfs_export due to metacopy=on\n");
config->nfs_export = false;
} else {
/*
* There was an explicit nfs_export=on that resulted
* in this conflict.
*/
pr_info("disabling metacopy due to nfs_export=on\n");
config->metacopy = false;
}
}
/* Resolve userxattr -> !redirect && !metacopy dependency */
if (config->userxattr) {
if (config->redirect_follow && redirect_opt) {
pr_err("conflicting options: userxattr,redirect_dir=%s\n",
config->redirect_mode);
return -EINVAL;
}
if (config->metacopy && metacopy_opt) {
pr_err("conflicting options: userxattr,metacopy=on\n");
return -EINVAL;
}
/*
* Silently disable default setting of redirect and metacopy.
* This shall be the default in the future as well: these
* options must be explicitly enabled if used together with
* userxattr.
*/
config->redirect_dir = config->redirect_follow = false;
config->metacopy = false;
}
return 0;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
}
#define OVL_WORKDIR_NAME "work"
#define OVL_INDEXDIR_NAME "index"
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static struct dentry *ovl_workdir_create(struct ovl_fs *ofs,
const char *name, bool persist)
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
{
struct inode *dir = ofs->workbasedir->d_inode;
struct vfsmount *mnt = ovl_upper_mnt(ofs);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
struct dentry *work;
int err;
bool retried = false;
inode_lock_nested(dir, I_MUTEX_PARENT);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
retry:
work = lookup_one_len(name, ofs->workbasedir, strlen(name));
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
if (!IS_ERR(work)) {
struct iattr attr = {
.ia_valid = ATTR_MODE,
.ia_mode = S_IFDIR | 0,
};
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
if (work->d_inode) {
err = -EEXIST;
if (retried)
goto out_dput;
if (persist)
goto out_unlock;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
retried = true;
err = ovl_workdir_cleanup(dir, mnt, work, 0);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
dput(work);
if (err == -EINVAL) {
work = ERR_PTR(err);
goto out_unlock;
}
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
goto retry;
}
work = ovl_create_real(dir, work, OVL_CATTR(attr.ia_mode));
err = PTR_ERR(work);
if (IS_ERR(work))
goto out_err;
/*
* Try to remove POSIX ACL xattrs from workdir. We are good if:
*
* a) success (there was a POSIX ACL xattr and was removed)
* b) -ENODATA (there was no POSIX ACL xattr)
* c) -EOPNOTSUPP (POSIX ACL xattrs are not supported)
*
* There are various other error values that could effectively
* mean that the xattr doesn't exist (e.g. -ERANGE is returned
* if the xattr name is too long), but the set of filesystems
* allowed as upper are limited to "normal" ones, where checking
* for the above two errors is sufficient.
*/
err = vfs_removexattr(&init_user_ns, work,
XATTR_NAME_POSIX_ACL_DEFAULT);
if (err && err != -ENODATA && err != -EOPNOTSUPP)
goto out_dput;
err = vfs_removexattr(&init_user_ns, work,
XATTR_NAME_POSIX_ACL_ACCESS);
if (err && err != -ENODATA && err != -EOPNOTSUPP)
goto out_dput;
/* Clear any inherited mode bits */
inode_lock(work->d_inode);
err = notify_change(&init_user_ns, work, &attr, NULL);
inode_unlock(work->d_inode);
if (err)
goto out_dput;
} else {
err = PTR_ERR(work);
goto out_err;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
}
out_unlock:
inode_unlock(dir);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
return work;
out_dput:
dput(work);
out_err:
pr_warn("failed to create directory %s/%s (errno: %i); mounting read-only\n",
ofs->config.workdir, name, -err);
work = NULL;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
goto out_unlock;
}
static void ovl_unescape(char *s)
{
char *d = s;
for (;; s++, d++) {
if (*s == '\\')
s++;
*d = *s;
if (!*s)
break;
}
}
static int ovl_mount_dir_noesc(const char *name, struct path *path)
{
int err = -EINVAL;
if (!*name) {
pr_err("empty lowerdir\n");
goto out;
}
err = kern_path(name, LOOKUP_FOLLOW, path);
if (err) {
pr_err("failed to resolve '%s': %i\n", name, err);
goto out;
}
err = -EINVAL;
if (ovl_dentry_weird(path->dentry)) {
pr_err("filesystem on '%s' not supported\n", name);
goto out_put;
}
if (mnt_user_ns(path->mnt) != &init_user_ns) {
pr_err("idmapped layers are currently not supported\n");
goto out_put;
}
if (!d_is_dir(path->dentry)) {
pr_err("'%s' not a directory\n", name);
goto out_put;
}
return 0;
out_put:
path_put_init(path);
out:
return err;
}
static int ovl_mount_dir(const char *name, struct path *path)
{
int err = -ENOMEM;
char *tmp = kstrdup(name, GFP_KERNEL);
if (tmp) {
ovl_unescape(tmp);
err = ovl_mount_dir_noesc(tmp, path);
if (!err && path->dentry->d_flags & DCACHE_OP_REAL) {
pr_err("filesystem on '%s' not supported as upperdir\n",
tmp);
path_put_init(path);
err = -EINVAL;
}
kfree(tmp);
}
return err;
}
static int ovl_check_namelen(struct path *path, struct ovl_fs *ofs,
const char *name)
{
struct kstatfs statfs;
int err = vfs_statfs(path, &statfs);
if (err)
pr_err("statfs failed on '%s'\n", name);
else
ofs->namelen = max(ofs->namelen, statfs.f_namelen);
return err;
}
static int ovl_lower_dir(const char *name, struct path *path,
struct ovl_fs *ofs, int *stack_depth)
{
int fh_type;
int err;
err = ovl_mount_dir_noesc(name, path);
if (err)
return err;
err = ovl_check_namelen(path, ofs, name);
if (err)
return err;
*stack_depth = max(*stack_depth, path->mnt->mnt_sb->s_stack_depth);
/*
* The inodes index feature and NFS export need to encode and decode
* file handles, so they require that all layers support them.
*/
fh_type = ovl_can_decode_fh(path->dentry->d_sb);
if ((ofs->config.nfs_export ||
(ofs->config.index && ofs->config.upperdir)) && !fh_type) {
ofs->config.index = false;
ofs->config.nfs_export = false;
pr_warn("fs on '%s' does not support file handles, falling back to index=off,nfs_export=off.\n",
name);
}
ovl: restrict lower null uuid for "xino=auto" Commit a888db310195 ("ovl: fix regression with re-formatted lower squashfs") attempted to fix a regression with existing setups that use a practice that we are trying to discourage. The discourage part was described this way in the commit message: "To avoid the reported regression while still allowing the new features with single lower squashfs, do not allow decoding origin with lower null uuid unless user opted-in to one of the new features that require following the lower inode of non-dir upper (index, xino, metacopy)." The three mentioned features are disabled by default in Kconfig, so it was assumed that if they are enabled, the user opted-in for them. Apparently, distros started to configure CONFIG_OVERLAY_FS_XINO_AUTO=y some time ago, so users upgrading their kernels can still be affected by said regression even though they never opted-in for any new feature. To fix this, treat "xino=on" as "user opted-in", but not "xino=auto". Since we are changing the behavior of "xino=auto" to no longer follow to lower origin with null uuid, take this one step further and disable xino in that corner case. To be consistent, disable xino also in cases of lower fs without file handle support and upper fs without xattr support. Update documentation w.r.t the new "xino=auto" behavior and fix the out dated bits of documentation regarding "xino" and regarding offline modifications to lower layers. Link: https://lore.kernel.org/linux-unionfs/b36a429d7c563730c28d763d4d57a6fc30508a4f.1615216996.git.kevin@kevinlocke.name/ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-03-09 19:26:54 +03:00
/*
* Decoding origin file handle is required for persistent st_ino.
* Without persistent st_ino, xino=auto falls back to xino=off.
*/
if (ofs->config.xino == OVL_XINO_AUTO &&
ofs->config.upperdir && !fh_type) {
ofs->config.xino = OVL_XINO_OFF;
pr_warn("fs on '%s' does not support file handles, falling back to xino=off.\n",
name);
}
/* Check if lower fs has 32bit inode numbers */
if (fh_type != FILEID_INO32_GEN)
ofs->xino_mode = -1;
return 0;
}
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
/* Workdir should not be subdir of upperdir and vice versa */
static bool ovl_workdir_ok(struct dentry *workdir, struct dentry *upperdir)
{
bool ok = false;
if (workdir != upperdir) {
ok = (lock_rename(workdir, upperdir) == NULL);
unlock_rename(workdir, upperdir);
}
return ok;
}
static unsigned int ovl_split_lowerdirs(char *str)
{
unsigned int ctr = 1;
char *s, *d;
for (s = d = str;; s++, d++) {
if (*s == '\\') {
s++;
} else if (*s == ':') {
*d = '\0';
ctr++;
continue;
}
*d = *s;
if (!*s)
break;
}
return ctr;
}
static int __maybe_unused
ovl_posix_acl_xattr_get(const struct xattr_handler *handler,
struct dentry *dentry, struct inode *inode,
const char *name, void *buffer, size_t size)
{
return ovl_xattr_get(dentry, inode, handler->name, buffer, size);
}
static int __maybe_unused
ovl_posix_acl_xattr_set(const struct xattr_handler *handler,
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 16:19:27 +03:00
struct user_namespace *mnt_userns,
struct dentry *dentry, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
struct dentry *workdir = ovl_workdir(dentry);
struct inode *realinode = ovl_inode_real(inode);
struct posix_acl *acl = NULL;
int err;
/* Check that everything is OK before copy-up */
if (value) {
acl = posix_acl_from_xattr(&init_user_ns, value, size);
if (IS_ERR(acl))
return PTR_ERR(acl);
}
err = -EOPNOTSUPP;
if (!IS_POSIXACL(d_inode(workdir)))
goto out_acl_release;
if (!realinode->i_op->set_acl)
goto out_acl_release;
if (handler->flags == ACL_TYPE_DEFAULT && !S_ISDIR(inode->i_mode)) {
err = acl ? -EACCES : 0;
goto out_acl_release;
}
err = -EPERM;
if (!inode_owner_or_capable(&init_user_ns, inode))
goto out_acl_release;
posix_acl_release(acl);
/*
* Check if sgid bit needs to be cleared (actual setacl operation will
* be done with mounter's capabilities and so that won't do it for us).
*/
if (unlikely(inode->i_mode & S_ISGID) &&
handler->flags == ACL_TYPE_ACCESS &&
!in_group_p(inode->i_gid) &&
!capable_wrt_inode_uidgid(&init_user_ns, inode, CAP_FSETID)) {
struct iattr iattr = { .ia_valid = ATTR_KILL_SGID };
err = ovl_setattr(&init_user_ns, dentry, &iattr);
if (err)
return err;
}
err = ovl_xattr_set(dentry, inode, handler->name, value, size, flags);
return err;
out_acl_release:
posix_acl_release(acl);
return err;
}
static int ovl_own_xattr_get(const struct xattr_handler *handler,
struct dentry *dentry, struct inode *inode,
const char *name, void *buffer, size_t size)
{
return -EOPNOTSUPP;
}
static int ovl_own_xattr_set(const struct xattr_handler *handler,
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 16:19:27 +03:00
struct user_namespace *mnt_userns,
struct dentry *dentry, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
return -EOPNOTSUPP;
}
static int ovl_other_xattr_get(const struct xattr_handler *handler,
struct dentry *dentry, struct inode *inode,
const char *name, void *buffer, size_t size)
{
return ovl_xattr_get(dentry, inode, name, buffer, size);
}
static int ovl_other_xattr_set(const struct xattr_handler *handler,
acl: handle idmapped mounts The posix acl permission checking helpers determine whether a caller is privileged over an inode according to the acls associated with the inode. Add helpers that make it possible to handle acls on idmapped mounts. The vfs and the filesystems targeted by this first iteration make use of posix_acl_fix_xattr_from_user() and posix_acl_fix_xattr_to_user() to translate basic posix access and default permissions such as the ACL_USER and ACL_GROUP type according to the initial user namespace (or the superblock's user namespace) to and from the caller's current user namespace. Adapt these two helpers to handle idmapped mounts whereby we either map from or into the mount's user namespace depending on in which direction we're translating. Similarly, cap_convert_nscap() is used by the vfs to translate user namespace and non-user namespace aware filesystem capabilities from the superblock's user namespace to the caller's user namespace. Enable it to handle idmapped mounts by accounting for the mount's user namespace. In addition the fileystems targeted in the first iteration of this patch series make use of the posix_acl_chmod() and, posix_acl_update_mode() helpers. Both helpers perform permission checks on the target inode. Let them handle idmapped mounts. These two helpers are called when posix acls are set by the respective filesystems to handle this case we extend the ->set() method to take an additional user namespace argument to pass the mount's user namespace down. Link: https://lore.kernel.org/r/20210121131959.646623-9-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-21 16:19:27 +03:00
struct user_namespace *mnt_userns,
struct dentry *dentry, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
return ovl_xattr_set(dentry, inode, name, value, size, flags);
}
static const struct xattr_handler __maybe_unused
ovl_posix_acl_access_xattr_handler = {
.name = XATTR_NAME_POSIX_ACL_ACCESS,
.flags = ACL_TYPE_ACCESS,
.get = ovl_posix_acl_xattr_get,
.set = ovl_posix_acl_xattr_set,
};
static const struct xattr_handler __maybe_unused
ovl_posix_acl_default_xattr_handler = {
.name = XATTR_NAME_POSIX_ACL_DEFAULT,
.flags = ACL_TYPE_DEFAULT,
.get = ovl_posix_acl_xattr_get,
.set = ovl_posix_acl_xattr_set,
};
static const struct xattr_handler ovl_own_trusted_xattr_handler = {
.prefix = OVL_XATTR_TRUSTED_PREFIX,
.get = ovl_own_xattr_get,
.set = ovl_own_xattr_set,
};
static const struct xattr_handler ovl_own_user_xattr_handler = {
.prefix = OVL_XATTR_USER_PREFIX,
.get = ovl_own_xattr_get,
.set = ovl_own_xattr_set,
};
static const struct xattr_handler ovl_other_xattr_handler = {
.prefix = "", /* catch all */
.get = ovl_other_xattr_get,
.set = ovl_other_xattr_set,
};
static const struct xattr_handler *ovl_trusted_xattr_handlers[] = {
#ifdef CONFIG_FS_POSIX_ACL
&ovl_posix_acl_access_xattr_handler,
&ovl_posix_acl_default_xattr_handler,
#endif
&ovl_own_trusted_xattr_handler,
&ovl_other_xattr_handler,
NULL
};
static const struct xattr_handler *ovl_user_xattr_handlers[] = {
#ifdef CONFIG_FS_POSIX_ACL
&ovl_posix_acl_access_xattr_handler,
&ovl_posix_acl_default_xattr_handler,
#endif
&ovl_own_user_xattr_handler,
&ovl_other_xattr_handler,
NULL
};
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
static int ovl_setup_trap(struct super_block *sb, struct dentry *dir,
struct inode **ptrap, const char *name)
{
struct inode *trap;
int err;
trap = ovl_get_trap_inode(sb, dir);
err = PTR_ERR_OR_ZERO(trap);
if (err) {
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
if (err == -ELOOP)
pr_err("conflicting %s path\n", name);
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
return err;
}
*ptrap = trap;
return 0;
}
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
/*
* Determine how we treat concurrent use of upperdir/workdir based on the
* index feature. This is papering over mount leaks of container runtimes,
* for example, an old overlay mount is leaked and now its upperdir is
* attempted to be used as a lower layer in a new overlay mount.
*/
static int ovl_report_in_use(struct ovl_fs *ofs, const char *name)
{
if (ofs->config.index) {
pr_err("%s is in-use as upperdir/workdir of another mount, mount with '-o index=off' to override exclusive upperdir protection.\n",
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
name);
return -EBUSY;
} else {
pr_warn("%s is in-use as upperdir/workdir of another mount, accessing files from both mounts will result in undefined behavior.\n",
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
name);
return 0;
}
}
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
static int ovl_get_upper(struct super_block *sb, struct ovl_fs *ofs,
struct ovl_layer *upper_layer, struct path *upperpath)
{
struct vfsmount *upper_mnt;
int err;
err = ovl_mount_dir(ofs->config.upperdir, upperpath);
if (err)
goto out;
/* Upperdir path should not be r/o */
if (__mnt_is_readonly(upperpath->mnt)) {
pr_err("upper fs is r/o, try multi-lower layers mount\n");
err = -EINVAL;
goto out;
}
err = ovl_check_namelen(upperpath, ofs, ofs->config.upperdir);
if (err)
goto out;
err = ovl_setup_trap(sb, upperpath->dentry, &upper_layer->trap,
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
"upperdir");
if (err)
goto out;
upper_mnt = clone_private_mount(upperpath);
err = PTR_ERR(upper_mnt);
if (IS_ERR(upper_mnt)) {
pr_err("failed to clone upperpath\n");
goto out;
}
/* Don't inherit atime flags */
upper_mnt->mnt_flags &= ~(MNT_NOATIME | MNT_NODIRATIME | MNT_RELATIME);
upper_layer->mnt = upper_mnt;
upper_layer->idx = 0;
upper_layer->fsid = 0;
/*
* Inherit SB_NOSEC flag from upperdir.
*
* This optimization changes behavior when a security related attribute
* (suid/sgid/security.*) is changed on an underlying layer. This is
* okay because we don't yet have guarantees in that case, but it will
* need careful treatment once we want to honour changes to underlying
* filesystems.
*/
if (upper_mnt->mnt_sb->s_flags & SB_NOSEC)
sb->s_flags |= SB_NOSEC;
if (ovl_inuse_trylock(ovl_upper_mnt(ofs)->mnt_root)) {
ofs->upperdir_locked = true;
} else {
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
err = ovl_report_in_use(ofs, "upperdir");
if (err)
goto out;
}
err = 0;
out:
return err;
}
/*
* Returns 1 if RENAME_WHITEOUT is supported, 0 if not supported and
* negative values if error is encountered.
*/
static int ovl_check_rename_whiteout(struct dentry *workdir)
{
struct inode *dir = d_inode(workdir);
struct dentry *temp;
struct dentry *dest;
struct dentry *whiteout;
struct name_snapshot name;
int err;
inode_lock_nested(dir, I_MUTEX_PARENT);
temp = ovl_create_temp(workdir, OVL_CATTR(S_IFREG | 0));
err = PTR_ERR(temp);
if (IS_ERR(temp))
goto out_unlock;
dest = ovl_lookup_temp(workdir);
err = PTR_ERR(dest);
if (IS_ERR(dest)) {
dput(temp);
goto out_unlock;
}
/* Name is inline and stable - using snapshot as a copy helper */
take_dentry_name_snapshot(&name, temp);
err = ovl_do_rename(dir, temp, dir, dest, RENAME_WHITEOUT);
if (err) {
if (err == -EINVAL)
err = 0;
goto cleanup_temp;
}
whiteout = lookup_one_len(name.name.name, workdir, name.name.len);
err = PTR_ERR(whiteout);
if (IS_ERR(whiteout))
goto cleanup_temp;
err = ovl_is_whiteout(whiteout);
/* Best effort cleanup of whiteout and temp file */
if (err)
ovl_cleanup(dir, whiteout);
dput(whiteout);
cleanup_temp:
ovl_cleanup(dir, temp);
release_dentry_name_snapshot(&name);
dput(temp);
dput(dest);
out_unlock:
inode_unlock(dir);
return err;
}
ovl: provide a mount option "volatile" Container folks are complaining that dnf/yum issues too many sync while installing packages and this slows down the image build. Build requirement is such that they don't care if a node goes down while build was still going on. In that case, they will simply throw away unfinished layer and start new build. So they don't care about syncing intermediate state to the disk and hence don't want to pay the price associated with sync. So they are asking for mount options where they can disable sync on overlay mount point. They primarily seem to have two use cases. - For building images, they will mount overlay with nosync and then sync upper layer after unmounting overlay and reuse upper as lower for next layer. - For running containers, they don't seem to care about syncing upper layer because if node goes down, they will simply throw away upper layer and create a fresh one. So this patch provides a mount option "volatile" which disables all forms of sync. Now it is caller's responsibility to throw away upper if system crashes or shuts down and start fresh. With "volatile", I am seeing roughly 20% speed up in my VM where I am just installing emacs in an image. Installation time drops from 31 seconds to 25 seconds when nosync option is used. This is for the case of building on top of an image where all packages are already cached. That way I take out the network operations latency out of the measurement. Giuseppe is also looking to cut down on number of iops done on the disk. He is complaining that often in cloud their VMs are throttled if they cross the limit. This option can help them where they reduce number of iops (by cutting down on frequent sync and writebacks). Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-08-31 21:15:29 +03:00
static struct dentry *ovl_lookup_or_create(struct dentry *parent,
const char *name, umode_t mode)
{
size_t len = strlen(name);
struct dentry *child;
inode_lock_nested(parent->d_inode, I_MUTEX_PARENT);
child = lookup_one_len(name, parent, len);
if (!IS_ERR(child) && !child->d_inode)
child = ovl_create_real(parent->d_inode, child,
OVL_CATTR(mode));
inode_unlock(parent->d_inode);
dput(parent);
return child;
}
/*
* Creates $workdir/work/incompat/volatile/dirty file if it is not already
* present.
*/
static int ovl_create_volatile_dirty(struct ovl_fs *ofs)
{
unsigned int ctr;
struct dentry *d = dget(ofs->workbasedir);
static const char *const volatile_path[] = {
OVL_WORKDIR_NAME, "incompat", "volatile", "dirty"
};
const char *const *name = volatile_path;
for (ctr = ARRAY_SIZE(volatile_path); ctr; ctr--, name++) {
d = ovl_lookup_or_create(d, *name, ctr > 1 ? S_IFDIR : S_IFREG);
if (IS_ERR(d))
return PTR_ERR(d);
}
dput(d);
return 0;
}
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
static int ovl_make_workdir(struct super_block *sb, struct ovl_fs *ofs,
struct path *workpath)
{
struct vfsmount *mnt = ovl_upper_mnt(ofs);
struct dentry *temp, *workdir;
bool rename_whiteout;
bool d_type;
int fh_type;
int err;
err = mnt_want_write(mnt);
if (err)
return err;
workdir = ovl_workdir_create(ofs, OVL_WORKDIR_NAME, false);
err = PTR_ERR(workdir);
if (IS_ERR_OR_NULL(workdir))
goto out;
ofs->workdir = workdir;
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
err = ovl_setup_trap(sb, ofs->workdir, &ofs->workdir_trap, "workdir");
if (err)
goto out;
/*
* Upper should support d_type, else whiteouts are visible. Given
* workdir and upper are on same fs, we can do iterate_dir() on
* workdir. This check requires successful creation of workdir in
* previous step.
*/
err = ovl_check_d_type_supported(workpath);
if (err < 0)
goto out;
d_type = err;
if (!d_type)
pr_warn("upper fs needs to support d_type.\n");
/* Check if upper/work fs supports O_TMPFILE */
temp = ovl_do_tmpfile(ofs->workdir, S_IFREG | 0);
ofs->tmpfile = !IS_ERR(temp);
if (ofs->tmpfile)
dput(temp);
else
pr_warn("upper fs does not support tmpfile.\n");
/* Check if upper/work fs supports RENAME_WHITEOUT */
err = ovl_check_rename_whiteout(ofs->workdir);
if (err < 0)
goto out;
rename_whiteout = err;
if (!rename_whiteout)
pr_warn("upper fs does not support RENAME_WHITEOUT.\n");
/*
* Check if upper/work fs supports (trusted|user).overlay.* xattr
*/
err = ovl_do_setxattr(ofs, ofs->workdir, OVL_XATTR_OPAQUE, "0", 1);
if (err) {
ofs->noxattr = true;
ovl: restrict lower null uuid for "xino=auto" Commit a888db310195 ("ovl: fix regression with re-formatted lower squashfs") attempted to fix a regression with existing setups that use a practice that we are trying to discourage. The discourage part was described this way in the commit message: "To avoid the reported regression while still allowing the new features with single lower squashfs, do not allow decoding origin with lower null uuid unless user opted-in to one of the new features that require following the lower inode of non-dir upper (index, xino, metacopy)." The three mentioned features are disabled by default in Kconfig, so it was assumed that if they are enabled, the user opted-in for them. Apparently, distros started to configure CONFIG_OVERLAY_FS_XINO_AUTO=y some time ago, so users upgrading their kernels can still be affected by said regression even though they never opted-in for any new feature. To fix this, treat "xino=on" as "user opted-in", but not "xino=auto". Since we are changing the behavior of "xino=auto" to no longer follow to lower origin with null uuid, take this one step further and disable xino in that corner case. To be consistent, disable xino also in cases of lower fs without file handle support and upper fs without xattr support. Update documentation w.r.t the new "xino=auto" behavior and fix the out dated bits of documentation regarding "xino" and regarding offline modifications to lower layers. Link: https://lore.kernel.org/linux-unionfs/b36a429d7c563730c28d763d4d57a6fc30508a4f.1615216996.git.kevin@kevinlocke.name/ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-03-09 19:26:54 +03:00
if (ofs->config.index || ofs->config.metacopy) {
ofs->config.index = false;
ofs->config.metacopy = false;
pr_warn("upper fs does not support xattr, falling back to index=off,metacopy=off.\n");
}
/*
* xattr support is required for persistent st_ino.
* Without persistent st_ino, xino=auto falls back to xino=off.
*/
if (ofs->config.xino == OVL_XINO_AUTO) {
ofs->config.xino = OVL_XINO_OFF;
pr_warn("upper fs does not support xattr, falling back to xino=off.\n");
}
err = 0;
} else {
ovl_do_removexattr(ofs, ofs->workdir, OVL_XATTR_OPAQUE);
}
/*
* We allowed sub-optimal upper fs configuration and don't want to break
* users over kernel upgrade, but we never allowed remote upper fs, so
* we can enforce strict requirements for remote upper fs.
*/
if (ovl_dentry_remote(ofs->workdir) &&
(!d_type || !rename_whiteout || ofs->noxattr)) {
pr_err("upper fs missing required features.\n");
err = -EINVAL;
goto out;
}
ovl: provide a mount option "volatile" Container folks are complaining that dnf/yum issues too many sync while installing packages and this slows down the image build. Build requirement is such that they don't care if a node goes down while build was still going on. In that case, they will simply throw away unfinished layer and start new build. So they don't care about syncing intermediate state to the disk and hence don't want to pay the price associated with sync. So they are asking for mount options where they can disable sync on overlay mount point. They primarily seem to have two use cases. - For building images, they will mount overlay with nosync and then sync upper layer after unmounting overlay and reuse upper as lower for next layer. - For running containers, they don't seem to care about syncing upper layer because if node goes down, they will simply throw away upper layer and create a fresh one. So this patch provides a mount option "volatile" which disables all forms of sync. Now it is caller's responsibility to throw away upper if system crashes or shuts down and start fresh. With "volatile", I am seeing roughly 20% speed up in my VM where I am just installing emacs in an image. Installation time drops from 31 seconds to 25 seconds when nosync option is used. This is for the case of building on top of an image where all packages are already cached. That way I take out the network operations latency out of the measurement. Giuseppe is also looking to cut down on number of iops done on the disk. He is complaining that often in cloud their VMs are throttled if they cross the limit. This option can help them where they reduce number of iops (by cutting down on frequent sync and writebacks). Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-08-31 21:15:29 +03:00
/*
* For volatile mount, create a incompat/volatile/dirty file to keep
* track of it.
*/
if (ofs->config.ovl_volatile) {
err = ovl_create_volatile_dirty(ofs);
if (err < 0) {
pr_err("Failed to create volatile/dirty file.\n");
goto out;
}
}
/* Check if upper/work fs supports file handles */
fh_type = ovl_can_decode_fh(ofs->workdir->d_sb);
if (ofs->config.index && !fh_type) {
ofs->config.index = false;
pr_warn("upper fs does not support file handles, falling back to index=off.\n");
}
/* Check if upper fs has 32bit inode numbers */
if (fh_type != FILEID_INO32_GEN)
ofs->xino_mode = -1;
/* NFS export of r/w mount depends on index */
if (ofs->config.nfs_export && !ofs->config.index) {
pr_warn("NFS export requires \"index=on\", falling back to nfs_export=off.\n");
ofs->config.nfs_export = false;
}
out:
mnt_drop_write(mnt);
return err;
}
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
static int ovl_get_workdir(struct super_block *sb, struct ovl_fs *ofs,
struct path *upperpath)
{
int err;
struct path workpath = { };
err = ovl_mount_dir(ofs->config.workdir, &workpath);
if (err)
goto out;
err = -EINVAL;
if (upperpath->mnt != workpath.mnt) {
pr_err("workdir and upperdir must reside under the same mount\n");
goto out;
}
if (!ovl_workdir_ok(workpath.dentry, upperpath->dentry)) {
pr_err("workdir and upperdir must be separate subtrees\n");
goto out;
}
ofs->workbasedir = dget(workpath.dentry);
if (ovl_inuse_trylock(ofs->workbasedir)) {
ofs->workdir_locked = true;
} else {
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
err = ovl_report_in_use(ofs, "workdir");
if (err)
goto out;
}
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
err = ovl_setup_trap(sb, ofs->workbasedir, &ofs->workbasedir_trap,
"workdir");
if (err)
goto out;
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
err = ovl_make_workdir(sb, ofs, &workpath);
out:
path_put(&workpath);
return err;
}
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
static int ovl_get_indexdir(struct super_block *sb, struct ovl_fs *ofs,
struct ovl_entry *oe, struct path *upperpath)
{
struct vfsmount *mnt = ovl_upper_mnt(ofs);
struct dentry *indexdir;
int err;
err = mnt_want_write(mnt);
if (err)
return err;
/* Verify lower root is upper root origin */
err = ovl_verify_origin(ofs, upperpath->dentry,
oe->lowerstack[0].dentry, true);
if (err) {
pr_err("failed to verify upper root origin\n");
goto out;
}
/* index dir will act also as workdir */
iput(ofs->workdir_trap);
ofs->workdir_trap = NULL;
dput(ofs->workdir);
ofs->workdir = NULL;
indexdir = ovl_workdir_create(ofs, OVL_INDEXDIR_NAME, true);
if (IS_ERR(indexdir)) {
err = PTR_ERR(indexdir);
} else if (indexdir) {
ofs->indexdir = indexdir;
ofs->workdir = dget(indexdir);
ovl: fix oops in ovl_indexdir_cleanup() with nfs_export=on Mounting with nfs_export=on, xfstests overlay/031 triggers a kernel panic since v5.8-rc1 overlayfs updates. overlayfs: orphan index entry (index/00fb1..., ftype=4000, nlink=2) BUG: kernel NULL pointer dereference, address: 0000000000000030 RIP: 0010:ovl_cleanup_and_whiteout+0x28/0x220 [overlay] Bisect point at commit c21c839b8448 ("ovl: whiteout inode sharing") Minimal reproducer: -------------------------------------------------- rm -rf l u w m mkdir -p l u w m mkdir -p l/testdir touch l/testdir/testfile mount -t overlay -o lowerdir=l,upperdir=u,workdir=w,nfs_export=on overlay m echo 1 > m/testdir/testfile umount m rm -rf u/testdir mount -t overlay -o lowerdir=l,upperdir=u,workdir=w,nfs_export=on overlay m umount m -------------------------------------------------- When mount with nfs_export=on, and fail to verify an orphan index, we're cleaning this index from indexdir by calling ovl_cleanup_and_whiteout(). This dereferences ofs->workdir, that was earlier set to NULL. The design was that ovl->workdir will point at ovl->indexdir, but we are assigning ofs->indexdir to ofs->workdir only after ovl_indexdir_cleanup(). There is no reason not to do it sooner, because once we get success from ofs->indexdir = ovl_workdir_create(... there is no turning back. Reported-and-tested-by: Murphy Zhou <jencce.kernel@gmail.com> Fixes: c21c839b8448 ("ovl: whiteout inode sharing") Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-06-21 09:37:59 +03:00
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
err = ovl_setup_trap(sb, ofs->indexdir, &ofs->indexdir_trap,
"indexdir");
if (err)
goto out;
/*
* Verify upper root is exclusively associated with index dir.
* Older kernels stored upper fh in ".overlay.origin"
* xattr. If that xattr exists, verify that it is a match to
* upper dir file handle. In any case, verify or set xattr
* ".overlay.upper" to indicate that index may have
* directory entries.
*/
if (ovl_check_origin_xattr(ofs, ofs->indexdir)) {
err = ovl_verify_set_fh(ofs, ofs->indexdir,
OVL_XATTR_ORIGIN,
upperpath->dentry, true, false);
if (err)
pr_err("failed to verify index dir 'origin' xattr\n");
}
err = ovl_verify_upper(ofs, ofs->indexdir, upperpath->dentry,
true);
if (err)
pr_err("failed to verify index dir 'upper' xattr\n");
/* Cleanup bad/stale/orphan index entries */
if (!err)
err = ovl_indexdir_cleanup(ofs);
}
if (err || !ofs->indexdir)
pr_warn("try deleting index dir or mounting with '-o index=off' to disable inodes index.\n");
out:
mnt_drop_write(mnt);
return err;
}
static bool ovl_lower_uuid_ok(struct ovl_fs *ofs, const uuid_t *uuid)
{
unsigned int i;
if (!ofs->config.nfs_export && !ovl_upper_mnt(ofs))
return true;
/*
* We allow using single lower with null uuid for index and nfs_export
* for example to support those features with single lower squashfs.
* To avoid regressions in setups of overlay with re-formatted lower
* squashfs, do not allow decoding origin with lower null uuid unless
* user opted-in to one of the new features that require following the
* lower inode of non-dir upper.
*/
ovl: restrict lower null uuid for "xino=auto" Commit a888db310195 ("ovl: fix regression with re-formatted lower squashfs") attempted to fix a regression with existing setups that use a practice that we are trying to discourage. The discourage part was described this way in the commit message: "To avoid the reported regression while still allowing the new features with single lower squashfs, do not allow decoding origin with lower null uuid unless user opted-in to one of the new features that require following the lower inode of non-dir upper (index, xino, metacopy)." The three mentioned features are disabled by default in Kconfig, so it was assumed that if they are enabled, the user opted-in for them. Apparently, distros started to configure CONFIG_OVERLAY_FS_XINO_AUTO=y some time ago, so users upgrading their kernels can still be affected by said regression even though they never opted-in for any new feature. To fix this, treat "xino=on" as "user opted-in", but not "xino=auto". Since we are changing the behavior of "xino=auto" to no longer follow to lower origin with null uuid, take this one step further and disable xino in that corner case. To be consistent, disable xino also in cases of lower fs without file handle support and upper fs without xattr support. Update documentation w.r.t the new "xino=auto" behavior and fix the out dated bits of documentation regarding "xino" and regarding offline modifications to lower layers. Link: https://lore.kernel.org/linux-unionfs/b36a429d7c563730c28d763d4d57a6fc30508a4f.1615216996.git.kevin@kevinlocke.name/ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-03-09 19:26:54 +03:00
if (!ofs->config.index && !ofs->config.metacopy &&
ofs->config.xino != OVL_XINO_ON &&
uuid_is_null(uuid))
return false;
for (i = 0; i < ofs->numfs; i++) {
/*
* We use uuid to associate an overlay lower file handle with a
* lower layer, so we can accept lower fs with null uuid as long
* as all lower layers with null uuid are on the same fs.
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 23:28:41 +03:00
* if we detect multiple lower fs with the same uuid, we
* disable lower file handle decoding on all of them.
*/
if (ofs->fs[i].is_lower &&
uuid_equal(&ofs->fs[i].sb->s_uuid, uuid)) {
ofs->fs[i].bad_uuid = true;
return false;
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 23:28:41 +03:00
}
}
return true;
}
/* Get a unique fsid for the layer */
static int ovl_get_fsid(struct ovl_fs *ofs, const struct path *path)
{
struct super_block *sb = path->mnt->mnt_sb;
unsigned int i;
dev_t dev;
int err;
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 23:28:41 +03:00
bool bad_uuid = false;
ovl: restrict lower null uuid for "xino=auto" Commit a888db310195 ("ovl: fix regression with re-formatted lower squashfs") attempted to fix a regression with existing setups that use a practice that we are trying to discourage. The discourage part was described this way in the commit message: "To avoid the reported regression while still allowing the new features with single lower squashfs, do not allow decoding origin with lower null uuid unless user opted-in to one of the new features that require following the lower inode of non-dir upper (index, xino, metacopy)." The three mentioned features are disabled by default in Kconfig, so it was assumed that if they are enabled, the user opted-in for them. Apparently, distros started to configure CONFIG_OVERLAY_FS_XINO_AUTO=y some time ago, so users upgrading their kernels can still be affected by said regression even though they never opted-in for any new feature. To fix this, treat "xino=on" as "user opted-in", but not "xino=auto". Since we are changing the behavior of "xino=auto" to no longer follow to lower origin with null uuid, take this one step further and disable xino in that corner case. To be consistent, disable xino also in cases of lower fs without file handle support and upper fs without xattr support. Update documentation w.r.t the new "xino=auto" behavior and fix the out dated bits of documentation regarding "xino" and regarding offline modifications to lower layers. Link: https://lore.kernel.org/linux-unionfs/b36a429d7c563730c28d763d4d57a6fc30508a4f.1615216996.git.kevin@kevinlocke.name/ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-03-09 19:26:54 +03:00
bool warn = false;
for (i = 0; i < ofs->numfs; i++) {
if (ofs->fs[i].sb == sb)
return i;
}
if (!ovl_lower_uuid_ok(ofs, &sb->s_uuid)) {
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 23:28:41 +03:00
bad_uuid = true;
ovl: restrict lower null uuid for "xino=auto" Commit a888db310195 ("ovl: fix regression with re-formatted lower squashfs") attempted to fix a regression with existing setups that use a practice that we are trying to discourage. The discourage part was described this way in the commit message: "To avoid the reported regression while still allowing the new features with single lower squashfs, do not allow decoding origin with lower null uuid unless user opted-in to one of the new features that require following the lower inode of non-dir upper (index, xino, metacopy)." The three mentioned features are disabled by default in Kconfig, so it was assumed that if they are enabled, the user opted-in for them. Apparently, distros started to configure CONFIG_OVERLAY_FS_XINO_AUTO=y some time ago, so users upgrading their kernels can still be affected by said regression even though they never opted-in for any new feature. To fix this, treat "xino=on" as "user opted-in", but not "xino=auto". Since we are changing the behavior of "xino=auto" to no longer follow to lower origin with null uuid, take this one step further and disable xino in that corner case. To be consistent, disable xino also in cases of lower fs without file handle support and upper fs without xattr support. Update documentation w.r.t the new "xino=auto" behavior and fix the out dated bits of documentation regarding "xino" and regarding offline modifications to lower layers. Link: https://lore.kernel.org/linux-unionfs/b36a429d7c563730c28d763d4d57a6fc30508a4f.1615216996.git.kevin@kevinlocke.name/ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-03-09 19:26:54 +03:00
if (ofs->config.xino == OVL_XINO_AUTO) {
ofs->config.xino = OVL_XINO_OFF;
warn = true;
}
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 23:28:41 +03:00
if (ofs->config.index || ofs->config.nfs_export) {
ofs->config.index = false;
ofs->config.nfs_export = false;
ovl: restrict lower null uuid for "xino=auto" Commit a888db310195 ("ovl: fix regression with re-formatted lower squashfs") attempted to fix a regression with existing setups that use a practice that we are trying to discourage. The discourage part was described this way in the commit message: "To avoid the reported regression while still allowing the new features with single lower squashfs, do not allow decoding origin with lower null uuid unless user opted-in to one of the new features that require following the lower inode of non-dir upper (index, xino, metacopy)." The three mentioned features are disabled by default in Kconfig, so it was assumed that if they are enabled, the user opted-in for them. Apparently, distros started to configure CONFIG_OVERLAY_FS_XINO_AUTO=y some time ago, so users upgrading their kernels can still be affected by said regression even though they never opted-in for any new feature. To fix this, treat "xino=on" as "user opted-in", but not "xino=auto". Since we are changing the behavior of "xino=auto" to no longer follow to lower origin with null uuid, take this one step further and disable xino in that corner case. To be consistent, disable xino also in cases of lower fs without file handle support and upper fs without xattr support. Update documentation w.r.t the new "xino=auto" behavior and fix the out dated bits of documentation regarding "xino" and regarding offline modifications to lower layers. Link: https://lore.kernel.org/linux-unionfs/b36a429d7c563730c28d763d4d57a6fc30508a4f.1615216996.git.kevin@kevinlocke.name/ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-03-09 19:26:54 +03:00
warn = true;
}
if (warn) {
pr_warn("%s uuid detected in lower fs '%pd2', falling back to xino=%s,index=off,nfs_export=off.\n",
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 23:28:41 +03:00
uuid_is_null(&sb->s_uuid) ? "null" :
"conflicting",
ovl: restrict lower null uuid for "xino=auto" Commit a888db310195 ("ovl: fix regression with re-formatted lower squashfs") attempted to fix a regression with existing setups that use a practice that we are trying to discourage. The discourage part was described this way in the commit message: "To avoid the reported regression while still allowing the new features with single lower squashfs, do not allow decoding origin with lower null uuid unless user opted-in to one of the new features that require following the lower inode of non-dir upper (index, xino, metacopy)." The three mentioned features are disabled by default in Kconfig, so it was assumed that if they are enabled, the user opted-in for them. Apparently, distros started to configure CONFIG_OVERLAY_FS_XINO_AUTO=y some time ago, so users upgrading their kernels can still be affected by said regression even though they never opted-in for any new feature. To fix this, treat "xino=on" as "user opted-in", but not "xino=auto". Since we are changing the behavior of "xino=auto" to no longer follow to lower origin with null uuid, take this one step further and disable xino in that corner case. To be consistent, disable xino also in cases of lower fs without file handle support and upper fs without xattr support. Update documentation w.r.t the new "xino=auto" behavior and fix the out dated bits of documentation regarding "xino" and regarding offline modifications to lower layers. Link: https://lore.kernel.org/linux-unionfs/b36a429d7c563730c28d763d4d57a6fc30508a4f.1615216996.git.kevin@kevinlocke.name/ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-03-09 19:26:54 +03:00
path->dentry, ovl_xino_str[ofs->config.xino]);
ovl: fix lookup failure on multi lower squashfs In the past, overlayfs required that lower fs have non null uuid in order to support nfs export and decode copy up origin file handles. Commit 9df085f3c9a2 ("ovl: relax requirement for non null uuid of lower fs") relaxed this requirement for nfs export support, as long as uuid (even if null) is unique among all lower fs. However, said commit unintentionally also relaxed the non null uuid requirement for decoding copy up origin file handles, regardless of the unique uuid requirement. Amend this mistake by disabling decoding of copy up origin file handle from lower fs with a conflicting uuid. We still encode copy up origin file handles from those fs, because file handles like those already exist in the wild and because they might provide useful information in the future. There is an unhandled corner case described by Miklos this way: - two filesystems, A and B, both have null uuid - upper layer is on A - lower layer 1 is also on A - lower layer 2 is on B In this case bad_uuid won't be set for B, because the check only involves the list of lower fs. Hence we'll try to decode a layer 2 origin on layer 1 and fail. We will deal with this corner case later. Reported-by: Colin Ian King <colin.king@canonical.com> Tested-by: Colin Ian King <colin.king@canonical.com> Link: https://lore.kernel.org/lkml/20191106234301.283006-1-colin.king@canonical.com/ Fixes: 9df085f3c9a2 ("ovl: relax requirement for non null uuid ...") Cc: stable@vger.kernel.org # v4.20+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-11-14 23:28:41 +03:00
}
}
err = get_anon_bdev(&dev);
if (err) {
pr_err("failed to get anonymous bdev for lowerpath\n");
return err;
}
ofs->fs[ofs->numfs].sb = sb;
ofs->fs[ofs->numfs].pseudo_dev = dev;
ofs->fs[ofs->numfs].bad_uuid = bad_uuid;
return ofs->numfs++;
}
static int ovl_get_layers(struct super_block *sb, struct ovl_fs *ofs,
struct path *stack, unsigned int numlower,
struct ovl_layer *layers)
{
int err;
unsigned int i;
err = -ENOMEM;
ofs->fs = kcalloc(numlower + 1, sizeof(struct ovl_sb), GFP_KERNEL);
if (ofs->fs == NULL)
goto out;
/* idx/fsid 0 are reserved for upper fs even with lower only overlay */
ofs->numfs++;
/*
* All lower layers that share the same fs as upper layer, use the same
* pseudo_dev as upper layer. Allocate fs[0].pseudo_dev even for lower
* only overlay to simplify ovl_fs_free().
* is_lower will be set if upper fs is shared with a lower layer.
*/
err = get_anon_bdev(&ofs->fs[0].pseudo_dev);
if (err) {
pr_err("failed to get anonymous bdev for upper fs\n");
goto out;
}
if (ovl_upper_mnt(ofs)) {
ofs->fs[0].sb = ovl_upper_mnt(ofs)->mnt_sb;
ofs->fs[0].is_lower = false;
}
for (i = 0; i < numlower; i++) {
struct vfsmount *mnt;
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
struct inode *trap;
int fsid;
err = fsid = ovl_get_fsid(ofs, &stack[i]);
if (err < 0)
goto out;
/*
* Check if lower root conflicts with this overlay layers before
* checking if it is in-use as upperdir/workdir of "another"
* mount, because we do not bother to check in ovl_is_inuse() if
* the upperdir/workdir is in fact in-use by our
* upperdir/workdir.
*/
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
err = ovl_setup_trap(sb, stack[i].dentry, &trap, "lowerdir");
if (err)
goto out;
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
if (ovl_is_inuse(stack[i].dentry)) {
err = ovl_report_in_use(ofs, "lowerdir");
if (err) {
iput(trap);
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
goto out;
}
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
}
mnt = clone_private_mount(&stack[i]);
err = PTR_ERR(mnt);
if (IS_ERR(mnt)) {
pr_err("failed to clone lowerpath\n");
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
iput(trap);
goto out;
}
/*
* Make lower layers R/O. That way fchmod/fchown on lower file
* will fail instead of modifying lower fs.
*/
mnt->mnt_flags |= MNT_READONLY | MNT_NOATIME;
layers[ofs->numlayer].trap = trap;
layers[ofs->numlayer].mnt = mnt;
layers[ofs->numlayer].idx = ofs->numlayer;
layers[ofs->numlayer].fsid = fsid;
layers[ofs->numlayer].fs = &ofs->fs[fsid];
ofs->numlayer++;
ofs->fs[fsid].is_lower = true;
}
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
/*
* When all layers on same fs, overlay can use real inode numbers.
* With mount option "xino=<on|auto>", mounter declares that there are
* enough free high bits in underlying fs to hold the unique fsid.
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
* If overlayfs does encounter underlying inodes using the high xino
* bits reserved for fsid, it emits a warning and uses the original
* inode number or a non persistent inode number allocated from a
* dedicated range.
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
*/
if (ofs->numfs - !ovl_upper_mnt(ofs) == 1) {
if (ofs->config.xino == OVL_XINO_ON)
pr_info("\"xino=on\" is useless with all layers on same fs, ignore.\n");
ofs->xino_mode = 0;
} else if (ofs->config.xino == OVL_XINO_OFF) {
ofs->xino_mode = -1;
} else if (ofs->xino_mode < 0) {
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
/*
* This is a roundup of number of bits needed for encoding
* fsid, where fsid 0 is reserved for upper fs (even with
* lower only overlay) +1 extra bit is reserved for the non
* persistent inode number range that is used for resolving
* xino lower bits overflow.
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
*/
BUILD_BUG_ON(ilog2(OVL_MAX_STACK) > 30);
ofs->xino_mode = ilog2(ofs->numfs - 1) + 2;
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
}
if (ofs->xino_mode > 0) {
pr_info("\"xino\" feature enabled using %d upper inode bits.\n",
ofs->xino_mode);
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
}
err = 0;
out:
return err;
}
static struct ovl_entry *ovl_get_lowerstack(struct super_block *sb,
const char *lower, unsigned int numlower,
struct ovl_fs *ofs, struct ovl_layer *layers)
{
int err;
struct path *stack = NULL;
unsigned int i;
struct ovl_entry *oe;
if (!ofs->config.upperdir && numlower == 1) {
pr_err("at least 2 lowerdir are needed while upperdir nonexistent\n");
return ERR_PTR(-EINVAL);
}
stack = kcalloc(numlower, sizeof(struct path), GFP_KERNEL);
if (!stack)
return ERR_PTR(-ENOMEM);
err = -EINVAL;
for (i = 0; i < numlower; i++) {
err = ovl_lower_dir(lower, &stack[i], ofs, &sb->s_stack_depth);
if (err)
goto out_err;
lower = strchr(lower, '\0') + 1;
}
err = -EINVAL;
sb->s_stack_depth++;
if (sb->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
pr_err("maximum fs stacking depth exceeded\n");
goto out_err;
}
err = ovl_get_layers(sb, ofs, stack, numlower, layers);
if (err)
goto out_err;
err = -ENOMEM;
oe = ovl_alloc_entry(numlower);
if (!oe)
goto out_err;
for (i = 0; i < numlower; i++) {
oe->lowerstack[i].dentry = dget(stack[i].dentry);
oe->lowerstack[i].layer = &ofs->layers[i+1];
}
out:
for (i = 0; i < numlower; i++)
path_put(&stack[i]);
kfree(stack);
return oe;
out_err:
oe = ERR_PTR(err);
goto out;
}
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
/*
* Check if this layer root is a descendant of:
* - another layer of this overlayfs instance
* - upper/work dir of any overlayfs instance
*/
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
static int ovl_check_layer(struct super_block *sb, struct ovl_fs *ofs,
struct dentry *dentry, const char *name,
bool is_lower)
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
{
struct dentry *next = dentry, *parent;
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
int err = 0;
if (!dentry)
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
return 0;
parent = dget_parent(next);
/* Walk back ancestors to root (inclusive) looking for traps */
while (!err && parent != next) {
if (is_lower && ovl_lookup_trap_inode(sb, parent)) {
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
err = -ELOOP;
pr_err("overlapping %s path\n", name);
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
} else if (ovl_is_inuse(parent)) {
err = ovl_report_in_use(ofs, name);
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
}
next = parent;
parent = dget_parent(next);
dput(next);
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
}
dput(parent);
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
return err;
}
/*
* Check if any of the layers or work dirs overlap.
*/
static int ovl_check_overlapping_layers(struct super_block *sb,
struct ovl_fs *ofs)
{
int i, err;
if (ovl_upper_mnt(ofs)) {
err = ovl_check_layer(sb, ofs, ovl_upper_mnt(ofs)->mnt_root,
"upperdir", false);
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
if (err)
return err;
/*
* Checking workbasedir avoids hitting ovl_is_inuse(parent) of
* this instance and covers overlapping work and index dirs,
* unless work or index dir have been moved since created inside
* workbasedir. In that case, we already have their traps in
* inode cache and we will catch that case on lookup.
*/
err = ovl_check_layer(sb, ofs, ofs->workbasedir, "workdir",
false);
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
if (err)
return err;
}
for (i = 1; i < ofs->numlayer; i++) {
ovl: fix regression caused by overlapping layers detection Once upon a time, commit 2cac0c00a6cd ("ovl: get exclusive ownership on upper/work dirs") in v4.13 added some sanity checks on overlayfs layers. This change caused a docker regression. The root cause was mount leaks by docker, which as far as I know, still exist. To mitigate the regression, commit 85fdee1eef1a ("ovl: fix regression caused by exclusive upper/work dir protection") in v4.14 turned the mount errors into warnings for the default index=off configuration. Recently, commit 146d62e5a586 ("ovl: detect overlapping layers") in v5.2, re-introduced exclusive upper/work dir checks regardless of index=off configuration. This changes the status quo and mount leak related bug reports have started to re-surface. Restore the status quo to fix the regressions. To clarify, index=off does NOT relax overlapping layers check for this ovelayfs mount. index=off only relaxes exclusive upper/work dir checks with another overlayfs mount. To cover the part of overlapping layers detection that used the exclusive upper/work dir checks to detect overlap with self upper/work dir, add a trap also on the work base dir. Link: https://github.com/moby/moby/issues/34672 Link: https://lore.kernel.org/linux-fsdevel/20171006121405.GA32700@veci.piliscsaba.szeredi.hu/ Link: https://github.com/containers/libpod/issues/3540 Fixes: 146d62e5a586 ("ovl: detect overlapping layers") Cc: <stable@vger.kernel.org> # v4.19+ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Colin Walters <walters@verbum.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-07-12 15:24:34 +03:00
err = ovl_check_layer(sb, ofs,
ofs->layers[i].mnt->mnt_root,
"lowerdir", true);
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
if (err)
return err;
}
return 0;
}
static struct dentry *ovl_get_root(struct super_block *sb,
struct dentry *upperdentry,
struct ovl_entry *oe)
{
struct dentry *root;
struct ovl_path *lowerpath = &oe->lowerstack[0];
unsigned long ino = d_inode(lowerpath->dentry)->i_ino;
int fsid = lowerpath->layer->fsid;
struct ovl_inode_params oip = {
.upperdentry = upperdentry,
.lowerpath = lowerpath,
};
root = d_make_root(ovl_new_inode(sb, S_IFDIR, 0));
if (!root)
return NULL;
root->d_fsdata = oe;
if (upperdentry) {
/* Root inode uses upper st_ino/i_ino */
ino = d_inode(upperdentry)->i_ino;
fsid = 0;
ovl_dentry_set_upper_alias(root);
if (ovl_is_impuredir(sb, upperdentry))
ovl_set_flag(OVL_IMPURE, d_inode(root));
}
/* Root is always merge -> can have whiteouts */
ovl_set_flag(OVL_WHITEOUTS, d_inode(root));
ovl_dentry_set_flag(OVL_E_CONNECTED, root);
ovl_set_upperdata(d_inode(root));
ovl_inode_init(d_inode(root), &oip, ino, fsid);
ovl_dentry_update_reval(root, upperdentry, DCACHE_OP_WEAK_REVALIDATE);
return root;
}
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static int ovl_fill_super(struct super_block *sb, void *data, int silent)
{
struct path upperpath = { };
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
struct dentry *root_dentry;
struct ovl_entry *oe;
struct ovl_fs *ofs;
struct ovl_layer *layers;
struct cred *cred;
char *splitlower = NULL;
unsigned int numlower;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
int err;
err = -EIO;
if (WARN_ON(sb->s_user_ns != current_user_ns()))
goto out;
sb->s_d_op = &ovl_dentry_operations;
err = -ENOMEM;
ofs = kzalloc(sizeof(struct ovl_fs), GFP_KERNEL);
if (!ofs)
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
goto out;
err = -ENOMEM;
ofs->creator_cred = cred = prepare_creds();
if (!cred)
goto out_err;
/* Is there a reason anyone would want not to share whiteouts? */
ofs->share_whiteout = true;
ofs->config.index = ovl_index_def;
ovl: introduce new "uuid=off" option for inodes index feature This replaces uuid with null in overlayfs file handles and thus relaxes uuid checks for overlay index feature. It is only possible in case there is only one filesystem for all the work/upper/lower directories and bare file handles from this backing filesystem are unique. In other case when we have multiple filesystems lets just fallback to "uuid=on" which is and equivalent of how it worked before with all uuid checks. This is needed when overlayfs is/was mounted in a container with index enabled (e.g.: to be able to resolve inotify watch file handles on it to paths in CRIU), and this container is copied and started alongside with the original one. This way the "copy" container can't have the same uuid on the superblock and mounting the overlayfs from it later would fail. That is an example of the problem on top of loop+ext4: dd if=/dev/zero of=loopbackfile.img bs=100M count=10 losetup -fP loopbackfile.img losetup -a #/dev/loop0: [64768]:35 (/loop-test/loopbackfile.img) mkfs.ext4 loopbackfile.img mkdir loop-mp mount -o loop /dev/loop0 loop-mp mkdir loop-mp/{lower,upper,work,merged} mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged umount loop-mp/merged umount loop-mp e2fsck -f /dev/loop0 tune2fs -U random /dev/loop0 mount -o loop /dev/loop0 loop-mp mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged #mount: /loop-test/loop-mp/merged: #mount(2) system call failed: Stale file handle. If you just change the uuid of the backing filesystem, overlay is not mounting any more. In Virtuozzo we copy container disks (ploops) when create the copy of container and we require fs uuid to be unique for a new container. Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-13 17:59:54 +03:00
ofs->config.uuid = true;
ofs->config.nfs_export = ovl_nfs_export_def;
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
ofs->config.xino = ovl_xino_def();
ofs->config.metacopy = ovl_metacopy_def;
err = ovl_parse_opt((char *) data, &ofs->config);
if (err)
goto out_err;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
err = -EINVAL;
if (!ofs->config.lowerdir) {
if (!silent)
pr_err("missing 'lowerdir'\n");
goto out_err;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
}
err = -ENOMEM;
splitlower = kstrdup(ofs->config.lowerdir, GFP_KERNEL);
if (!splitlower)
goto out_err;
err = -EINVAL;
numlower = ovl_split_lowerdirs(splitlower);
if (numlower > OVL_MAX_STACK) {
pr_err("too many lower directories, limit is %d\n",
OVL_MAX_STACK);
goto out_err;
}
err = -ENOMEM;
layers = kcalloc(numlower + 1, sizeof(struct ovl_layer), GFP_KERNEL);
if (!layers)
goto out_err;
ofs->layers = layers;
/* Layer 0 is reserved for upper even if there's no upper */
ofs->numlayer = 1;
sb->s_stack_depth = 0;
sb->s_maxbytes = MAX_LFS_FILESIZE;
atomic_long_set(&ofs->last_ino, 1);
/* Assume underlaying fs uses 32bit inodes unless proven otherwise */
if (ofs->config.xino != OVL_XINO_OFF) {
ofs->xino_mode = BITS_PER_LONG - 32;
if (!ofs->xino_mode) {
pr_warn("xino not supported on 32bit kernel, falling back to xino=off.\n");
ofs->config.xino = OVL_XINO_OFF;
}
}
ovl: add support for "xino" mount and config options With mount option "xino=on", mounter declares that there are enough free high bits in underlying fs to hold the layer fsid. If overlayfs does encounter underlying inodes using the high xino bits reserved for layer fsid, a warning will be emitted and the original inode number will be used. The mount option name "xino" goes after a similar meaning mount option of aufs, but in overlayfs case, the mapping is stateless. An example for a use case of "xino=on" is when upper/lower is on an xfs filesystem. xfs uses 64bit inode numbers, but it currently never uses the upper 8bit for inode numbers exposed via stat(2) and that is not likely to change in the future without user opting-in for a new xfs feature. The actual number of unused upper bit is much larger and determined by the xfs filesystem geometry (64 - agno_log - agblklog - inopblog). That means that for all practical purpose, there are enough unused bits in xfs inode numbers for more than OVL_MAX_STACK unique fsid's. Another use case of "xino=on" is when upper/lower is on tmpfs. tmpfs inode numbers are allocated sequentially since boot, so they will practially never use the high inode number bits. For compatibility with applications that expect 32bit inodes, the feature can be disabled with "xino=off". The option "xino=auto" automatically detects underlying filesystem that use 32bit inodes and enables the feature. The Kconfig option OVERLAY_FS_XINO_AUTO and module parameter of the same name, determine if the default mode for overlayfs mount is "xino=auto" or "xino=off". Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-03-29 09:08:18 +03:00
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
/* alloc/destroy_inode needed for setting up traps in inode cache */
sb->s_op = &ovl_super_operations;
if (ofs->config.upperdir) {
ovl: implement volatile-specific fsync error behaviour Overlayfs's volatile option allows the user to bypass all forced sync calls to the upperdir filesystem. This comes at the cost of safety. We can never ensure that the user's data is intact, but we can make a best effort to expose whether or not the data is likely to be in a bad state. The best way to handle this in the time being is that if an overlayfs's upperdir experiences an error after a volatile mount occurs, that error will be returned on fsync, fdatasync, sync, and syncfs. This is contradictory to the traditional behaviour of VFS which fails the call once, and only raises an error if a subsequent fsync error has occurred, and been raised by the filesystem. One awkward aspect of the patch is that we have to manually set the superblock's errseq_t after the sync_fs callback as opposed to just returning an error from syncfs. This is because the call chain looks something like this: sys_syncfs -> sync_filesystem -> __sync_filesystem -> /* The return value is ignored here sb->s_op->sync_fs(sb) _sync_blockdev /* Where the VFS fetches the error to raise to userspace */ errseq_check_and_advance Because of this we call errseq_set every time the sync_fs callback occurs. Due to the nature of this seen / unseen dichotomy, if the upperdir is an inconsistent state at the initial mount time, overlayfs will refuse to mount, as overlayfs cannot get a snapshot of the upperdir's errseq that will increment on error until the user calls syncfs. Signed-off-by: Sargun Dhillon <sargun@sargun.me> Suggested-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Fixes: c86243b090bc ("ovl: provide a mount option "volatile"") Cc: stable@vger.kernel.org Reviewed-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-01-08 03:10:43 +03:00
struct super_block *upper_sb;
err = -EINVAL;
if (!ofs->config.workdir) {
pr_err("missing 'workdir'\n");
goto out_err;
}
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
err = ovl_get_upper(sb, ofs, &layers[0], &upperpath);
if (err)
goto out_err;
ovl: implement volatile-specific fsync error behaviour Overlayfs's volatile option allows the user to bypass all forced sync calls to the upperdir filesystem. This comes at the cost of safety. We can never ensure that the user's data is intact, but we can make a best effort to expose whether or not the data is likely to be in a bad state. The best way to handle this in the time being is that if an overlayfs's upperdir experiences an error after a volatile mount occurs, that error will be returned on fsync, fdatasync, sync, and syncfs. This is contradictory to the traditional behaviour of VFS which fails the call once, and only raises an error if a subsequent fsync error has occurred, and been raised by the filesystem. One awkward aspect of the patch is that we have to manually set the superblock's errseq_t after the sync_fs callback as opposed to just returning an error from syncfs. This is because the call chain looks something like this: sys_syncfs -> sync_filesystem -> __sync_filesystem -> /* The return value is ignored here sb->s_op->sync_fs(sb) _sync_blockdev /* Where the VFS fetches the error to raise to userspace */ errseq_check_and_advance Because of this we call errseq_set every time the sync_fs callback occurs. Due to the nature of this seen / unseen dichotomy, if the upperdir is an inconsistent state at the initial mount time, overlayfs will refuse to mount, as overlayfs cannot get a snapshot of the upperdir's errseq that will increment on error until the user calls syncfs. Signed-off-by: Sargun Dhillon <sargun@sargun.me> Suggested-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Fixes: c86243b090bc ("ovl: provide a mount option "volatile"") Cc: stable@vger.kernel.org Reviewed-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-01-08 03:10:43 +03:00
upper_sb = ovl_upper_mnt(ofs)->mnt_sb;
if (!ovl_should_sync(ofs)) {
ofs->errseq = errseq_sample(&upper_sb->s_wb_err);
if (errseq_check(&upper_sb->s_wb_err, ofs->errseq)) {
err = -EIO;
pr_err("Cannot mount volatile when upperdir has an unseen error. Sync upperdir fs to clear state.\n");
goto out_err;
}
}
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
err = ovl_get_workdir(sb, ofs, &upperpath);
if (err)
goto out_err;
if (!ofs->workdir)
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-28 00:05:09 +03:00
sb->s_flags |= SB_RDONLY;
ovl: implement volatile-specific fsync error behaviour Overlayfs's volatile option allows the user to bypass all forced sync calls to the upperdir filesystem. This comes at the cost of safety. We can never ensure that the user's data is intact, but we can make a best effort to expose whether or not the data is likely to be in a bad state. The best way to handle this in the time being is that if an overlayfs's upperdir experiences an error after a volatile mount occurs, that error will be returned on fsync, fdatasync, sync, and syncfs. This is contradictory to the traditional behaviour of VFS which fails the call once, and only raises an error if a subsequent fsync error has occurred, and been raised by the filesystem. One awkward aspect of the patch is that we have to manually set the superblock's errseq_t after the sync_fs callback as opposed to just returning an error from syncfs. This is because the call chain looks something like this: sys_syncfs -> sync_filesystem -> __sync_filesystem -> /* The return value is ignored here sb->s_op->sync_fs(sb) _sync_blockdev /* Where the VFS fetches the error to raise to userspace */ errseq_check_and_advance Because of this we call errseq_set every time the sync_fs callback occurs. Due to the nature of this seen / unseen dichotomy, if the upperdir is an inconsistent state at the initial mount time, overlayfs will refuse to mount, as overlayfs cannot get a snapshot of the upperdir's errseq that will increment on error until the user calls syncfs. Signed-off-by: Sargun Dhillon <sargun@sargun.me> Suggested-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Fixes: c86243b090bc ("ovl: provide a mount option "volatile"") Cc: stable@vger.kernel.org Reviewed-by: Vivek Goyal <vgoyal@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2021-01-08 03:10:43 +03:00
sb->s_stack_depth = upper_sb->s_stack_depth;
sb->s_time_gran = upper_sb->s_time_gran;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
}
oe = ovl_get_lowerstack(sb, splitlower, numlower, ofs, layers);
err = PTR_ERR(oe);
if (IS_ERR(oe))
goto out_err;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
/* If the upper fs is nonexistent, we mark overlayfs r/o too */
if (!ovl_upper_mnt(ofs))
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-28 00:05:09 +03:00
sb->s_flags |= SB_RDONLY;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
ovl: introduce new "uuid=off" option for inodes index feature This replaces uuid with null in overlayfs file handles and thus relaxes uuid checks for overlay index feature. It is only possible in case there is only one filesystem for all the work/upper/lower directories and bare file handles from this backing filesystem are unique. In other case when we have multiple filesystems lets just fallback to "uuid=on" which is and equivalent of how it worked before with all uuid checks. This is needed when overlayfs is/was mounted in a container with index enabled (e.g.: to be able to resolve inotify watch file handles on it to paths in CRIU), and this container is copied and started alongside with the original one. This way the "copy" container can't have the same uuid on the superblock and mounting the overlayfs from it later would fail. That is an example of the problem on top of loop+ext4: dd if=/dev/zero of=loopbackfile.img bs=100M count=10 losetup -fP loopbackfile.img losetup -a #/dev/loop0: [64768]:35 (/loop-test/loopbackfile.img) mkfs.ext4 loopbackfile.img mkdir loop-mp mount -o loop /dev/loop0 loop-mp mkdir loop-mp/{lower,upper,work,merged} mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged umount loop-mp/merged umount loop-mp e2fsck -f /dev/loop0 tune2fs -U random /dev/loop0 mount -o loop /dev/loop0 loop-mp mount -t overlay overlay -oindex=on,lowerdir=loop-mp/lower,\ upperdir=loop-mp/upper,workdir=loop-mp/work loop-mp/merged #mount: /loop-test/loop-mp/merged: #mount(2) system call failed: Stale file handle. If you just change the uuid of the backing filesystem, overlay is not mounting any more. In Virtuozzo we copy container disks (ploops) when create the copy of container and we require fs uuid to be unique for a new container. Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-13 17:59:54 +03:00
if (!ofs->config.uuid && ofs->numfs > 1) {
pr_warn("The uuid=off requires a single fs for lower and upper, falling back to uuid=on.\n");
ofs->config.uuid = true;
}
if (!ovl_force_readonly(ofs) && ofs->config.index) {
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
err = ovl_get_indexdir(sb, ofs, oe, &upperpath);
if (err)
goto out_free_oe;
/* Force r/o mount with no index dir */
ovl: fix oops in ovl_indexdir_cleanup() with nfs_export=on Mounting with nfs_export=on, xfstests overlay/031 triggers a kernel panic since v5.8-rc1 overlayfs updates. overlayfs: orphan index entry (index/00fb1..., ftype=4000, nlink=2) BUG: kernel NULL pointer dereference, address: 0000000000000030 RIP: 0010:ovl_cleanup_and_whiteout+0x28/0x220 [overlay] Bisect point at commit c21c839b8448 ("ovl: whiteout inode sharing") Minimal reproducer: -------------------------------------------------- rm -rf l u w m mkdir -p l u w m mkdir -p l/testdir touch l/testdir/testfile mount -t overlay -o lowerdir=l,upperdir=u,workdir=w,nfs_export=on overlay m echo 1 > m/testdir/testfile umount m rm -rf u/testdir mount -t overlay -o lowerdir=l,upperdir=u,workdir=w,nfs_export=on overlay m umount m -------------------------------------------------- When mount with nfs_export=on, and fail to verify an orphan index, we're cleaning this index from indexdir by calling ovl_cleanup_and_whiteout(). This dereferences ofs->workdir, that was earlier set to NULL. The design was that ovl->workdir will point at ovl->indexdir, but we are assigning ofs->indexdir to ofs->workdir only after ovl_indexdir_cleanup(). There is no reason not to do it sooner, because once we get success from ofs->indexdir = ovl_workdir_create(... there is no turning back. Reported-and-tested-by: Murphy Zhou <jencce.kernel@gmail.com> Fixes: c21c839b8448 ("ovl: whiteout inode sharing") Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-06-21 09:37:59 +03:00
if (!ofs->indexdir)
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-28 00:05:09 +03:00
sb->s_flags |= SB_RDONLY;
}
ovl: detect overlapping layers Overlapping overlay layers are not supported and can cause unexpected behavior, but overlayfs does not currently check or warn about these configurations. User is not supposed to specify the same directory for upper and lower dirs or for different lower layers and user is not supposed to specify directories that are descendants of each other for overlay layers, but that is exactly what this zysbot repro did: https://syzkaller.appspot.com/x/repro.syz?x=12c7a94f400000 Moving layer root directories into other layers while overlayfs is mounted could also result in unexpected behavior. This commit places "traps" in the overlay inode hash table. Those traps are dummy overlay inodes that are hashed by the layers root inodes. On mount, the hash table trap entries are used to verify that overlay layers are not overlapping. While at it, we also verify that overlay layers are not overlapping with directories "in-use" by other overlay instances as upperdir/workdir. On lookup, the trap entries are used to verify that overlay layers root inodes have not been moved into other layers after mount. Some examples: $ ./run --ov --samefs -s ... ( mkdir -p base/upper/0/u base/upper/0/w base/lower lower upper mnt mount -o bind base/lower lower mount -o bind base/upper upper mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w) $ umount mnt $ mount -t overlay none mnt ... -o lowerdir=base,upperdir=upper/0/u,workdir=upper/0/w [ 94.434900] overlayfs: overlapping upperdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=upper/0/u,upperdir=upper/0/u,workdir=upper/0/w [ 151.350132] overlayfs: conflicting lowerdir path mount: none is already mounted or mnt busy $ mount -t overlay none mnt ... -o lowerdir=lower:lower/a,upperdir=upper/0/u,workdir=upper/0/w [ 201.205045] overlayfs: overlapping lowerdir path mount: mount overlay on mnt failed: Too many levels of symbolic links $ mount -t overlay none mnt ... -o lowerdir=lower,upperdir=upper/0/u,workdir=upper/0/w $ mv base/upper/0/ base/lower/ $ find mnt/0 mnt/0 mnt/0/w find: 'mnt/0/w/work': Too many levels of symbolic links find: 'mnt/0/u': Too many levels of symbolic links Reported-by: syzbot+9c69c282adc4edd2b540@syzkaller.appspotmail.com Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-04-18 17:42:08 +03:00
err = ovl_check_overlapping_layers(sb, ofs);
if (err)
goto out_free_oe;
/* Show index=off in /proc/mounts for forced r/o mount */
if (!ofs->indexdir) {
ofs->config.index = false;
if (ovl_upper_mnt(ofs) && ofs->config.nfs_export) {
pr_warn("NFS export requires an index dir, falling back to nfs_export=off.\n");
ofs->config.nfs_export = false;
}
}
if (ofs->config.metacopy && ofs->config.nfs_export) {
pr_warn("NFS export is not supported with metadata only copy up, falling back to nfs_export=off.\n");
ofs->config.nfs_export = false;
}
if (ofs->config.nfs_export)
sb->s_export_op = &ovl_export_operations;
/* Never override disk quota limits or use reserved space */
cap_lower(cred->cap_effective, CAP_SYS_RESOURCE);
sb->s_magic = OVERLAYFS_SUPER_MAGIC;
sb->s_xattr = ofs->config.userxattr ? ovl_user_xattr_handlers :
ovl_trusted_xattr_handlers;
sb->s_fs_info = ofs;
sb->s_flags |= SB_POSIXACL;
sb->s_iflags |= SB_I_SKIP_SYNC;
err = -ENOMEM;
root_dentry = ovl_get_root(sb, upperpath.dentry, oe);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
if (!root_dentry)
goto out_free_oe;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
mntput(upperpath.mnt);
kfree(splitlower);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
sb->s_root = root_dentry;
return 0;
out_free_oe:
ovl_entry_stack_free(oe);
kfree(oe);
out_err:
kfree(splitlower);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
path_put(&upperpath);
ovl_free_fs(ofs);
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
out:
return err;
}
static struct dentry *ovl_mount(struct file_system_type *fs_type, int flags,
const char *dev_name, void *raw_data)
{
return mount_nodev(fs_type, flags, raw_data, ovl_fill_super);
}
static struct file_system_type ovl_fs_type = {
.owner = THIS_MODULE,
.name = "overlay",
.fs_flags = FS_USERNS_MOUNT,
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
.mount = ovl_mount,
.kill_sb = kill_anon_super,
};
MODULE_ALIAS_FS("overlay");
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static void ovl_inode_init_once(void *foo)
{
struct ovl_inode *oi = foo;
inode_init_once(&oi->vfs_inode);
}
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
static int __init ovl_init(void)
{
int err;
ovl_inode_cachep = kmem_cache_create("ovl_inode",
sizeof(struct ovl_inode), 0,
(SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD|SLAB_ACCOUNT),
ovl_inode_init_once);
if (ovl_inode_cachep == NULL)
return -ENOMEM;
err = ovl_aio_request_cache_init();
if (!err) {
err = register_filesystem(&ovl_fs_type);
if (!err)
return 0;
ovl_aio_request_cache_destroy();
}
kmem_cache_destroy(ovl_inode_cachep);
return err;
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
}
static void __exit ovl_exit(void)
{
unregister_filesystem(&ovl_fs_type);
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(ovl_inode_cachep);
ovl_aio_request_cache_destroy();
overlay filesystem Overlayfs allows one, usually read-write, directory tree to be overlaid onto another, read-only directory tree. All modifications go to the upper, writable layer. This type of mechanism is most often used for live CDs but there's a wide variety of other uses. The implementation differs from other "union filesystem" implementations in that after a file is opened all operations go directly to the underlying, lower or upper, filesystems. This simplifies the implementation and allows native performance in these cases. The dentry tree is duplicated from the underlying filesystems, this enables fast cached lookups without adding special support into the VFS. This uses slightly more memory than union mounts, but dentries are relatively small. Currently inodes are duplicated as well, but it is a possible optimization to share inodes for non-directories. Opening non directories results in the open forwarded to the underlying filesystem. This makes the behavior very similar to union mounts (with the same limitations vs. fchmod/fchown on O_RDONLY file descriptors). Usage: mount -t overlayfs overlayfs -olowerdir=/lower,upperdir=/upper/upper,workdir=/upper/work /overlay The following cotributions have been folded into this patch: Neil Brown <neilb@suse.de>: - minimal remount support - use correct seek function for directories - initialise is_real before use - rename ovl_fill_cache to ovl_dir_read Felix Fietkau <nbd@openwrt.org>: - fix a deadlock in ovl_dir_read_merged - fix a deadlock in ovl_remove_whiteouts Erez Zadok <ezk@fsl.cs.sunysb.edu> - fix cleanup after WARN_ON Sedat Dilek <sedat.dilek@googlemail.com> - fix up permission to confirm to new API Robin Dong <hao.bigrat@gmail.com> - fix possible leak in ovl_new_inode - create new inode in ovl_link Andy Whitcroft <apw@canonical.com> - switch to __inode_permission() - copy up i_uid/i_gid from the underlying inode AV: - ovl_copy_up_locked() - dput(ERR_PTR(...)) on two failure exits - ovl_clear_empty() - one failure exit forgetting to do unlock_rename(), lack of check for udir being the parent of upper, dropping and regaining the lock on udir (which would require _another_ check for parent being right). - bogus d_drop() in copyup and rename [fix from your mail] - copyup/remove and copyup/rename races [fix from your mail] - ovl_dir_fsync() leaving ERR_PTR() in ->realfile - ovl_entry_free() is pointless - it's just a kfree_rcu() - fold ovl_do_lookup() into ovl_lookup() - manually assigning ->d_op is wrong. Just use ->s_d_op. [patches picked from Miklos]: * copyup/remove and copyup/rename races * bogus d_drop() in copyup and rename Also thanks to the following people for testing and reporting bugs: Jordi Pujol <jordipujolp@gmail.com> Andy Whitcroft <apw@canonical.com> Michal Suchanek <hramrach@centrum.cz> Felix Fietkau <nbd@openwrt.org> Erez Zadok <ezk@fsl.cs.sunysb.edu> Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
2014-10-24 02:14:38 +04:00
}
module_init(ovl_init);
module_exit(ovl_exit);