2007-02-12 11:52:39 +03:00
/*
* drivers / spi / spi_imx . c
*
* Copyright ( C ) 2006 SWAPP
* Andrea Paterniani < a . paterniani @ swapp - eng . it >
*
* Initial version inspired by :
* linux - 2.6 .17 - rc3 - mm1 / drivers / spi / pxa2xx_spi . c
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*/
# include <linux/init.h>
# include <linux/module.h>
# include <linux/device.h>
# include <linux/ioport.h>
# include <linux/errno.h>
# include <linux/interrupt.h>
# include <linux/platform_device.h>
# include <linux/dma-mapping.h>
# include <linux/spi/spi.h>
# include <linux/workqueue.h>
# include <linux/delay.h>
# include <asm/io.h>
# include <asm/irq.h>
# include <asm/hardware.h>
# include <asm/delay.h>
# include <asm/arch/hardware.h>
# include <asm/arch/imx-dma.h>
# include <asm/arch/spi_imx.h>
/*-------------------------------------------------------------------------*/
/* SPI Registers offsets from peripheral base address */
# define SPI_RXDATA (0x00)
# define SPI_TXDATA (0x04)
# define SPI_CONTROL (0x08)
# define SPI_INT_STATUS (0x0C)
# define SPI_TEST (0x10)
# define SPI_PERIOD (0x14)
# define SPI_DMA (0x18)
# define SPI_RESET (0x1C)
/* SPI Control Register Bit Fields & Masks */
# define SPI_CONTROL_BITCOUNT_MASK (0xF) /* Bit Count Mask */
# define SPI_CONTROL_BITCOUNT(n) (((n) - 1) & SPI_CONTROL_BITCOUNT_MASK)
# define SPI_CONTROL_POL (0x1 << 4) /* Clock Polarity Mask */
# define SPI_CONTROL_POL_ACT_HIGH (0x0 << 4) /* Active high pol. (0=idle) */
# define SPI_CONTROL_POL_ACT_LOW (0x1 << 4) /* Active low pol. (1=idle) */
# define SPI_CONTROL_PHA (0x1 << 5) /* Clock Phase Mask */
# define SPI_CONTROL_PHA_0 (0x0 << 5) /* Clock Phase 0 */
# define SPI_CONTROL_PHA_1 (0x1 << 5) /* Clock Phase 1 */
# define SPI_CONTROL_SSCTL (0x1 << 6) /* /SS Waveform Select Mask */
# define SPI_CONTROL_SSCTL_0 (0x0 << 6) / * Master: / SS stays low between SPI burst
Slave : RXFIFO advanced by BIT_COUNT */
# define SPI_CONTROL_SSCTL_1 (0x1 << 6) / * Master: / SS insert pulse between SPI burst
Slave : RXFIFO advanced by / SS rising edge */
# define SPI_CONTROL_SSPOL (0x1 << 7) /* /SS Polarity Select Mask */
# define SPI_CONTROL_SSPOL_ACT_LOW (0x0 << 7) /* /SS Active low */
# define SPI_CONTROL_SSPOL_ACT_HIGH (0x1 << 7) /* /SS Active high */
# define SPI_CONTROL_XCH (0x1 << 8) /* Exchange */
# define SPI_CONTROL_SPIEN (0x1 << 9) /* SPI Module Enable */
# define SPI_CONTROL_MODE (0x1 << 10) /* SPI Mode Select Mask */
# define SPI_CONTROL_MODE_SLAVE (0x0 << 10) /* SPI Mode Slave */
# define SPI_CONTROL_MODE_MASTER (0x1 << 10) /* SPI Mode Master */
# define SPI_CONTROL_DRCTL (0x3 << 11) /* /SPI_RDY Control Mask */
# define SPI_CONTROL_DRCTL_0 (0x0 << 11) /* Ignore /SPI_RDY */
# define SPI_CONTROL_DRCTL_1 (0x1 << 11) /* /SPI_RDY falling edge triggers input */
# define SPI_CONTROL_DRCTL_2 (0x2 << 11) /* /SPI_RDY active low level triggers input */
# define SPI_CONTROL_DATARATE (0x7 << 13) /* Data Rate Mask */
# define SPI_PERCLK2_DIV_MIN (0) /* PERCLK2:4 */
# define SPI_PERCLK2_DIV_MAX (7) /* PERCLK2:512 */
# define SPI_CONTROL_DATARATE_MIN (SPI_PERCLK2_DIV_MAX << 13)
# define SPI_CONTROL_DATARATE_MAX (SPI_PERCLK2_DIV_MIN << 13)
# define SPI_CONTROL_DATARATE_BAD (SPI_CONTROL_DATARATE_MIN + 1)
/* SPI Interrupt/Status Register Bit Fields & Masks */
# define SPI_STATUS_TE (0x1 << 0) /* TXFIFO Empty Status */
# define SPI_STATUS_TH (0x1 << 1) /* TXFIFO Half Status */
# define SPI_STATUS_TF (0x1 << 2) /* TXFIFO Full Status */
# define SPI_STATUS_RR (0x1 << 3) /* RXFIFO Data Ready Status */
# define SPI_STATUS_RH (0x1 << 4) /* RXFIFO Half Status */
# define SPI_STATUS_RF (0x1 << 5) /* RXFIFO Full Status */
# define SPI_STATUS_RO (0x1 << 6) /* RXFIFO Overflow */
# define SPI_STATUS_BO (0x1 << 7) /* Bit Count Overflow */
# define SPI_STATUS (0xFF) /* SPI Status Mask */
# define SPI_INTEN_TE (0x1 << 8) /* TXFIFO Empty Interrupt Enable */
# define SPI_INTEN_TH (0x1 << 9) /* TXFIFO Half Interrupt Enable */
# define SPI_INTEN_TF (0x1 << 10) /* TXFIFO Full Interrupt Enable */
# define SPI_INTEN_RE (0x1 << 11) /* RXFIFO Data Ready Interrupt Enable */
# define SPI_INTEN_RH (0x1 << 12) /* RXFIFO Half Interrupt Enable */
# define SPI_INTEN_RF (0x1 << 13) /* RXFIFO Full Interrupt Enable */
# define SPI_INTEN_RO (0x1 << 14) /* RXFIFO Overflow Interrupt Enable */
# define SPI_INTEN_BO (0x1 << 15) /* Bit Count Overflow Interrupt Enable */
# define SPI_INTEN (0xFF << 8) /* SPI Interrupt Enable Mask */
/* SPI Test Register Bit Fields & Masks */
# define SPI_TEST_TXCNT (0xF << 0) /* TXFIFO Counter */
# define SPI_TEST_RXCNT_LSB (4) /* RXFIFO Counter LSB */
# define SPI_TEST_RXCNT (0xF << 4) /* RXFIFO Counter */
# define SPI_TEST_SSTATUS (0xF << 8) /* State Machine Status */
# define SPI_TEST_LBC (0x1 << 14) /* Loop Back Control */
/* SPI Period Register Bit Fields & Masks */
# define SPI_PERIOD_WAIT (0x7FFF << 0) /* Wait Between Transactions */
# define SPI_PERIOD_MAX_WAIT (0x7FFF) / * Max Wait Between
Transactions */
# define SPI_PERIOD_CSRC (0x1 << 15) /* Period Clock Source Mask */
# define SPI_PERIOD_CSRC_BCLK (0x0 << 15) / * Period Clock Source is
Bit Clock */
# define SPI_PERIOD_CSRC_32768 (0x1 << 15) / * Period Clock Source is
32.768 KHz Clock */
/* SPI DMA Register Bit Fields & Masks */
# define SPI_DMA_RHDMA (0xF << 4) /* RXFIFO Half Status */
# define SPI_DMA_RFDMA (0x1 << 5) /* RXFIFO Full Status */
# define SPI_DMA_TEDMA (0x1 << 6) /* TXFIFO Empty Status */
# define SPI_DMA_THDMA (0x1 << 7) /* TXFIFO Half Status */
# define SPI_DMA_RHDEN (0x1 << 12) /* RXFIFO Half DMA Request Enable */
# define SPI_DMA_RFDEN (0x1 << 13) /* RXFIFO Full DMA Request Enable */
# define SPI_DMA_TEDEN (0x1 << 14) /* TXFIFO Empty DMA Request Enable */
# define SPI_DMA_THDEN (0x1 << 15) /* TXFIFO Half DMA Request Enable */
/* SPI Soft Reset Register Bit Fields & Masks */
# define SPI_RESET_START (0x1) /* Start */
/* Default SPI configuration values */
# define SPI_DEFAULT_CONTROL \
( \
SPI_CONTROL_BITCOUNT ( 16 ) | \
SPI_CONTROL_POL_ACT_HIGH | \
SPI_CONTROL_PHA_0 | \
SPI_CONTROL_SPIEN | \
SPI_CONTROL_SSCTL_1 | \
SPI_CONTROL_MODE_MASTER | \
SPI_CONTROL_DRCTL_0 | \
SPI_CONTROL_DATARATE_MIN \
)
# define SPI_DEFAULT_ENABLE_LOOPBACK (0)
# define SPI_DEFAULT_ENABLE_DMA (0)
# define SPI_DEFAULT_PERIOD_WAIT (8)
/*-------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------*/
/* TX/RX SPI FIFO size */
# define SPI_FIFO_DEPTH (8)
# define SPI_FIFO_BYTE_WIDTH (2)
# define SPI_FIFO_OVERFLOW_MARGIN (2)
/* DMA burst lenght for half full/empty request trigger */
# define SPI_DMA_BLR (SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH / 2)
/* Dummy char output to achieve reads.
Choosing something different from all zeroes may help pattern recogition
for oscilloscope analysis , but may break some drivers . */
# define SPI_DUMMY_u8 0
# define SPI_DUMMY_u16 ((SPI_DUMMY_u8 << 8) | SPI_DUMMY_u8)
# define SPI_DUMMY_u32 ((SPI_DUMMY_u16 << 16) | SPI_DUMMY_u16)
/**
* Macro to change a u32 field :
* @ r : register to edit
* @ m : bit mask
* @ v : new value for the field correctly bit - alligned
*/
# define u32_EDIT(r, m, v) r = (r & ~(m)) | (v)
/* Message state */
# define START_STATE ((void*)0)
# define RUNNING_STATE ((void*)1)
# define DONE_STATE ((void*)2)
# define ERROR_STATE ((void*)-1)
/* Queue state */
# define QUEUE_RUNNING (0)
# define QUEUE_STOPPED (1)
# define IS_DMA_ALIGNED(x) (((u32)(x) & 0x03) == 0)
/*-------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------*/
/* Driver data structs */
/* Context */
struct driver_data {
/* Driver model hookup */
struct platform_device * pdev ;
/* SPI framework hookup */
struct spi_master * master ;
/* IMX hookup */
struct spi_imx_master * master_info ;
/* Memory resources and SPI regs virtual address */
struct resource * ioarea ;
void __iomem * regs ;
/* SPI RX_DATA physical address */
dma_addr_t rd_data_phys ;
/* Driver message queue */
struct workqueue_struct * workqueue ;
struct work_struct work ;
spinlock_t lock ;
struct list_head queue ;
int busy ;
int run ;
/* Message Transfer pump */
struct tasklet_struct pump_transfers ;
/* Current message, transfer and state */
struct spi_message * cur_msg ;
struct spi_transfer * cur_transfer ;
struct chip_data * cur_chip ;
/* Rd / Wr buffers pointers */
size_t len ;
void * tx ;
void * tx_end ;
void * rx ;
void * rx_end ;
u8 rd_only ;
u8 n_bytes ;
int cs_change ;
/* Function pointers */
irqreturn_t ( * transfer_handler ) ( struct driver_data * drv_data ) ;
void ( * cs_control ) ( u32 command ) ;
/* DMA setup */
int rx_channel ;
int tx_channel ;
dma_addr_t rx_dma ;
dma_addr_t tx_dma ;
int rx_dma_needs_unmap ;
int tx_dma_needs_unmap ;
size_t tx_map_len ;
u32 dummy_dma_buf ____cacheline_aligned ;
} ;
/* Runtime state */
struct chip_data {
u32 control ;
u32 period ;
u32 test ;
u8 enable_dma : 1 ;
u8 bits_per_word ;
u8 n_bytes ;
u32 max_speed_hz ;
void ( * cs_control ) ( u32 command ) ;
} ;
/*-------------------------------------------------------------------------*/
static void pump_messages ( struct work_struct * work ) ;
static int flush ( struct driver_data * drv_data )
{
unsigned long limit = loops_per_jiffy < < 1 ;
void __iomem * regs = drv_data - > regs ;
volatile u32 d ;
dev_dbg ( & drv_data - > pdev - > dev , " flush \n " ) ;
do {
while ( readl ( regs + SPI_INT_STATUS ) & SPI_STATUS_RR )
d = readl ( regs + SPI_RXDATA ) ;
} while ( ( readl ( regs + SPI_CONTROL ) & SPI_CONTROL_XCH ) & & limit - - ) ;
return limit ;
}
static void restore_state ( struct driver_data * drv_data )
{
void __iomem * regs = drv_data - > regs ;
struct chip_data * chip = drv_data - > cur_chip ;
/* Load chip registers */
dev_dbg ( & drv_data - > pdev - > dev ,
" restore_state \n "
" test = 0x%08X \n "
" control = 0x%08X \n " ,
chip - > test ,
chip - > control ) ;
writel ( chip - > test , regs + SPI_TEST ) ;
writel ( chip - > period , regs + SPI_PERIOD ) ;
writel ( 0 , regs + SPI_INT_STATUS ) ;
writel ( chip - > control , regs + SPI_CONTROL ) ;
}
static void null_cs_control ( u32 command )
{
}
static inline u32 data_to_write ( struct driver_data * drv_data )
{
return ( ( u32 ) ( drv_data - > tx_end - drv_data - > tx ) ) / drv_data - > n_bytes ;
}
static inline u32 data_to_read ( struct driver_data * drv_data )
{
return ( ( u32 ) ( drv_data - > rx_end - drv_data - > rx ) ) / drv_data - > n_bytes ;
}
static int write ( struct driver_data * drv_data )
{
void __iomem * regs = drv_data - > regs ;
void * tx = drv_data - > tx ;
void * tx_end = drv_data - > tx_end ;
u8 n_bytes = drv_data - > n_bytes ;
u32 remaining_writes ;
u32 fifo_avail_space ;
u32 n ;
u16 d ;
/* Compute how many fifo writes to do */
remaining_writes = ( u32 ) ( tx_end - tx ) / n_bytes ;
fifo_avail_space = SPI_FIFO_DEPTH -
( readl ( regs + SPI_TEST ) & SPI_TEST_TXCNT ) ;
if ( drv_data - > rx & & ( fifo_avail_space > SPI_FIFO_OVERFLOW_MARGIN ) )
/* Fix misunderstood receive overflow */
fifo_avail_space - = SPI_FIFO_OVERFLOW_MARGIN ;
n = min ( remaining_writes , fifo_avail_space ) ;
dev_dbg ( & drv_data - > pdev - > dev ,
" write type %s \n "
" remaining writes = %d \n "
" fifo avail space = %d \n "
" fifo writes = %d \n " ,
( n_bytes = = 1 ) ? " u8 " : " u16 " ,
remaining_writes ,
fifo_avail_space ,
n ) ;
if ( n > 0 ) {
/* Fill SPI TXFIFO */
if ( drv_data - > rd_only ) {
tx + = n * n_bytes ;
while ( n - - )
writel ( SPI_DUMMY_u16 , regs + SPI_TXDATA ) ;
} else {
if ( n_bytes = = 1 ) {
while ( n - - ) {
d = * ( u8 * ) tx ;
writel ( d , regs + SPI_TXDATA ) ;
tx + = 1 ;
}
} else {
while ( n - - ) {
d = * ( u16 * ) tx ;
writel ( d , regs + SPI_TXDATA ) ;
tx + = 2 ;
}
}
}
/* Trigger transfer */
writel ( readl ( regs + SPI_CONTROL ) | SPI_CONTROL_XCH ,
regs + SPI_CONTROL ) ;
/* Update tx pointer */
drv_data - > tx = tx ;
}
return ( tx > = tx_end ) ;
}
static int read ( struct driver_data * drv_data )
{
void __iomem * regs = drv_data - > regs ;
void * rx = drv_data - > rx ;
void * rx_end = drv_data - > rx_end ;
u8 n_bytes = drv_data - > n_bytes ;
u32 remaining_reads ;
u32 fifo_rxcnt ;
u32 n ;
u16 d ;
/* Compute how many fifo reads to do */
remaining_reads = ( u32 ) ( rx_end - rx ) / n_bytes ;
fifo_rxcnt = ( readl ( regs + SPI_TEST ) & SPI_TEST_RXCNT ) > >
SPI_TEST_RXCNT_LSB ;
n = min ( remaining_reads , fifo_rxcnt ) ;
dev_dbg ( & drv_data - > pdev - > dev ,
" read type %s \n "
" remaining reads = %d \n "
" fifo rx count = %d \n "
" fifo reads = %d \n " ,
( n_bytes = = 1 ) ? " u8 " : " u16 " ,
remaining_reads ,
fifo_rxcnt ,
n ) ;
if ( n > 0 ) {
/* Read SPI RXFIFO */
if ( n_bytes = = 1 ) {
while ( n - - ) {
d = readl ( regs + SPI_RXDATA ) ;
* ( ( u8 * ) rx ) = d ;
rx + = 1 ;
}
} else {
while ( n - - ) {
d = readl ( regs + SPI_RXDATA ) ;
* ( ( u16 * ) rx ) = d ;
rx + = 2 ;
}
}
/* Update rx pointer */
drv_data - > rx = rx ;
}
return ( rx > = rx_end ) ;
}
static void * next_transfer ( struct driver_data * drv_data )
{
struct spi_message * msg = drv_data - > cur_msg ;
struct spi_transfer * trans = drv_data - > cur_transfer ;
/* Move to next transfer */
if ( trans - > transfer_list . next ! = & msg - > transfers ) {
drv_data - > cur_transfer =
list_entry ( trans - > transfer_list . next ,
struct spi_transfer ,
transfer_list ) ;
return RUNNING_STATE ;
}
return DONE_STATE ;
}
static int map_dma_buffers ( struct driver_data * drv_data )
{
struct spi_message * msg ;
struct device * dev ;
void * buf ;
drv_data - > rx_dma_needs_unmap = 0 ;
drv_data - > tx_dma_needs_unmap = 0 ;
if ( ! drv_data - > master_info - > enable_dma | |
! drv_data - > cur_chip - > enable_dma )
return - 1 ;
msg = drv_data - > cur_msg ;
dev = & msg - > spi - > dev ;
if ( msg - > is_dma_mapped ) {
if ( drv_data - > tx_dma )
/* The caller provided at least dma and cpu virtual
address for write ; pump_transfers ( ) will consider the
transfer as write only if cpu rx virtual address is
NULL */
return 0 ;
if ( drv_data - > rx_dma ) {
/* The caller provided dma and cpu virtual address to
performe read only transfer - - >
use drv_data - > dummy_dma_buf for dummy writes to
achive reads */
buf = & drv_data - > dummy_dma_buf ;
drv_data - > tx_map_len = sizeof ( drv_data - > dummy_dma_buf ) ;
drv_data - > tx_dma = dma_map_single ( dev ,
buf ,
drv_data - > tx_map_len ,
DMA_TO_DEVICE ) ;
if ( dma_mapping_error ( drv_data - > tx_dma ) )
return - 1 ;
drv_data - > tx_dma_needs_unmap = 1 ;
/* Flags transfer as rd_only for pump_transfers() DMA
regs programming ( should be redundant ) */
drv_data - > tx = NULL ;
return 0 ;
}
}
if ( ! IS_DMA_ALIGNED ( drv_data - > rx ) | | ! IS_DMA_ALIGNED ( drv_data - > tx ) )
return - 1 ;
/* NULL rx means write-only transfer and no map needed
since rx DMA will not be used */
if ( drv_data - > rx ) {
buf = drv_data - > rx ;
drv_data - > rx_dma = dma_map_single (
dev ,
buf ,
drv_data - > len ,
DMA_FROM_DEVICE ) ;
if ( dma_mapping_error ( drv_data - > rx_dma ) )
return - 1 ;
drv_data - > rx_dma_needs_unmap = 1 ;
}
if ( drv_data - > tx = = NULL ) {
/* Read only message --> use drv_data->dummy_dma_buf for dummy
writes to achive reads */
buf = & drv_data - > dummy_dma_buf ;
drv_data - > tx_map_len = sizeof ( drv_data - > dummy_dma_buf ) ;
} else {
buf = drv_data - > tx ;
drv_data - > tx_map_len = drv_data - > len ;
}
drv_data - > tx_dma = dma_map_single ( dev ,
buf ,
drv_data - > tx_map_len ,
DMA_TO_DEVICE ) ;
if ( dma_mapping_error ( drv_data - > tx_dma ) ) {
if ( drv_data - > rx_dma ) {
dma_unmap_single ( dev ,
drv_data - > rx_dma ,
drv_data - > len ,
DMA_FROM_DEVICE ) ;
drv_data - > rx_dma_needs_unmap = 0 ;
}
return - 1 ;
}
drv_data - > tx_dma_needs_unmap = 1 ;
return 0 ;
}
static void unmap_dma_buffers ( struct driver_data * drv_data )
{
struct spi_message * msg = drv_data - > cur_msg ;
struct device * dev = & msg - > spi - > dev ;
if ( drv_data - > rx_dma_needs_unmap ) {
dma_unmap_single ( dev ,
drv_data - > rx_dma ,
drv_data - > len ,
DMA_FROM_DEVICE ) ;
drv_data - > rx_dma_needs_unmap = 0 ;
}
if ( drv_data - > tx_dma_needs_unmap ) {
dma_unmap_single ( dev ,
drv_data - > tx_dma ,
drv_data - > tx_map_len ,
DMA_TO_DEVICE ) ;
drv_data - > tx_dma_needs_unmap = 0 ;
}
}
/* Caller already set message->status (dma is already blocked) */
static void giveback ( struct spi_message * message , struct driver_data * drv_data )
{
void __iomem * regs = drv_data - > regs ;
/* Bring SPI to sleep; restore_state() and pump_transfer()
will do new setup */
writel ( 0 , regs + SPI_INT_STATUS ) ;
writel ( 0 , regs + SPI_DMA ) ;
drv_data - > cs_control ( SPI_CS_DEASSERT ) ;
message - > state = NULL ;
if ( message - > complete )
message - > complete ( message - > context ) ;
drv_data - > cur_msg = NULL ;
drv_data - > cur_transfer = NULL ;
drv_data - > cur_chip = NULL ;
queue_work ( drv_data - > workqueue , & drv_data - > work ) ;
}
static void dma_err_handler ( int channel , void * data , int errcode )
{
struct driver_data * drv_data = data ;
struct spi_message * msg = drv_data - > cur_msg ;
dev_dbg ( & drv_data - > pdev - > dev , " dma_err_handler \n " ) ;
/* Disable both rx and tx dma channels */
imx_dma_disable ( drv_data - > rx_channel ) ;
imx_dma_disable ( drv_data - > tx_channel ) ;
if ( flush ( drv_data ) = = 0 )
dev_err ( & drv_data - > pdev - > dev ,
" dma_err_handler - flush failed \n " ) ;
unmap_dma_buffers ( drv_data ) ;
msg - > state = ERROR_STATE ;
tasklet_schedule ( & drv_data - > pump_transfers ) ;
}
static void dma_tx_handler ( int channel , void * data )
{
struct driver_data * drv_data = data ;
dev_dbg ( & drv_data - > pdev - > dev , " dma_tx_handler \n " ) ;
imx_dma_disable ( channel ) ;
/* Now waits for TX FIFO empty */
writel ( readl ( drv_data - > regs + SPI_INT_STATUS ) | SPI_INTEN_TE ,
drv_data - > regs + SPI_INT_STATUS ) ;
}
static irqreturn_t dma_transfer ( struct driver_data * drv_data )
{
u32 status ;
struct spi_message * msg = drv_data - > cur_msg ;
void __iomem * regs = drv_data - > regs ;
unsigned long limit ;
status = readl ( regs + SPI_INT_STATUS ) ;
if ( ( status & SPI_INTEN_RO ) & & ( status & SPI_STATUS_RO ) ) {
writel ( status & ~ SPI_INTEN , regs + SPI_INT_STATUS ) ;
imx_dma_disable ( drv_data - > rx_channel ) ;
unmap_dma_buffers ( drv_data ) ;
if ( flush ( drv_data ) = = 0 )
dev_err ( & drv_data - > pdev - > dev ,
" dma_transfer - flush failed \n " ) ;
dev_warn ( & drv_data - > pdev - > dev ,
" dma_transfer - fifo overun \n " ) ;
msg - > state = ERROR_STATE ;
tasklet_schedule ( & drv_data - > pump_transfers ) ;
return IRQ_HANDLED ;
}
if ( status & SPI_STATUS_TE ) {
writel ( status & ~ SPI_INTEN_TE , regs + SPI_INT_STATUS ) ;
if ( drv_data - > rx ) {
/* Wait end of transfer before read trailing data */
limit = loops_per_jiffy < < 1 ;
while ( ( readl ( regs + SPI_CONTROL ) & SPI_CONTROL_XCH ) & &
limit - - ) ;
if ( limit = = 0 )
dev_err ( & drv_data - > pdev - > dev ,
" dma_transfer - end of tx failed \n " ) ;
else
dev_dbg ( & drv_data - > pdev - > dev ,
" dma_transfer - end of tx \n " ) ;
imx_dma_disable ( drv_data - > rx_channel ) ;
unmap_dma_buffers ( drv_data ) ;
/* Calculate number of trailing data and read them */
dev_dbg ( & drv_data - > pdev - > dev ,
" dma_transfer - test = 0x%08X \n " ,
readl ( regs + SPI_TEST ) ) ;
drv_data - > rx = drv_data - > rx_end -
( ( readl ( regs + SPI_TEST ) &
SPI_TEST_RXCNT ) > >
SPI_TEST_RXCNT_LSB ) * drv_data - > n_bytes ;
read ( drv_data ) ;
} else {
/* Write only transfer */
unmap_dma_buffers ( drv_data ) ;
if ( flush ( drv_data ) = = 0 )
dev_err ( & drv_data - > pdev - > dev ,
" dma_transfer - flush failed \n " ) ;
}
/* End of transfer, update total byte transfered */
msg - > actual_length + = drv_data - > len ;
/* Release chip select if requested, transfer delays are
handled in pump_transfers ( ) */
if ( drv_data - > cs_change )
drv_data - > cs_control ( SPI_CS_DEASSERT ) ;
/* Move to next transfer */
msg - > state = next_transfer ( drv_data ) ;
/* Schedule transfer tasklet */
tasklet_schedule ( & drv_data - > pump_transfers ) ;
return IRQ_HANDLED ;
}
/* Opps problem detected */
return IRQ_NONE ;
}
static irqreturn_t interrupt_wronly_transfer ( struct driver_data * drv_data )
{
struct spi_message * msg = drv_data - > cur_msg ;
void __iomem * regs = drv_data - > regs ;
u32 status ;
irqreturn_t handled = IRQ_NONE ;
status = readl ( regs + SPI_INT_STATUS ) ;
while ( status & SPI_STATUS_TH ) {
dev_dbg ( & drv_data - > pdev - > dev ,
" interrupt_wronly_transfer - status = 0x%08X \n " , status ) ;
/* Pump data */
if ( write ( drv_data ) ) {
writel ( readl ( regs + SPI_INT_STATUS ) & ~ SPI_INTEN ,
regs + SPI_INT_STATUS ) ;
dev_dbg ( & drv_data - > pdev - > dev ,
" interrupt_wronly_transfer - end of tx \n " ) ;
if ( flush ( drv_data ) = = 0 )
dev_err ( & drv_data - > pdev - > dev ,
" interrupt_wronly_transfer - "
" flush failed \n " ) ;
/* End of transfer, update total byte transfered */
msg - > actual_length + = drv_data - > len ;
/* Release chip select if requested, transfer delays are
handled in pump_transfers */
if ( drv_data - > cs_change )
drv_data - > cs_control ( SPI_CS_DEASSERT ) ;
/* Move to next transfer */
msg - > state = next_transfer ( drv_data ) ;
/* Schedule transfer tasklet */
tasklet_schedule ( & drv_data - > pump_transfers ) ;
return IRQ_HANDLED ;
}
status = readl ( regs + SPI_INT_STATUS ) ;
/* We did something */
handled = IRQ_HANDLED ;
}
return handled ;
}
static irqreturn_t interrupt_transfer ( struct driver_data * drv_data )
{
struct spi_message * msg = drv_data - > cur_msg ;
void __iomem * regs = drv_data - > regs ;
u32 status ;
irqreturn_t handled = IRQ_NONE ;
unsigned long limit ;
status = readl ( regs + SPI_INT_STATUS ) ;
while ( status & ( SPI_STATUS_TH | SPI_STATUS_RO ) ) {
dev_dbg ( & drv_data - > pdev - > dev ,
" interrupt_transfer - status = 0x%08X \n " , status ) ;
if ( status & SPI_STATUS_RO ) {
writel ( readl ( regs + SPI_INT_STATUS ) & ~ SPI_INTEN ,
regs + SPI_INT_STATUS ) ;
dev_warn ( & drv_data - > pdev - > dev ,
" interrupt_transfer - fifo overun \n "
" data not yet written = %d \n "
" data not yet read = %d \n " ,
data_to_write ( drv_data ) ,
data_to_read ( drv_data ) ) ;
if ( flush ( drv_data ) = = 0 )
dev_err ( & drv_data - > pdev - > dev ,
" interrupt_transfer - flush failed \n " ) ;
msg - > state = ERROR_STATE ;
tasklet_schedule ( & drv_data - > pump_transfers ) ;
return IRQ_HANDLED ;
}
/* Pump data */
read ( drv_data ) ;
if ( write ( drv_data ) ) {
writel ( readl ( regs + SPI_INT_STATUS ) & ~ SPI_INTEN ,
regs + SPI_INT_STATUS ) ;
dev_dbg ( & drv_data - > pdev - > dev ,
" interrupt_transfer - end of tx \n " ) ;
/* Read trailing bytes */
limit = loops_per_jiffy < < 1 ;
while ( ( read ( drv_data ) = = 0 ) & & limit - - ) ;
if ( limit = = 0 )
dev_err ( & drv_data - > pdev - > dev ,
" interrupt_transfer - "
" trailing byte read failed \n " ) ;
else
dev_dbg ( & drv_data - > pdev - > dev ,
" interrupt_transfer - end of rx \n " ) ;
/* End of transfer, update total byte transfered */
msg - > actual_length + = drv_data - > len ;
/* Release chip select if requested, transfer delays are
handled in pump_transfers */
if ( drv_data - > cs_change )
drv_data - > cs_control ( SPI_CS_DEASSERT ) ;
/* Move to next transfer */
msg - > state = next_transfer ( drv_data ) ;
/* Schedule transfer tasklet */
tasklet_schedule ( & drv_data - > pump_transfers ) ;
return IRQ_HANDLED ;
}
status = readl ( regs + SPI_INT_STATUS ) ;
/* We did something */
handled = IRQ_HANDLED ;
}
return handled ;
}
static irqreturn_t spi_int ( int irq , void * dev_id )
{
struct driver_data * drv_data = ( struct driver_data * ) dev_id ;
if ( ! drv_data - > cur_msg ) {
dev_err ( & drv_data - > pdev - > dev ,
" spi_int - bad message state \n " ) ;
/* Never fail */
return IRQ_HANDLED ;
}
return drv_data - > transfer_handler ( drv_data ) ;
}
static inline u32 spi_speed_hz ( u32 data_rate )
{
return imx_get_perclk2 ( ) / ( 4 < < ( ( data_rate ) > > 13 ) ) ;
}
static u32 spi_data_rate ( u32 speed_hz )
{
u32 div ;
u32 quantized_hz = imx_get_perclk2 ( ) > > 2 ;
for ( div = SPI_PERCLK2_DIV_MIN ;
div < = SPI_PERCLK2_DIV_MAX ;
div + + , quantized_hz > > = 1 ) {
if ( quantized_hz < = speed_hz )
/* Max available speed LEQ required speed */
return div < < 13 ;
}
return SPI_CONTROL_DATARATE_BAD ;
}
static void pump_transfers ( unsigned long data )
{
struct driver_data * drv_data = ( struct driver_data * ) data ;
struct spi_message * message ;
struct spi_transfer * transfer , * previous ;
struct chip_data * chip ;
void __iomem * regs ;
u32 tmp , control ;
dev_dbg ( & drv_data - > pdev - > dev , " pump_transfer \n " ) ;
message = drv_data - > cur_msg ;
/* Handle for abort */
if ( message - > state = = ERROR_STATE ) {
message - > status = - EIO ;
giveback ( message , drv_data ) ;
return ;
}
/* Handle end of message */
if ( message - > state = = DONE_STATE ) {
message - > status = 0 ;
giveback ( message , drv_data ) ;
return ;
}
chip = drv_data - > cur_chip ;
/* Delay if requested at end of transfer*/
transfer = drv_data - > cur_transfer ;
if ( message - > state = = RUNNING_STATE ) {
previous = list_entry ( transfer - > transfer_list . prev ,
struct spi_transfer ,
transfer_list ) ;
if ( previous - > delay_usecs )
udelay ( previous - > delay_usecs ) ;
} else {
/* START_STATE */
message - > state = RUNNING_STATE ;
drv_data - > cs_control = chip - > cs_control ;
}
transfer = drv_data - > cur_transfer ;
drv_data - > tx = ( void * ) transfer - > tx_buf ;
drv_data - > tx_end = drv_data - > tx + transfer - > len ;
drv_data - > rx = transfer - > rx_buf ;
drv_data - > rx_end = drv_data - > rx + transfer - > len ;
drv_data - > rx_dma = transfer - > rx_dma ;
drv_data - > tx_dma = transfer - > tx_dma ;
drv_data - > len = transfer - > len ;
drv_data - > cs_change = transfer - > cs_change ;
drv_data - > rd_only = ( drv_data - > tx = = NULL ) ;
regs = drv_data - > regs ;
control = readl ( regs + SPI_CONTROL ) ;
/* Bits per word setup */
tmp = transfer - > bits_per_word ;
if ( tmp = = 0 ) {
/* Use device setup */
tmp = chip - > bits_per_word ;
drv_data - > n_bytes = chip - > n_bytes ;
} else
/* Use per-transfer setup */
drv_data - > n_bytes = ( tmp < = 8 ) ? 1 : 2 ;
u32_EDIT ( control , SPI_CONTROL_BITCOUNT_MASK , tmp - 1 ) ;
/* Speed setup (surely valid because already checked) */
tmp = transfer - > speed_hz ;
if ( tmp = = 0 )
tmp = chip - > max_speed_hz ;
tmp = spi_data_rate ( tmp ) ;
u32_EDIT ( control , SPI_CONTROL_DATARATE , tmp ) ;
writel ( control , regs + SPI_CONTROL ) ;
/* Assert device chip-select */
drv_data - > cs_control ( SPI_CS_ASSERT ) ;
/* DMA cannot read/write SPI FIFOs other than 16 bits at a time; hence
if bits_per_word is less or equal 8 PIO transfers are performed .
Moreover DMA is convinient for transfer length bigger than FIFOs
byte size . */
if ( ( drv_data - > n_bytes = = 2 ) & &
( drv_data - > len > SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH ) & &
( map_dma_buffers ( drv_data ) = = 0 ) ) {
dev_dbg ( & drv_data - > pdev - > dev ,
" pump dma transfer \n "
" tx = %p \n "
" tx_dma = %08X \n "
" rx = %p \n "
" rx_dma = %08X \n "
" len = %d \n " ,
drv_data - > tx ,
( unsigned int ) drv_data - > tx_dma ,
drv_data - > rx ,
( unsigned int ) drv_data - > rx_dma ,
drv_data - > len ) ;
/* Ensure we have the correct interrupt handler */
drv_data - > transfer_handler = dma_transfer ;
/* Trigger transfer */
writel ( readl ( regs + SPI_CONTROL ) | SPI_CONTROL_XCH ,
regs + SPI_CONTROL ) ;
/* Setup tx DMA */
if ( drv_data - > tx )
/* Linear source address */
CCR ( drv_data - > tx_channel ) =
CCR_DMOD_FIFO |
CCR_SMOD_LINEAR |
CCR_SSIZ_32 | CCR_DSIZ_16 |
CCR_REN ;
else
/* Read only transfer -> fixed source address for
dummy write to achive read */
CCR ( drv_data - > tx_channel ) =
CCR_DMOD_FIFO |
CCR_SMOD_FIFO |
CCR_SSIZ_32 | CCR_DSIZ_16 |
CCR_REN ;
imx_dma_setup_single (
drv_data - > tx_channel ,
drv_data - > tx_dma ,
drv_data - > len ,
drv_data - > rd_data_phys + 4 ,
DMA_MODE_WRITE ) ;
if ( drv_data - > rx ) {
/* Setup rx DMA for linear destination address */
CCR ( drv_data - > rx_channel ) =
CCR_DMOD_LINEAR |
CCR_SMOD_FIFO |
CCR_DSIZ_32 | CCR_SSIZ_16 |
CCR_REN ;
imx_dma_setup_single (
drv_data - > rx_channel ,
drv_data - > rx_dma ,
drv_data - > len ,
drv_data - > rd_data_phys ,
DMA_MODE_READ ) ;
imx_dma_enable ( drv_data - > rx_channel ) ;
/* Enable SPI interrupt */
writel ( SPI_INTEN_RO , regs + SPI_INT_STATUS ) ;
/* Set SPI to request DMA service on both
Rx and Tx half fifo watermark */
writel ( SPI_DMA_RHDEN | SPI_DMA_THDEN , regs + SPI_DMA ) ;
} else
/* Write only access -> set SPI to request DMA
service on Tx half fifo watermark */
writel ( SPI_DMA_THDEN , regs + SPI_DMA ) ;
imx_dma_enable ( drv_data - > tx_channel ) ;
} else {
dev_dbg ( & drv_data - > pdev - > dev ,
" pump pio transfer \n "
" tx = %p \n "
" rx = %p \n "
" len = %d \n " ,
drv_data - > tx ,
drv_data - > rx ,
drv_data - > len ) ;
/* Ensure we have the correct interrupt handler */
if ( drv_data - > rx )
drv_data - > transfer_handler = interrupt_transfer ;
else
drv_data - > transfer_handler = interrupt_wronly_transfer ;
/* Enable SPI interrupt */
if ( drv_data - > rx )
writel ( SPI_INTEN_TH | SPI_INTEN_RO ,
regs + SPI_INT_STATUS ) ;
else
writel ( SPI_INTEN_TH , regs + SPI_INT_STATUS ) ;
}
}
static void pump_messages ( struct work_struct * work )
{
struct driver_data * drv_data =
container_of ( work , struct driver_data , work ) ;
unsigned long flags ;
/* Lock queue and check for queue work */
spin_lock_irqsave ( & drv_data - > lock , flags ) ;
if ( list_empty ( & drv_data - > queue ) | | drv_data - > run = = QUEUE_STOPPED ) {
drv_data - > busy = 0 ;
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
return ;
}
/* Make sure we are not already running a message */
if ( drv_data - > cur_msg ) {
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
return ;
}
/* Extract head of queue */
drv_data - > cur_msg = list_entry ( drv_data - > queue . next ,
struct spi_message , queue ) ;
list_del_init ( & drv_data - > cur_msg - > queue ) ;
drv_data - > busy = 1 ;
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
/* Initial message state */
drv_data - > cur_msg - > state = START_STATE ;
drv_data - > cur_transfer = list_entry ( drv_data - > cur_msg - > transfers . next ,
struct spi_transfer ,
transfer_list ) ;
/* Setup the SPI using the per chip configuration */
drv_data - > cur_chip = spi_get_ctldata ( drv_data - > cur_msg - > spi ) ;
restore_state ( drv_data ) ;
/* Mark as busy and launch transfers */
tasklet_schedule ( & drv_data - > pump_transfers ) ;
}
static int transfer ( struct spi_device * spi , struct spi_message * msg )
{
struct driver_data * drv_data = spi_master_get_devdata ( spi - > master ) ;
u32 min_speed_hz , max_speed_hz , tmp ;
struct spi_transfer * trans ;
unsigned long flags ;
msg - > actual_length = 0 ;
/* Per transfer setup check */
min_speed_hz = spi_speed_hz ( SPI_CONTROL_DATARATE_MIN ) ;
max_speed_hz = spi - > max_speed_hz ;
list_for_each_entry ( trans , & msg - > transfers , transfer_list ) {
tmp = trans - > bits_per_word ;
if ( tmp > 16 ) {
dev_err ( & drv_data - > pdev - > dev ,
" message rejected : "
" invalid transfer bits_per_word (%d bits) \n " ,
tmp ) ;
goto msg_rejected ;
}
tmp = trans - > speed_hz ;
if ( tmp ) {
if ( tmp < min_speed_hz ) {
dev_err ( & drv_data - > pdev - > dev ,
" message rejected : "
" device min speed (%d Hz) exceeds "
" required transfer speed (%d Hz) \n " ,
min_speed_hz ,
tmp ) ;
goto msg_rejected ;
} else if ( tmp > max_speed_hz ) {
dev_err ( & drv_data - > pdev - > dev ,
" message rejected : "
" transfer speed (%d Hz) exceeds "
" device max speed (%d Hz) \n " ,
tmp ,
max_speed_hz ) ;
goto msg_rejected ;
}
}
}
/* Message accepted */
msg - > status = - EINPROGRESS ;
msg - > state = START_STATE ;
spin_lock_irqsave ( & drv_data - > lock , flags ) ;
if ( drv_data - > run = = QUEUE_STOPPED ) {
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
return - ESHUTDOWN ;
}
list_add_tail ( & msg - > queue , & drv_data - > queue ) ;
if ( drv_data - > run = = QUEUE_RUNNING & & ! drv_data - > busy )
queue_work ( drv_data - > workqueue , & drv_data - > work ) ;
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
return 0 ;
msg_rejected :
/* Message rejected and not queued */
msg - > status = - EINVAL ;
msg - > state = ERROR_STATE ;
if ( msg - > complete )
msg - > complete ( msg - > context ) ;
return - EINVAL ;
}
/* On first setup bad values must free chip_data memory since will cause
spi_new_device to fail . Bad value setup from protocol driver are simply not
applied and notified to the calling driver . */
static int setup ( struct spi_device * spi )
{
struct spi_imx_chip * chip_info ;
struct chip_data * chip ;
int first_setup = 0 ;
u32 tmp ;
int status = 0 ;
/* Get controller data */
chip_info = spi - > controller_data ;
/* Get controller_state */
chip = spi_get_ctldata ( spi ) ;
if ( chip = = NULL ) {
first_setup = 1 ;
chip = kzalloc ( sizeof ( struct chip_data ) , GFP_KERNEL ) ;
if ( ! chip ) {
dev_err ( & spi - > dev ,
" setup - cannot allocate controller state " ) ;
return - ENOMEM ;
}
chip - > control = SPI_DEFAULT_CONTROL ;
if ( chip_info = = NULL ) {
/* spi_board_info.controller_data not is supplied */
chip_info = kzalloc ( sizeof ( struct spi_imx_chip ) ,
GFP_KERNEL ) ;
if ( ! chip_info ) {
dev_err ( & spi - > dev ,
" setup - "
" cannot allocate controller data " ) ;
status = - ENOMEM ;
goto err_first_setup ;
}
/* Set controller data default value */
chip_info - > enable_loopback =
SPI_DEFAULT_ENABLE_LOOPBACK ;
chip_info - > enable_dma = SPI_DEFAULT_ENABLE_DMA ;
chip_info - > ins_ss_pulse = 1 ;
chip_info - > bclk_wait = SPI_DEFAULT_PERIOD_WAIT ;
chip_info - > cs_control = null_cs_control ;
}
}
/* Now set controller state based on controller data */
if ( first_setup ) {
/* SPI loopback */
if ( chip_info - > enable_loopback )
chip - > test = SPI_TEST_LBC ;
else
chip - > test = 0 ;
/* SPI dma driven */
chip - > enable_dma = chip_info - > enable_dma ;
/* SPI /SS pulse between spi burst */
if ( chip_info - > ins_ss_pulse )
u32_EDIT ( chip - > control ,
SPI_CONTROL_SSCTL , SPI_CONTROL_SSCTL_1 ) ;
else
u32_EDIT ( chip - > control ,
SPI_CONTROL_SSCTL , SPI_CONTROL_SSCTL_0 ) ;
/* SPI bclk waits between each bits_per_word spi burst */
if ( chip_info - > bclk_wait > SPI_PERIOD_MAX_WAIT ) {
dev_err ( & spi - > dev ,
" setup - "
" bclk_wait exceeds max allowed (%d) \n " ,
SPI_PERIOD_MAX_WAIT ) ;
goto err_first_setup ;
}
chip - > period = SPI_PERIOD_CSRC_BCLK |
( chip_info - > bclk_wait & SPI_PERIOD_WAIT ) ;
}
/* SPI mode */
tmp = spi - > mode ;
if ( tmp & SPI_LSB_FIRST ) {
status = - EINVAL ;
if ( first_setup ) {
dev_err ( & spi - > dev ,
" setup - "
" HW doesn't support LSB first transfer \n " ) ;
goto err_first_setup ;
} else {
dev_err ( & spi - > dev ,
" setup - "
" HW doesn't support LSB first transfer, "
" default to MSB first \n " ) ;
spi - > mode & = ~ SPI_LSB_FIRST ;
}
}
if ( tmp & SPI_CS_HIGH ) {
u32_EDIT ( chip - > control ,
SPI_CONTROL_SSPOL , SPI_CONTROL_SSPOL_ACT_HIGH ) ;
}
switch ( tmp & SPI_MODE_3 ) {
case SPI_MODE_0 :
tmp = 0 ;
break ;
case SPI_MODE_1 :
tmp = SPI_CONTROL_PHA_1 ;
break ;
case SPI_MODE_2 :
tmp = SPI_CONTROL_POL_ACT_LOW ;
break ;
default :
/* SPI_MODE_3 */
tmp = SPI_CONTROL_PHA_1 | SPI_CONTROL_POL_ACT_LOW ;
break ;
}
u32_EDIT ( chip - > control , SPI_CONTROL_POL | SPI_CONTROL_PHA , tmp ) ;
/* SPI word width */
tmp = spi - > bits_per_word ;
if ( tmp = = 0 ) {
tmp = 8 ;
spi - > bits_per_word = 8 ;
} else if ( tmp > 16 ) {
status = - EINVAL ;
dev_err ( & spi - > dev ,
" setup - "
" invalid bits_per_word (%d) \n " ,
tmp ) ;
if ( first_setup )
goto err_first_setup ;
else {
/* Undo setup using chip as backup copy */
tmp = chip - > bits_per_word ;
spi - > bits_per_word = tmp ;
}
}
chip - > bits_per_word = tmp ;
u32_EDIT ( chip - > control , SPI_CONTROL_BITCOUNT_MASK , tmp - 1 ) ;
chip - > n_bytes = ( tmp < = 8 ) ? 1 : 2 ;
/* SPI datarate */
tmp = spi_data_rate ( spi - > max_speed_hz ) ;
if ( tmp = = SPI_CONTROL_DATARATE_BAD ) {
status = - EINVAL ;
dev_err ( & spi - > dev ,
" setup - "
" HW min speed (%d Hz) exceeds required "
" max speed (%d Hz) \n " ,
spi_speed_hz ( SPI_CONTROL_DATARATE_MIN ) ,
spi - > max_speed_hz ) ;
if ( first_setup )
goto err_first_setup ;
else
/* Undo setup using chip as backup copy */
spi - > max_speed_hz = chip - > max_speed_hz ;
} else {
u32_EDIT ( chip - > control , SPI_CONTROL_DATARATE , tmp ) ;
/* Actual rounded max_speed_hz */
tmp = spi_speed_hz ( tmp ) ;
spi - > max_speed_hz = tmp ;
chip - > max_speed_hz = tmp ;
}
/* SPI chip-select management */
if ( chip_info - > cs_control )
chip - > cs_control = chip_info - > cs_control ;
else
chip - > cs_control = null_cs_control ;
/* Save controller_state */
spi_set_ctldata ( spi , chip ) ;
/* Summary */
dev_dbg ( & spi - > dev ,
" setup succeded \n "
" loopback enable = %s \n "
" dma enable = %s \n "
" insert /ss pulse = %s \n "
" period wait = %d \n "
" mode = %d \n "
" bits per word = %d \n "
" min speed = %d Hz \n "
" rounded max speed = %d Hz \n " ,
chip - > test & SPI_TEST_LBC ? " Yes " : " No " ,
chip - > enable_dma ? " Yes " : " No " ,
chip - > control & SPI_CONTROL_SSCTL ? " Yes " : " No " ,
chip - > period & SPI_PERIOD_WAIT ,
spi - > mode ,
spi - > bits_per_word ,
spi_speed_hz ( SPI_CONTROL_DATARATE_MIN ) ,
spi - > max_speed_hz ) ;
err_first_setup :
kfree ( chip ) ;
return status ;
}
2007-02-21 00:58:19 +03:00
static void cleanup ( struct spi_device * spi )
2007-02-12 11:52:39 +03:00
{
2007-02-21 00:58:19 +03:00
kfree ( spi_get_ctldata ( spi ) ) ;
2007-02-12 11:52:39 +03:00
}
static int init_queue ( struct driver_data * drv_data )
{
INIT_LIST_HEAD ( & drv_data - > queue ) ;
spin_lock_init ( & drv_data - > lock ) ;
drv_data - > run = QUEUE_STOPPED ;
drv_data - > busy = 0 ;
tasklet_init ( & drv_data - > pump_transfers ,
pump_transfers , ( unsigned long ) drv_data ) ;
INIT_WORK ( & drv_data - > work , pump_messages ) ;
drv_data - > workqueue = create_singlethread_workqueue (
drv_data - > master - > cdev . dev - > bus_id ) ;
if ( drv_data - > workqueue = = NULL )
return - EBUSY ;
return 0 ;
}
static int start_queue ( struct driver_data * drv_data )
{
unsigned long flags ;
spin_lock_irqsave ( & drv_data - > lock , flags ) ;
if ( drv_data - > run = = QUEUE_RUNNING | | drv_data - > busy ) {
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
return - EBUSY ;
}
drv_data - > run = QUEUE_RUNNING ;
drv_data - > cur_msg = NULL ;
drv_data - > cur_transfer = NULL ;
drv_data - > cur_chip = NULL ;
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
queue_work ( drv_data - > workqueue , & drv_data - > work ) ;
return 0 ;
}
static int stop_queue ( struct driver_data * drv_data )
{
unsigned long flags ;
unsigned limit = 500 ;
int status = 0 ;
spin_lock_irqsave ( & drv_data - > lock , flags ) ;
/* This is a bit lame, but is optimized for the common execution path.
* A wait_queue on the drv_data - > busy could be used , but then the common
* execution path ( pump_messages ) would be required to call wake_up or
* friends on every SPI message . Do this instead */
drv_data - > run = QUEUE_STOPPED ;
while ( ! list_empty ( & drv_data - > queue ) & & drv_data - > busy & & limit - - ) {
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
msleep ( 10 ) ;
spin_lock_irqsave ( & drv_data - > lock , flags ) ;
}
if ( ! list_empty ( & drv_data - > queue ) | | drv_data - > busy )
status = - EBUSY ;
spin_unlock_irqrestore ( & drv_data - > lock , flags ) ;
return status ;
}
static int destroy_queue ( struct driver_data * drv_data )
{
int status ;
status = stop_queue ( drv_data ) ;
if ( status ! = 0 )
return status ;
if ( drv_data - > workqueue )
destroy_workqueue ( drv_data - > workqueue ) ;
return 0 ;
}
static int spi_imx_probe ( struct platform_device * pdev )
{
struct device * dev = & pdev - > dev ;
struct spi_imx_master * platform_info ;
struct spi_master * master ;
struct driver_data * drv_data = NULL ;
struct resource * res ;
int irq , status = 0 ;
platform_info = dev - > platform_data ;
if ( platform_info = = NULL ) {
dev_err ( & pdev - > dev , " probe - no platform data supplied \n " ) ;
status = - ENODEV ;
goto err_no_pdata ;
}
/* Allocate master with space for drv_data */
master = spi_alloc_master ( dev , sizeof ( struct driver_data ) ) ;
if ( ! master ) {
dev_err ( & pdev - > dev , " probe - cannot alloc spi_master \n " ) ;
status = - ENOMEM ;
goto err_no_mem ;
}
drv_data = spi_master_get_devdata ( master ) ;
drv_data - > master = master ;
drv_data - > master_info = platform_info ;
drv_data - > pdev = pdev ;
master - > bus_num = pdev - > id ;
master - > num_chipselect = platform_info - > num_chipselect ;
master - > cleanup = cleanup ;
master - > setup = setup ;
master - > transfer = transfer ;
drv_data - > dummy_dma_buf = SPI_DUMMY_u32 ;
/* Find and map resources */
res = platform_get_resource ( pdev , IORESOURCE_MEM , 0 ) ;
if ( ! res ) {
dev_err ( & pdev - > dev , " probe - MEM resources not defined \n " ) ;
status = - ENODEV ;
goto err_no_iores ;
}
drv_data - > ioarea = request_mem_region ( res - > start ,
res - > end - res - > start + 1 ,
pdev - > name ) ;
if ( drv_data - > ioarea = = NULL ) {
dev_err ( & pdev - > dev , " probe - cannot reserve region \n " ) ;
status = - ENXIO ;
goto err_no_iores ;
}
drv_data - > regs = ioremap ( res - > start , res - > end - res - > start + 1 ) ;
if ( drv_data - > regs = = NULL ) {
dev_err ( & pdev - > dev , " probe - cannot map IO \n " ) ;
status = - ENXIO ;
goto err_no_iomap ;
}
drv_data - > rd_data_phys = ( dma_addr_t ) res - > start ;
/* Attach to IRQ */
irq = platform_get_irq ( pdev , 0 ) ;
if ( irq < 0 ) {
dev_err ( & pdev - > dev , " probe - IRQ resource not defined \n " ) ;
status = - ENODEV ;
goto err_no_irqres ;
}
status = request_irq ( irq , spi_int , IRQF_DISABLED , dev - > bus_id , drv_data ) ;
if ( status < 0 ) {
dev_err ( & pdev - > dev , " probe - cannot get IRQ (%d) \n " , status ) ;
goto err_no_irqres ;
}
/* Setup DMA if requested */
drv_data - > tx_channel = - 1 ;
drv_data - > rx_channel = - 1 ;
if ( platform_info - > enable_dma ) {
/* Get rx DMA channel */
status = imx_dma_request_by_prio ( & drv_data - > rx_channel ,
" spi_imx_rx " , DMA_PRIO_HIGH ) ;
if ( status < 0 ) {
dev_err ( dev ,
" probe - problem (%d) requesting rx channel \n " ,
status ) ;
goto err_no_rxdma ;
} else
imx_dma_setup_handlers ( drv_data - > rx_channel , NULL ,
dma_err_handler , drv_data ) ;
/* Get tx DMA channel */
status = imx_dma_request_by_prio ( & drv_data - > tx_channel ,
" spi_imx_tx " , DMA_PRIO_MEDIUM ) ;
if ( status < 0 ) {
dev_err ( dev ,
" probe - problem (%d) requesting tx channel \n " ,
status ) ;
imx_dma_free ( drv_data - > rx_channel ) ;
goto err_no_txdma ;
} else
imx_dma_setup_handlers ( drv_data - > tx_channel ,
dma_tx_handler , dma_err_handler ,
drv_data ) ;
/* Set request source and burst length for allocated channels */
switch ( drv_data - > pdev - > id ) {
case 1 :
/* Using SPI1 */
RSSR ( drv_data - > rx_channel ) = DMA_REQ_SPI1_R ;
RSSR ( drv_data - > tx_channel ) = DMA_REQ_SPI1_T ;
break ;
case 2 :
/* Using SPI2 */
RSSR ( drv_data - > rx_channel ) = DMA_REQ_SPI2_R ;
RSSR ( drv_data - > tx_channel ) = DMA_REQ_SPI2_T ;
break ;
default :
dev_err ( dev , " probe - bad SPI Id \n " ) ;
imx_dma_free ( drv_data - > rx_channel ) ;
imx_dma_free ( drv_data - > tx_channel ) ;
status = - ENODEV ;
goto err_no_devid ;
}
BLR ( drv_data - > rx_channel ) = SPI_DMA_BLR ;
BLR ( drv_data - > tx_channel ) = SPI_DMA_BLR ;
}
/* Load default SPI configuration */
writel ( SPI_RESET_START , drv_data - > regs + SPI_RESET ) ;
writel ( 0 , drv_data - > regs + SPI_RESET ) ;
writel ( SPI_DEFAULT_CONTROL , drv_data - > regs + SPI_CONTROL ) ;
/* Initial and start queue */
status = init_queue ( drv_data ) ;
if ( status ! = 0 ) {
dev_err ( & pdev - > dev , " probe - problem initializing queue \n " ) ;
goto err_init_queue ;
}
status = start_queue ( drv_data ) ;
if ( status ! = 0 ) {
dev_err ( & pdev - > dev , " probe - problem starting queue \n " ) ;
goto err_start_queue ;
}
/* Register with the SPI framework */
platform_set_drvdata ( pdev , drv_data ) ;
status = spi_register_master ( master ) ;
if ( status ! = 0 ) {
dev_err ( & pdev - > dev , " probe - problem registering spi master \n " ) ;
goto err_spi_register ;
}
dev_dbg ( dev , " probe succeded \n " ) ;
return 0 ;
err_init_queue :
err_start_queue :
err_spi_register :
destroy_queue ( drv_data ) ;
err_no_rxdma :
err_no_txdma :
err_no_devid :
free_irq ( irq , drv_data ) ;
err_no_irqres :
iounmap ( drv_data - > regs ) ;
err_no_iomap :
release_resource ( drv_data - > ioarea ) ;
kfree ( drv_data - > ioarea ) ;
err_no_iores :
spi_master_put ( master ) ;
err_no_pdata :
err_no_mem :
return status ;
}
static int __devexit spi_imx_remove ( struct platform_device * pdev )
{
struct driver_data * drv_data = platform_get_drvdata ( pdev ) ;
int irq ;
int status = 0 ;
if ( ! drv_data )
return 0 ;
tasklet_kill ( & drv_data - > pump_transfers ) ;
/* Remove the queue */
status = destroy_queue ( drv_data ) ;
if ( status ! = 0 ) {
dev_err ( & pdev - > dev , " queue remove failed (%d) \n " , status ) ;
return status ;
}
/* Reset SPI */
writel ( SPI_RESET_START , drv_data - > regs + SPI_RESET ) ;
writel ( 0 , drv_data - > regs + SPI_RESET ) ;
/* Release DMA */
if ( drv_data - > master_info - > enable_dma ) {
RSSR ( drv_data - > rx_channel ) = 0 ;
RSSR ( drv_data - > tx_channel ) = 0 ;
imx_dma_free ( drv_data - > tx_channel ) ;
imx_dma_free ( drv_data - > rx_channel ) ;
}
/* Release IRQ */
irq = platform_get_irq ( pdev , 0 ) ;
if ( irq > = 0 )
free_irq ( irq , drv_data ) ;
/* Release map resources */
iounmap ( drv_data - > regs ) ;
release_resource ( drv_data - > ioarea ) ;
kfree ( drv_data - > ioarea ) ;
/* Disconnect from the SPI framework */
spi_unregister_master ( drv_data - > master ) ;
spi_master_put ( drv_data - > master ) ;
/* Prevent double remove */
platform_set_drvdata ( pdev , NULL ) ;
dev_dbg ( & pdev - > dev , " remove succeded \n " ) ;
return 0 ;
}
static void spi_imx_shutdown ( struct platform_device * pdev )
{
struct driver_data * drv_data = platform_get_drvdata ( pdev ) ;
/* Reset SPI */
writel ( SPI_RESET_START , drv_data - > regs + SPI_RESET ) ;
writel ( 0 , drv_data - > regs + SPI_RESET ) ;
dev_dbg ( & pdev - > dev , " shutdown succeded \n " ) ;
}
# ifdef CONFIG_PM
static int suspend_devices ( struct device * dev , void * pm_message )
{
pm_message_t * state = pm_message ;
if ( dev - > power . power_state . event ! = state - > event ) {
dev_warn ( dev , " pm state does not match request \n " ) ;
return - 1 ;
}
return 0 ;
}
static int spi_imx_suspend ( struct platform_device * pdev , pm_message_t state )
{
struct driver_data * drv_data = platform_get_drvdata ( pdev ) ;
int status = 0 ;
status = stop_queue ( drv_data ) ;
if ( status ! = 0 ) {
dev_warn ( & pdev - > dev , " suspend cannot stop queue \n " ) ;
return status ;
}
dev_dbg ( & pdev - > dev , " suspended \n " ) ;
return 0 ;
}
static int spi_imx_resume ( struct platform_device * pdev )
{
struct driver_data * drv_data = platform_get_drvdata ( pdev ) ;
int status = 0 ;
/* Start the queue running */
status = start_queue ( drv_data ) ;
if ( status ! = 0 )
dev_err ( & pdev - > dev , " problem starting queue (%d) \n " , status ) ;
else
dev_dbg ( & pdev - > dev , " resumed \n " ) ;
return status ;
}
# else
# define spi_imx_suspend NULL
# define spi_imx_resume NULL
# endif /* CONFIG_PM */
static struct platform_driver driver = {
. driver = {
. name = " imx-spi " ,
. bus = & platform_bus_type ,
. owner = THIS_MODULE ,
} ,
. probe = spi_imx_probe ,
. remove = __devexit_p ( spi_imx_remove ) ,
. shutdown = spi_imx_shutdown ,
. suspend = spi_imx_suspend ,
. resume = spi_imx_resume ,
} ;
static int __init spi_imx_init ( void )
{
return platform_driver_register ( & driver ) ;
}
module_init ( spi_imx_init ) ;
static void __exit spi_imx_exit ( void )
{
platform_driver_unregister ( & driver ) ;
}
module_exit ( spi_imx_exit ) ;
MODULE_AUTHOR ( " Andrea Paterniani, <a.paterniani@swapp-eng.it> " ) ;
MODULE_DESCRIPTION ( " iMX SPI Contoller Driver " ) ;
MODULE_LICENSE ( " GPL " ) ;