2005-04-16 15:20:36 -07:00
/*
* acpi_osl . c - OS - dependent functions ( $ Revision : 83 $ )
*
* Copyright ( C ) 2000 Andrew Henroid
* Copyright ( C ) 2001 , 2002 Andy Grover < andrew . grover @ intel . com >
* Copyright ( C ) 2001 , 2002 Paul Diefenbaugh < paul . s . diefenbaugh @ intel . com >
*
* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*
* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
*
*/
# include <linux/config.h>
# include <linux/module.h>
# include <linux/kernel.h>
# include <linux/slab.h>
# include <linux/mm.h>
# include <linux/pci.h>
# include <linux/smp_lock.h>
# include <linux/interrupt.h>
# include <linux/kmod.h>
# include <linux/delay.h>
# include <linux/workqueue.h>
# include <linux/nmi.h>
# include <acpi/acpi.h>
# include <asm/io.h>
# include <acpi/acpi_bus.h>
# include <acpi/processor.h>
# include <asm/uaccess.h>
# include <linux/efi.h>
# define _COMPONENT ACPI_OS_SERVICES
2005-08-05 00:44:28 -04:00
ACPI_MODULE_NAME ( " osl " )
2005-04-16 15:20:36 -07:00
# define PREFIX "ACPI: "
2005-08-05 00:44:28 -04:00
struct acpi_os_dpc {
acpi_osd_exec_callback function ;
void * context ;
2005-04-16 15:20:36 -07:00
} ;
# ifdef CONFIG_ACPI_CUSTOM_DSDT
# include CONFIG_ACPI_CUSTOM_DSDT_FILE
# endif
# ifdef ENABLE_DEBUGGER
# include <linux/kdb.h>
/* stuff for debugger support */
int acpi_in_debugger ;
EXPORT_SYMBOL ( acpi_in_debugger ) ;
extern char line_buf [ 80 ] ;
2005-08-05 00:44:28 -04:00
# endif /*ENABLE_DEBUGGER */
2005-04-16 15:20:36 -07:00
2005-08-12 00:31:00 -04:00
int acpi_specific_hotkey_enabled = TRUE ;
2005-03-18 18:03:45 -05:00
EXPORT_SYMBOL ( acpi_specific_hotkey_enabled ) ;
2005-04-16 15:20:36 -07:00
static unsigned int acpi_irq_irq ;
static acpi_osd_handler acpi_irq_handler ;
static void * acpi_irq_context ;
static struct workqueue_struct * kacpid_wq ;
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_initialize ( void )
2005-04-16 15:20:36 -07:00
{
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_initialize1 ( void )
2005-04-16 15:20:36 -07:00
{
/*
* Initialize PCI configuration space access , as we ' ll need to access
* it while walking the namespace ( bus 0 and root bridges w / _BBNs ) .
*/
if ( ! raw_pci_ops ) {
2005-08-05 00:44:28 -04:00
printk ( KERN_ERR PREFIX
" Access to PCI configuration space unavailable \n " ) ;
2005-04-16 15:20:36 -07:00
return AE_NULL_ENTRY ;
}
kacpid_wq = create_singlethread_workqueue ( " kacpid " ) ;
BUG_ON ( ! kacpid_wq ) ;
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_terminate ( void )
2005-04-16 15:20:36 -07:00
{
if ( acpi_irq_handler ) {
acpi_os_remove_interrupt_handler ( acpi_irq_irq ,
acpi_irq_handler ) ;
}
destroy_workqueue ( kacpid_wq ) ;
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
void acpi_os_printf ( const char * fmt , . . . )
2005-04-16 15:20:36 -07:00
{
va_list args ;
va_start ( args , fmt ) ;
acpi_os_vprintf ( fmt , args ) ;
va_end ( args ) ;
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_printf ) ;
2005-08-05 00:44:28 -04:00
void acpi_os_vprintf ( const char * fmt , va_list args )
2005-04-16 15:20:36 -07:00
{
static char buffer [ 512 ] ;
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
vsprintf ( buffer , fmt , args ) ;
# ifdef ENABLE_DEBUGGER
if ( acpi_in_debugger ) {
kdb_printf ( " %s " , buffer ) ;
} else {
printk ( " %s " , buffer ) ;
}
# else
printk ( " %s " , buffer ) ;
# endif
}
2005-08-03 23:46:33 -04:00
extern int acpi_in_resume ;
2005-08-05 00:44:28 -04:00
void * acpi_os_allocate ( acpi_size size )
2005-04-16 15:20:36 -07:00
{
2005-08-03 23:46:33 -04:00
if ( acpi_in_resume )
return kmalloc ( size , GFP_ATOMIC ) ;
else
return kmalloc ( size , GFP_KERNEL ) ;
2005-04-16 15:20:36 -07:00
}
2005-08-05 00:44:28 -04:00
void acpi_os_free ( void * ptr )
2005-04-16 15:20:36 -07:00
{
kfree ( ptr ) ;
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_free ) ;
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_get_root_pointer ( u32 flags , struct acpi_pointer * addr )
2005-04-16 15:20:36 -07:00
{
if ( efi_enabled ) {
addr - > pointer_type = ACPI_PHYSICAL_POINTER ;
if ( efi . acpi20 )
addr - > pointer . physical =
2005-08-05 00:44:28 -04:00
( acpi_physical_address ) virt_to_phys ( efi . acpi20 ) ;
2005-04-16 15:20:36 -07:00
else if ( efi . acpi )
addr - > pointer . physical =
2005-08-05 00:44:28 -04:00
( acpi_physical_address ) virt_to_phys ( efi . acpi ) ;
2005-04-16 15:20:36 -07:00
else {
2005-08-05 00:44:28 -04:00
printk ( KERN_ERR PREFIX
" System description tables not found \n " ) ;
2005-04-16 15:20:36 -07:00
return AE_NOT_FOUND ;
}
} else {
if ( ACPI_FAILURE ( acpi_find_root_pointer ( flags , addr ) ) ) {
2005-08-05 00:44:28 -04:00
printk ( KERN_ERR PREFIX
" System description tables not found \n " ) ;
2005-04-16 15:20:36 -07:00
return AE_NOT_FOUND ;
}
}
return AE_OK ;
}
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_map_memory ( acpi_physical_address phys , acpi_size size ,
void __iomem * * virt )
2005-04-16 15:20:36 -07:00
{
if ( efi_enabled ) {
if ( EFI_MEMORY_WB & efi_mem_attributes ( phys ) ) {
2005-08-05 00:44:28 -04:00
* virt = ( void __iomem * ) phys_to_virt ( phys ) ;
2005-04-16 15:20:36 -07:00
} else {
* virt = ioremap ( phys , size ) ;
}
} else {
if ( phys > ULONG_MAX ) {
printk ( KERN_ERR PREFIX " Cannot map memory that high \n " ) ;
return AE_BAD_PARAMETER ;
}
/*
2005-08-05 00:44:28 -04:00
* ioremap checks to ensure this is in reserved space
*/
* virt = ioremap ( ( unsigned long ) phys , size ) ;
2005-04-16 15:20:36 -07:00
}
if ( ! * virt )
return AE_NO_MEMORY ;
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
void acpi_os_unmap_memory ( void __iomem * virt , acpi_size size )
2005-04-16 15:20:36 -07:00
{
iounmap ( virt ) ;
}
# ifdef ACPI_FUTURE_USAGE
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_get_physical_address ( void * virt , acpi_physical_address * phys )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
if ( ! phys | | ! virt )
2005-04-16 15:20:36 -07:00
return AE_BAD_PARAMETER ;
* phys = virt_to_phys ( virt ) ;
return AE_OK ;
}
# endif
# define ACPI_MAX_OVERRIDE_LEN 100
static char acpi_os_name [ ACPI_MAX_OVERRIDE_LEN ] ;
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_predefined_override ( const struct acpi_predefined_names * init_val ,
acpi_string * new_val )
2005-04-16 15:20:36 -07:00
{
if ( ! init_val | | ! new_val )
return AE_BAD_PARAMETER ;
* new_val = NULL ;
2005-08-05 00:44:28 -04:00
if ( ! memcmp ( init_val - > name , " _OS_ " , 4 ) & & strlen ( acpi_os_name ) ) {
2005-04-16 15:20:36 -07:00
printk ( KERN_INFO PREFIX " Overriding _OS definition to '%s' \n " ,
2005-08-05 00:44:28 -04:00
acpi_os_name ) ;
2005-04-16 15:20:36 -07:00
* new_val = acpi_os_name ;
}
return AE_OK ;
}
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_table_override ( struct acpi_table_header * existing_table ,
struct acpi_table_header * * new_table )
2005-04-16 15:20:36 -07:00
{
if ( ! existing_table | | ! new_table )
return AE_BAD_PARAMETER ;
# ifdef CONFIG_ACPI_CUSTOM_DSDT
if ( strncmp ( existing_table - > signature , " DSDT " , 4 ) = = 0 )
2005-08-05 00:44:28 -04:00
* new_table = ( struct acpi_table_header * ) AmlCode ;
2005-04-16 15:20:36 -07:00
else
* new_table = NULL ;
# else
* new_table = NULL ;
# endif
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
static irqreturn_t acpi_irq ( int irq , void * dev_id , struct pt_regs * regs )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
return ( * acpi_irq_handler ) ( acpi_irq_context ) ? IRQ_HANDLED : IRQ_NONE ;
2005-04-16 15:20:36 -07:00
}
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_install_interrupt_handler ( u32 gsi , acpi_osd_handler handler ,
void * context )
2005-04-16 15:20:36 -07:00
{
unsigned int irq ;
/*
* Ignore the GSI from the core , and use the value in our copy of the
* FADT . It may not be the same if an interrupt source override exists
* for the SCI .
*/
gsi = acpi_fadt . sci_int ;
if ( acpi_gsi_to_irq ( gsi , & irq ) < 0 ) {
printk ( KERN_ERR PREFIX " SCI (ACPI GSI %d) not registered \n " ,
gsi ) ;
return AE_OK ;
}
acpi_irq_handler = handler ;
acpi_irq_context = context ;
if ( request_irq ( irq , acpi_irq , SA_SHIRQ , " acpi " , acpi_irq ) ) {
printk ( KERN_ERR PREFIX " SCI (IRQ%d) allocation failed \n " , irq ) ;
return AE_NOT_ACQUIRED ;
}
acpi_irq_irq = irq ;
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_remove_interrupt_handler ( u32 irq , acpi_osd_handler handler )
2005-04-16 15:20:36 -07:00
{
if ( irq ) {
free_irq ( irq , acpi_irq ) ;
acpi_irq_handler = NULL ;
acpi_irq_irq = 0 ;
}
return AE_OK ;
}
/*
* Running in interpreter thread context , safe to sleep
*/
2005-08-05 00:44:28 -04:00
void acpi_os_sleep ( acpi_integer ms )
2005-04-16 15:20:36 -07:00
{
2005-11-07 01:01:14 -08:00
schedule_timeout_interruptible ( msecs_to_jiffies ( ms ) ) ;
2005-04-16 15:20:36 -07:00
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_sleep ) ;
2005-08-05 00:44:28 -04:00
void acpi_os_stall ( u32 us )
2005-04-16 15:20:36 -07:00
{
while ( us ) {
u32 delay = 1000 ;
if ( delay > us )
delay = us ;
udelay ( delay ) ;
touch_nmi_watchdog ( ) ;
us - = delay ;
}
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_stall ) ;
/*
* Support ACPI 3.0 AML Timer operand
* Returns 64 - bit free - running , monotonically increasing timer
* with 100 ns granularity
*/
2005-08-05 00:44:28 -04:00
u64 acpi_os_get_timer ( void )
2005-04-16 15:20:36 -07:00
{
static u64 t ;
# ifdef CONFIG_HPET
/* TBD: use HPET if available */
# endif
# ifdef CONFIG_X86_PM_TIMER
/* TBD: default to PM timer if HPET was not available */
# endif
if ( ! t )
printk ( KERN_ERR PREFIX " acpi_os_get_timer() TBD \n " ) ;
return + + t ;
}
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_read_port ( acpi_io_address port , u32 * value , u32 width )
2005-04-16 15:20:36 -07:00
{
u32 dummy ;
if ( ! value )
value = & dummy ;
2005-08-05 00:44:28 -04:00
switch ( width ) {
2005-04-16 15:20:36 -07:00
case 8 :
2005-08-05 00:44:28 -04:00
* ( u8 * ) value = inb ( port ) ;
2005-04-16 15:20:36 -07:00
break ;
case 16 :
2005-08-05 00:44:28 -04:00
* ( u16 * ) value = inw ( port ) ;
2005-04-16 15:20:36 -07:00
break ;
case 32 :
2005-08-05 00:44:28 -04:00
* ( u32 * ) value = inl ( port ) ;
2005-04-16 15:20:36 -07:00
break ;
default :
BUG ( ) ;
}
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_read_port ) ;
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_write_port ( acpi_io_address port , u32 value , u32 width )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
switch ( width ) {
2005-04-16 15:20:36 -07:00
case 8 :
outb ( value , port ) ;
break ;
case 16 :
outw ( value , port ) ;
break ;
case 32 :
outl ( value , port ) ;
break ;
default :
BUG ( ) ;
}
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_write_port ) ;
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_read_memory ( acpi_physical_address phys_addr , u32 * value , u32 width )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
u32 dummy ;
void __iomem * virt_addr ;
int iomem = 0 ;
2005-04-16 15:20:36 -07:00
if ( efi_enabled ) {
if ( EFI_MEMORY_WB & efi_mem_attributes ( phys_addr ) ) {
/* HACK ALERT! We can use readb/w/l on real memory too.. */
2005-08-05 00:44:28 -04:00
virt_addr = ( void __iomem * ) phys_to_virt ( phys_addr ) ;
2005-04-16 15:20:36 -07:00
} else {
iomem = 1 ;
virt_addr = ioremap ( phys_addr , width ) ;
}
} else
2005-08-05 00:44:28 -04:00
virt_addr = ( void __iomem * ) phys_to_virt ( phys_addr ) ;
2005-04-16 15:20:36 -07:00
if ( ! value )
value = & dummy ;
switch ( width ) {
case 8 :
2005-08-05 00:44:28 -04:00
* ( u8 * ) value = readb ( virt_addr ) ;
2005-04-16 15:20:36 -07:00
break ;
case 16 :
2005-08-05 00:44:28 -04:00
* ( u16 * ) value = readw ( virt_addr ) ;
2005-04-16 15:20:36 -07:00
break ;
case 32 :
2005-08-05 00:44:28 -04:00
* ( u32 * ) value = readl ( virt_addr ) ;
2005-04-16 15:20:36 -07:00
break ;
default :
BUG ( ) ;
}
if ( efi_enabled ) {
if ( iomem )
iounmap ( virt_addr ) ;
}
return AE_OK ;
}
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_write_memory ( acpi_physical_address phys_addr , u32 value , u32 width )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
void __iomem * virt_addr ;
int iomem = 0 ;
2005-04-16 15:20:36 -07:00
if ( efi_enabled ) {
if ( EFI_MEMORY_WB & efi_mem_attributes ( phys_addr ) ) {
/* HACK ALERT! We can use writeb/w/l on real memory too */
2005-08-05 00:44:28 -04:00
virt_addr = ( void __iomem * ) phys_to_virt ( phys_addr ) ;
2005-04-16 15:20:36 -07:00
} else {
iomem = 1 ;
virt_addr = ioremap ( phys_addr , width ) ;
}
} else
2005-08-05 00:44:28 -04:00
virt_addr = ( void __iomem * ) phys_to_virt ( phys_addr ) ;
2005-04-16 15:20:36 -07:00
switch ( width ) {
case 8 :
writeb ( value , virt_addr ) ;
break ;
case 16 :
writew ( value , virt_addr ) ;
break ;
case 32 :
writel ( value , virt_addr ) ;
break ;
default :
BUG ( ) ;
}
if ( iomem )
iounmap ( virt_addr ) ;
return AE_OK ;
}
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_read_pci_configuration ( struct acpi_pci_id * pci_id , u32 reg ,
void * value , u32 width )
2005-04-16 15:20:36 -07:00
{
int result , size ;
if ( ! value )
return AE_BAD_PARAMETER ;
switch ( width ) {
case 8 :
size = 1 ;
break ;
case 16 :
size = 2 ;
break ;
case 32 :
size = 4 ;
break ;
default :
return AE_ERROR ;
}
BUG_ON ( ! raw_pci_ops ) ;
result = raw_pci_ops - > read ( pci_id - > segment , pci_id - > bus ,
2005-08-05 00:44:28 -04:00
PCI_DEVFN ( pci_id - > device , pci_id - > function ) ,
reg , size , value ) ;
2005-04-16 15:20:36 -07:00
return ( result ? AE_ERROR : AE_OK ) ;
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_read_pci_configuration ) ;
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_write_pci_configuration ( struct acpi_pci_id * pci_id , u32 reg ,
acpi_integer value , u32 width )
2005-04-16 15:20:36 -07:00
{
int result , size ;
switch ( width ) {
case 8 :
size = 1 ;
break ;
case 16 :
size = 2 ;
break ;
case 32 :
size = 4 ;
break ;
default :
return AE_ERROR ;
}
BUG_ON ( ! raw_pci_ops ) ;
result = raw_pci_ops - > write ( pci_id - > segment , pci_id - > bus ,
2005-08-05 00:44:28 -04:00
PCI_DEVFN ( pci_id - > device , pci_id - > function ) ,
reg , size , value ) ;
2005-04-16 15:20:36 -07:00
return ( result ? AE_ERROR : AE_OK ) ;
}
/* TODO: Change code to take advantage of driver model more */
2005-08-05 00:44:28 -04:00
static void acpi_os_derive_pci_id_2 ( acpi_handle rhandle , /* upper bound */
acpi_handle chandle , /* current node */
struct acpi_pci_id * * id ,
int * is_bridge , u8 * bus_number )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
acpi_handle handle ;
struct acpi_pci_id * pci_id = * id ;
acpi_status status ;
unsigned long temp ;
acpi_object_type type ;
u8 tu8 ;
2005-04-16 15:20:36 -07:00
acpi_get_parent ( chandle , & handle ) ;
if ( handle ! = rhandle ) {
2005-08-05 00:44:28 -04:00
acpi_os_derive_pci_id_2 ( rhandle , handle , & pci_id , is_bridge ,
bus_number ) ;
2005-04-16 15:20:36 -07:00
status = acpi_get_type ( handle , & type ) ;
2005-08-05 00:44:28 -04:00
if ( ( ACPI_FAILURE ( status ) ) | | ( type ! = ACPI_TYPE_DEVICE ) )
2005-04-16 15:20:36 -07:00
return ;
2005-08-05 00:44:28 -04:00
status =
acpi_evaluate_integer ( handle , METHOD_NAME__ADR , NULL ,
& temp ) ;
2005-04-16 15:20:36 -07:00
if ( ACPI_SUCCESS ( status ) ) {
2005-08-05 00:44:28 -04:00
pci_id - > device = ACPI_HIWORD ( ACPI_LODWORD ( temp ) ) ;
pci_id - > function = ACPI_LOWORD ( ACPI_LODWORD ( temp ) ) ;
2005-04-16 15:20:36 -07:00
if ( * is_bridge )
pci_id - > bus = * bus_number ;
/* any nicer way to get bus number of bridge ? */
2005-08-05 00:44:28 -04:00
status =
acpi_os_read_pci_configuration ( pci_id , 0x0e , & tu8 ,
8 ) ;
if ( ACPI_SUCCESS ( status )
& & ( ( tu8 & 0x7f ) = = 1 | | ( tu8 & 0x7f ) = = 2 ) ) {
status =
acpi_os_read_pci_configuration ( pci_id , 0x18 ,
& tu8 , 8 ) ;
2005-04-16 15:20:36 -07:00
if ( ! ACPI_SUCCESS ( status ) ) {
/* Certainly broken... FIX ME */
return ;
}
* is_bridge = 1 ;
pci_id - > bus = tu8 ;
2005-08-05 00:44:28 -04:00
status =
acpi_os_read_pci_configuration ( pci_id , 0x19 ,
& tu8 , 8 ) ;
2005-04-16 15:20:36 -07:00
if ( ACPI_SUCCESS ( status ) ) {
* bus_number = tu8 ;
}
} else
* is_bridge = 0 ;
}
}
}
2005-08-05 00:44:28 -04:00
void acpi_os_derive_pci_id ( acpi_handle rhandle , /* upper bound */
acpi_handle chandle , /* current node */
struct acpi_pci_id * * id )
2005-04-16 15:20:36 -07:00
{
int is_bridge = 1 ;
u8 bus_number = ( * id ) - > bus ;
acpi_os_derive_pci_id_2 ( rhandle , chandle , id , & is_bridge , & bus_number ) ;
}
2005-08-05 00:44:28 -04:00
static void acpi_os_execute_deferred ( void * context )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
struct acpi_os_dpc * dpc = NULL ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_FUNCTION_TRACE ( " os_execute_deferred " ) ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
dpc = ( struct acpi_os_dpc * ) context ;
2005-04-16 15:20:36 -07:00
if ( ! dpc ) {
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_ERROR , " Invalid (NULL) context. \n " ) ) ;
2005-04-16 15:20:36 -07:00
return_VOID ;
}
dpc - > function ( dpc - > context ) ;
kfree ( dpc ) ;
return_VOID ;
}
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_queue_for_execution ( u32 priority ,
acpi_osd_exec_callback function , void * context )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
acpi_status status = AE_OK ;
struct acpi_os_dpc * dpc ;
struct work_struct * task ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_FUNCTION_TRACE ( " os_queue_for_execution " ) ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_EXEC ,
" Scheduling function [%p(%p)] for deferred execution. \n " ,
function , context ) ) ;
2005-04-16 15:20:36 -07:00
if ( ! function )
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_BAD_PARAMETER ) ;
2005-04-16 15:20:36 -07:00
/*
* Allocate / initialize DPC structure . Note that this memory will be
* freed by the callee . The kernel handles the tq_struct list in a
* way that allows us to also free its memory inside the callee .
* Because we may want to schedule several tasks with different
* parameters we can ' t use the approach some kernel code uses of
* having a static tq_struct .
* We can save time and code by allocating the DPC and tq_structs
* from the same memory .
*/
2005-08-05 00:44:28 -04:00
dpc =
kmalloc ( sizeof ( struct acpi_os_dpc ) + sizeof ( struct work_struct ) ,
GFP_ATOMIC ) ;
2005-04-16 15:20:36 -07:00
if ( ! dpc )
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_NO_MEMORY ) ;
2005-04-16 15:20:36 -07:00
dpc - > function = function ;
dpc - > context = context ;
2005-08-05 00:44:28 -04:00
task = ( void * ) ( dpc + 1 ) ;
INIT_WORK ( task , acpi_os_execute_deferred , ( void * ) dpc ) ;
2005-04-16 15:20:36 -07:00
if ( ! queue_work ( kacpid_wq , task ) ) {
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_ERROR ,
" Call to queue_work() failed. \n " ) ) ;
2005-04-16 15:20:36 -07:00
kfree ( dpc ) ;
status = AE_ERROR ;
}
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( status ) ;
2005-04-16 15:20:36 -07:00
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_queue_for_execution ) ;
2005-08-05 00:44:28 -04:00
void acpi_os_wait_events_complete ( void * context )
2005-04-16 15:20:36 -07:00
{
flush_workqueue ( kacpid_wq ) ;
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_wait_events_complete ) ;
/*
* Allocate the memory for a spinlock and initialize it .
*/
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_create_lock ( acpi_handle * out_handle )
2005-04-16 15:20:36 -07:00
{
spinlock_t * lock_ptr ;
2005-08-05 00:44:28 -04:00
ACPI_FUNCTION_TRACE ( " os_create_lock " ) ;
2005-04-16 15:20:36 -07:00
lock_ptr = acpi_os_allocate ( sizeof ( spinlock_t ) ) ;
spin_lock_init ( lock_ptr ) ;
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_MUTEX , " Creating spinlock[%p]. \n " , lock_ptr ) ) ;
2005-04-16 15:20:36 -07:00
* out_handle = lock_ptr ;
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_OK ) ;
2005-04-16 15:20:36 -07:00
}
/*
* Deallocate the memory for a spinlock .
*/
2005-08-05 00:44:28 -04:00
void acpi_os_delete_lock ( acpi_handle handle )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
ACPI_FUNCTION_TRACE ( " os_create_lock " ) ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_MUTEX , " Deleting spinlock[%p]. \n " , handle ) ) ;
2005-04-16 15:20:36 -07:00
acpi_os_free ( handle ) ;
return_VOID ;
}
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_create_semaphore ( u32 max_units , u32 initial_units , acpi_handle * handle )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
struct semaphore * sem = NULL ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_FUNCTION_TRACE ( " os_create_semaphore " ) ;
2005-04-16 15:20:36 -07:00
sem = acpi_os_allocate ( sizeof ( struct semaphore ) ) ;
if ( ! sem )
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_NO_MEMORY ) ;
2005-04-16 15:20:36 -07:00
memset ( sem , 0 , sizeof ( struct semaphore ) ) ;
sema_init ( sem , initial_units ) ;
2005-08-05 00:44:28 -04:00
* handle = ( acpi_handle * ) sem ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_MUTEX , " Creating semaphore[%p|%d]. \n " ,
* handle , initial_units ) ) ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_OK ) ;
2005-04-16 15:20:36 -07:00
}
2005-08-05 00:44:28 -04:00
EXPORT_SYMBOL ( acpi_os_create_semaphore ) ;
2005-04-16 15:20:36 -07:00
/*
* TODO : A better way to delete semaphores ? Linux doesn ' t have a
* ' delete_semaphore ( ) ' function - - may result in an invalid
* pointer dereference for non - synchronized consumers . Should
* we at least check for blocked threads and signal / cancel them ?
*/
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_delete_semaphore ( acpi_handle handle )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
struct semaphore * sem = ( struct semaphore * ) handle ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_FUNCTION_TRACE ( " os_delete_semaphore " ) ;
2005-04-16 15:20:36 -07:00
if ( ! sem )
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_BAD_PARAMETER ) ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_MUTEX , " Deleting semaphore[%p]. \n " , handle ) ) ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
acpi_os_free ( sem ) ;
sem = NULL ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_OK ) ;
2005-04-16 15:20:36 -07:00
}
2005-08-05 00:44:28 -04:00
EXPORT_SYMBOL ( acpi_os_delete_semaphore ) ;
2005-04-16 15:20:36 -07:00
/*
* TODO : The kernel doesn ' t have a ' down_timeout ' function - - had to
* improvise . The process is to sleep for one scheduler quantum
* until the semaphore becomes available . Downside is that this
* may result in starvation for timeout - based waits when there ' s
* lots of semaphore activity .
*
* TODO : Support for units > 1 ?
*/
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_wait_semaphore ( acpi_handle handle , u32 units , u16 timeout )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
acpi_status status = AE_OK ;
struct semaphore * sem = ( struct semaphore * ) handle ;
int ret = 0 ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_FUNCTION_TRACE ( " os_wait_semaphore " ) ;
2005-04-16 15:20:36 -07:00
if ( ! sem | | ( units < 1 ) )
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_BAD_PARAMETER ) ;
2005-04-16 15:20:36 -07:00
if ( units > 1 )
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_SUPPORT ) ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_MUTEX , " Waiting for semaphore[%p|%d|%d] \n " ,
handle , units , timeout ) ) ;
2005-04-16 15:20:36 -07:00
if ( in_atomic ( ) )
timeout = 0 ;
2005-08-05 00:44:28 -04:00
switch ( timeout ) {
2005-04-16 15:20:36 -07:00
/*
* No Wait :
* - - - - - - - -
* A zero timeout value indicates that we shouldn ' t wait - just
* acquire the semaphore if available otherwise return AE_TIME
* ( a . k . a . ' would block ' ) .
*/
2005-08-05 00:44:28 -04:00
case 0 :
if ( down_trylock ( sem ) )
2005-04-16 15:20:36 -07:00
status = AE_TIME ;
break ;
/*
* Wait Indefinitely :
* - - - - - - - - - - - - - - - - - -
*/
2005-08-05 00:44:28 -04:00
case ACPI_WAIT_FOREVER :
2005-04-16 15:20:36 -07:00
down ( sem ) ;
break ;
/*
* Wait w / Timeout :
* - - - - - - - - - - - - - - - -
*/
2005-08-05 00:44:28 -04:00
default :
2005-04-16 15:20:36 -07:00
// TODO: A better timeout algorithm?
{
int i = 0 ;
2005-08-05 00:44:28 -04:00
static const int quantum_ms = 1000 / HZ ;
2005-04-16 15:20:36 -07:00
ret = down_trylock ( sem ) ;
for ( i = timeout ; ( i > 0 & & ret < 0 ) ; i - = quantum_ms ) {
2005-11-07 01:01:14 -08:00
schedule_timeout_interruptible ( 1 ) ;
2005-04-16 15:20:36 -07:00
ret = down_trylock ( sem ) ;
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
if ( ret ! = 0 )
status = AE_TIME ;
}
break ;
}
if ( ACPI_FAILURE ( status ) ) {
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_ERROR ,
" Failed to acquire semaphore[%p|%d|%d], %s \n " ,
handle , units , timeout ,
acpi_format_exception ( status ) ) ) ;
} else {
ACPI_DEBUG_PRINT ( ( ACPI_DB_MUTEX ,
" Acquired semaphore[%p|%d|%d] \n " , handle ,
units , timeout ) ) ;
2005-04-16 15:20:36 -07:00
}
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( status ) ;
2005-04-16 15:20:36 -07:00
}
2005-08-05 00:44:28 -04:00
EXPORT_SYMBOL ( acpi_os_wait_semaphore ) ;
2005-04-16 15:20:36 -07:00
/*
* TODO : Support for units > 1 ?
*/
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_signal_semaphore ( acpi_handle handle , u32 units )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
struct semaphore * sem = ( struct semaphore * ) handle ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_FUNCTION_TRACE ( " os_signal_semaphore " ) ;
2005-04-16 15:20:36 -07:00
if ( ! sem | | ( units < 1 ) )
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_BAD_PARAMETER ) ;
2005-04-16 15:20:36 -07:00
if ( units > 1 )
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_SUPPORT ) ;
2005-04-16 15:20:36 -07:00
2005-08-05 00:44:28 -04:00
ACPI_DEBUG_PRINT ( ( ACPI_DB_MUTEX , " Signaling semaphore[%p|%d] \n " , handle ,
units ) ) ;
2005-04-16 15:20:36 -07:00
up ( sem ) ;
2005-08-05 00:44:28 -04:00
return_ACPI_STATUS ( AE_OK ) ;
2005-04-16 15:20:36 -07:00
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_signal_semaphore ) ;
# ifdef ACPI_FUTURE_USAGE
2005-08-05 00:44:28 -04:00
u32 acpi_os_get_line ( char * buffer )
2005-04-16 15:20:36 -07:00
{
# ifdef ENABLE_DEBUGGER
if ( acpi_in_debugger ) {
u32 chars ;
kdb_read ( buffer , sizeof ( line_buf ) ) ;
/* remove the CR kdb includes */
chars = strlen ( buffer ) - 1 ;
buffer [ chars ] = ' \0 ' ;
}
# endif
return 0 ;
}
2005-08-05 00:44:28 -04:00
# endif /* ACPI_FUTURE_USAGE */
2005-04-16 15:20:36 -07:00
/* Assumes no unreadable holes inbetween */
2005-08-05 00:44:28 -04:00
u8 acpi_os_readable ( void * ptr , acpi_size len )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
# if defined(__i386__) || defined(__x86_64__)
2005-04-16 15:20:36 -07:00
char tmp ;
2005-08-05 00:44:28 -04:00
return ! __get_user ( tmp , ( char __user * ) ptr )
& & ! __get_user ( tmp , ( char __user * ) ptr + len - 1 ) ;
2005-04-16 15:20:36 -07:00
# endif
return 1 ;
}
# ifdef ACPI_FUTURE_USAGE
2005-08-05 00:44:28 -04:00
u8 acpi_os_writable ( void * ptr , acpi_size len )
2005-04-16 15:20:36 -07:00
{
/* could do dummy write (racy) or a kernel page table lookup.
The later may be difficult at early boot when kmap doesn ' t work yet . */
return 1 ;
}
# endif
2005-08-05 00:44:28 -04:00
u32 acpi_os_get_thread_id ( void )
2005-04-16 15:20:36 -07:00
{
if ( ! in_atomic ( ) )
return current - > pid ;
return 0 ;
}
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_signal ( u32 function , void * info )
2005-04-16 15:20:36 -07:00
{
2005-08-05 00:44:28 -04:00
switch ( function ) {
2005-04-16 15:20:36 -07:00
case ACPI_SIGNAL_FATAL :
printk ( KERN_ERR PREFIX " Fatal opcode executed \n " ) ;
break ;
case ACPI_SIGNAL_BREAKPOINT :
/*
* AML Breakpoint
* ACPI spec . says to treat it as a NOP unless
* you are debugging . So if / when we integrate
* AML debugger into the kernel debugger its
* hook will go here . But until then it is
* not useful to print anything on breakpoints .
*/
break ;
default :
break ;
}
return AE_OK ;
}
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
EXPORT_SYMBOL ( acpi_os_signal ) ;
2005-08-05 00:44:28 -04:00
static int __init acpi_os_name_setup ( char * str )
2005-04-16 15:20:36 -07:00
{
char * p = acpi_os_name ;
2005-08-05 00:44:28 -04:00
int count = ACPI_MAX_OVERRIDE_LEN - 1 ;
2005-04-16 15:20:36 -07:00
if ( ! str | | ! * str )
return 0 ;
for ( ; count - - & & str & & * str ; str + + ) {
if ( isalnum ( * str ) | | * str = = ' ' | | * str = = ' : ' )
* p + + = * str ;
else if ( * str = = ' \' ' | | * str = = ' " ' )
continue ;
else
break ;
}
* p = 0 ;
return 1 ;
2005-08-05 00:44:28 -04:00
2005-04-16 15:20:36 -07:00
}
__setup ( " acpi_os_name= " , acpi_os_name_setup ) ;
/*
* _OSI control
* empty string disables _OSI
* TBD additional string adds to _OSI
*/
2005-08-05 00:44:28 -04:00
static int __init acpi_osi_setup ( char * str )
2005-04-16 15:20:36 -07:00
{
if ( str = = NULL | | * str = = ' \0 ' ) {
printk ( KERN_INFO PREFIX " _OSI method disabled \n " ) ;
acpi_gbl_create_osi_method = FALSE ;
2005-08-05 00:44:28 -04:00
} else {
2005-04-16 15:20:36 -07:00
/* TBD */
2005-08-05 00:44:28 -04:00
printk ( KERN_ERR PREFIX " _OSI additional string ignored -- %s \n " ,
str ) ;
2005-04-16 15:20:36 -07:00
}
return 1 ;
}
__setup ( " acpi_osi= " , acpi_osi_setup ) ;
/* enable serialization to combat AE_ALREADY_EXISTS errors */
2005-08-05 00:44:28 -04:00
static int __init acpi_serialize_setup ( char * str )
2005-04-16 15:20:36 -07:00
{
printk ( KERN_INFO PREFIX " serialize enabled \n " ) ;
acpi_gbl_all_methods_serialized = TRUE ;
return 1 ;
}
__setup ( " acpi_serialize " , acpi_serialize_setup ) ;
/*
* Wake and Run - Time GPES are expected to be separate .
* We disable wake - GPEs at run - time to prevent spurious
* interrupts .
*
* However , if a system exists that shares Wake and
* Run - time events on the same GPE this flag is available
* to tell Linux to keep the wake - time GPEs enabled at run - time .
*/
2005-08-05 00:44:28 -04:00
static int __init acpi_wake_gpes_always_on_setup ( char * str )
2005-04-16 15:20:36 -07:00
{
printk ( KERN_INFO PREFIX " wake GPEs not disabled \n " ) ;
acpi_gbl_leave_wake_gpes_disabled = FALSE ;
return 1 ;
}
__setup ( " acpi_wake_gpes_always_on " , acpi_wake_gpes_always_on_setup ) ;
2005-09-02 17:16:48 -04:00
static int __init acpi_hotkey_setup ( char * str )
2005-03-18 18:03:45 -05:00
{
2005-08-12 00:31:00 -04:00
acpi_specific_hotkey_enabled = FALSE ;
2005-03-18 18:03:45 -05:00
return 1 ;
}
2005-08-12 00:31:00 -04:00
__setup ( " acpi_generic_hotkey " , acpi_hotkey_setup ) ;
2005-03-18 18:03:45 -05:00
2005-04-16 15:20:36 -07:00
/*
* max_cstate is defined in the base kernel so modules can
* change it w / o depending on the state of the processor module .
*/
unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER ;
EXPORT_SYMBOL ( max_cstate ) ;
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
/*
* Acquire a spinlock .
*
* handle is a pointer to the spinlock_t .
* flags is * not * the result of save_flags - it is an ACPI - specific flag variable
* that indicates whether we are at interrupt level .
*/
2005-08-05 00:44:28 -04:00
unsigned long acpi_os_acquire_lock ( acpi_handle handle )
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
{
unsigned long flags ;
2005-08-05 00:44:28 -04:00
spin_lock_irqsave ( ( spinlock_t * ) handle , flags ) ;
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
return flags ;
}
/*
* Release a spinlock . See above .
*/
2005-08-05 00:44:28 -04:00
void acpi_os_release_lock ( acpi_handle handle , unsigned long flags )
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
{
2005-08-05 00:44:28 -04:00
spin_unlock_irqrestore ( ( spinlock_t * ) handle , flags ) ;
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
}
# ifndef ACPI_USE_LOCAL_CACHE
/*******************************************************************************
*
* FUNCTION : acpi_os_create_cache
*
* PARAMETERS : CacheName - Ascii name for the cache
* ObjectSize - Size of each cached object
* MaxDepth - Maximum depth of the cache ( in objects )
* ReturnCache - Where the new cache object is returned
*
* RETURN : Status
*
* DESCRIPTION : Create a cache object
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
acpi_status
2005-08-05 00:44:28 -04:00
acpi_os_create_cache ( char * name , u16 size , u16 depth , acpi_cache_t * * cache )
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
{
2005-08-05 00:44:28 -04:00
* cache = kmem_cache_create ( name , size , 0 , 0 , NULL , NULL ) ;
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
return AE_OK ;
}
/*******************************************************************************
*
* FUNCTION : acpi_os_purge_cache
*
* PARAMETERS : Cache - Handle to cache object
*
* RETURN : Status
*
* DESCRIPTION : Free all objects within the requested cache .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_purge_cache ( acpi_cache_t * cache )
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
{
2005-08-05 00:44:28 -04:00
( void ) kmem_cache_shrink ( cache ) ;
return ( AE_OK ) ;
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
}
/*******************************************************************************
*
* FUNCTION : acpi_os_delete_cache
*
* PARAMETERS : Cache - Handle to cache object
*
* RETURN : Status
*
* DESCRIPTION : Free all objects within the requested cache and delete the
* cache object .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_delete_cache ( acpi_cache_t * cache )
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
{
2005-08-05 00:44:28 -04:00
( void ) kmem_cache_destroy ( cache ) ;
return ( AE_OK ) ;
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
}
/*******************************************************************************
*
* FUNCTION : acpi_os_release_object
*
* PARAMETERS : Cache - Handle to cache object
* Object - The object to be released
*
* RETURN : None
*
* DESCRIPTION : Release an object to the specified cache . If cache is full ,
* the object is deleted .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2005-08-05 00:44:28 -04:00
acpi_status acpi_os_release_object ( acpi_cache_t * cache , void * object )
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
{
2005-08-05 00:44:28 -04:00
kmem_cache_free ( cache , object ) ;
return ( AE_OK ) ;
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
}
/*******************************************************************************
*
* FUNCTION : acpi_os_acquire_object
*
* PARAMETERS : Cache - Handle to cache object
* ReturnObject - Where the object is returned
*
* RETURN : Status
*
* DESCRIPTION : Get an object from the specified cache . If cache is empty ,
* the object is allocated .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2005-08-05 00:44:28 -04:00
void * acpi_os_acquire_object ( acpi_cache_t * cache )
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
{
2005-08-05 00:44:28 -04:00
void * object = kmem_cache_alloc ( cache , GFP_KERNEL ) ;
WARN_ON ( ! object ) ;
return object ;
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 00:00:00 -04:00
}
# endif